JPH0520079Y2 - - Google Patents

Info

Publication number
JPH0520079Y2
JPH0520079Y2 JP1987196191U JP19619187U JPH0520079Y2 JP H0520079 Y2 JPH0520079 Y2 JP H0520079Y2 JP 1987196191 U JP1987196191 U JP 1987196191U JP 19619187 U JP19619187 U JP 19619187U JP H0520079 Y2 JPH0520079 Y2 JP H0520079Y2
Authority
JP
Japan
Prior art keywords
ultrasonic
electrode
piezoelectric film
organic piezoelectric
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987196191U
Other languages
Japanese (ja)
Other versions
JPS63108299U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987196191U priority Critical patent/JPH0520079Y2/ja
Publication of JPS63108299U publication Critical patent/JPS63108299U/ja
Application granted granted Critical
Publication of JPH0520079Y2 publication Critical patent/JPH0520079Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は電子セクタースキヤン超音波エコー断
層装置等に使用される位相配列振動子の改良に関
するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to an improvement of a phase array transducer used in electronic sector scan ultrasonic echo tomography devices and the like.

〔従来の技術〕[Conventional technology]

従来の位相配列超音波振動子は、第1図に示す
ように構成各素子が短冊形をしたn個のPZT等
の圧電素子1を並設してなり、これらの各圧電素
子1をそれぞれ遅延素子2を介し適当な位相で駆
動することにより、放射超音波の合成波面Aが任
意角度θ方向に進行するようになつている。この
場合、進行方向への超音波の合成強度はθの函数
となる。図中、3,4は駆動電極である。
As shown in Fig. 1, a conventional phased array ultrasonic transducer consists of n piezoelectric elements 1 such as PZT, each of which has a rectangular shape, arranged in parallel. By driving with an appropriate phase through the element 2, the composite wavefront A of the radiated ultrasonic waves is made to proceed at an arbitrary angle in the θ direction. In this case, the combined intensity of the ultrasonic waves in the direction of travel is a function of θ. In the figure, 3 and 4 are drive electrodes.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ところで、一般に各圧電素子は指向性があり、
すなわち第2図に示すようにθ方向に超音波強度
分布をもつている。従つて、偏向角度θの大きな
方向へは合成された超音波ビームの出力、入力が
不十分となる欠点があつた。
By the way, each piezoelectric element generally has directionality.
That is, as shown in FIG. 2, the ultrasonic wave has an intensity distribution in the θ direction. Therefore, there is a drawback that the output and input of the combined ultrasonic beam are insufficient in the direction where the deflection angle θ is large.

このため、電子セクタースキヤン超音波エコー
断層装置等では、偏向角度θの増大と共に駆動電
力を増大したり、受信エコー信号の増幅度を増大
することが行われている。
For this reason, in electronic sector scan ultrasonic echo tomography devices and the like, as the deflection angle θ increases, driving power is increased and the degree of amplification of the received echo signal is increased.

しかし電圧の増大には限度があり、かつ人体等
の媒質内の超音波減衰が大きいときは増幅度の増
大は雑音も増幅することになり不都合である。
However, there is a limit to the increase in voltage, and when the ultrasonic attenuation in a medium such as the human body is large, increasing the amplification degree also amplifies noise, which is disadvantageous.

本考案はこれらの問題を解決するためのもの
で、放射超音波強度の偏向角度依存性を任意に設
定できる位相配列振動子を提供することを目的と
している。
The present invention is intended to solve these problems, and aims to provide a phase array transducer in which the dependence of the radiated ultrasound intensity on the deflection angle can be arbitrarily set.

本考案の構成は次の通りである。即ち、超音波
送信受信用の有機性圧電膜からなる圧電素子に複
数の電極をもたせて、これら電極にそれぞれ位相
差をもたせて送信受信することにより、有機性圧
電膜によつて形成される合成超音波ビームを偏向
させる位相配列振動子において、前記電極が円柱
形状を有する金属材料から成つており、かつ、少
なくとも放射面が円弧状の有機圧電膜か前記電極
に接して形成されてなることを特徴とする位相配
列振動子である。
The configuration of the present invention is as follows. That is, a piezoelectric element made of an organic piezoelectric film for transmitting and receiving ultrasonic waves is provided with a plurality of electrodes, and these electrodes transmit and receive waves with a phase difference between them. In the phased array transducer for deflecting an ultrasound beam, the electrode is made of a metal material having a cylindrical shape, and at least an arc-shaped organic piezoelectric film is formed in contact with the electrode. This is a phased array oscillator with special features.

〔実施例〕〔Example〕

次に第3図乃至第8図に関連して本考案の実施
例を説明する。
Next, embodiments of the present invention will be described with reference to FIGS. 3 to 8.

本考案は、圧電素子の送信、受信側表面を平面
でなく曲率をもたせることによりその放射超音波
強度の偏向角度依存性を任意に設定できるように
したもので、以下数種の実施例について詳細に説
明する。
In this invention, the transmitting and receiving surfaces of the piezoelectric element are made curved rather than flat, so that the deflection angle dependence of the emitted ultrasonic intensity can be set arbitrarily. Explain.

第3図に第1の実施例を示す。 FIG. 3 shows a first embodiment.

本例の場合は、バツキング部材11上に適宜直
径の金属線等の円形断面の複数個の駆動電極12
を配設し、その上を、外面にアルミニウム蒸着等
により導電膜(外部電極)13を形成した有機性
圧電膜14で覆い接着等により固定して振動子本
体を構成している。有機性圧電膜14は、ポリ弗
化ビニリデン(PVDF)等で形成する。この場
合、各駆動電極12とそれに対向する外部電極で
ある導電膜13(一般に接地される)とが素子を
構成し、素子の送信、受信側表面は適当な曲率を
もつて湾曲しているため、各素子の送信、受信側
表面におけるそれぞれの指向性は無指向性に近く
なつてθ方向の超音波強度分布が一様化し、駆動
電極12と直交する方向に図中矢印線で示すよう
に超音波セクタースキヤンを行う場合に、放射超
音波強度の偏向角度依存性を改善できる。この偏
向角度依存性は駆動電極12の直径を適宜選定す
ることにより任意に設定することが可能である。
In the case of this example, a plurality of drive electrodes 12 having a circular cross section, such as metal wires having an appropriate diameter, are mounted on the backing member 11.
is disposed thereon, covered with an organic piezoelectric film 14 on the outer surface of which a conductive film (external electrode) 13 is formed by aluminum vapor deposition or the like, and fixed by adhesive or the like to form a vibrator main body. The organic piezoelectric film 14 is made of polyvinylidene fluoride (PVDF) or the like. In this case, each drive electrode 12 and a conductive film 13 (generally grounded), which is an external electrode facing it, constitute an element, and the transmitter and receiver surfaces of the element are curved with appropriate curvatures. , the directivity of each element on the transmitting and receiving surfaces becomes nearly omnidirectional, and the ultrasonic intensity distribution in the θ direction becomes uniform, as shown by the arrow line in the figure in the direction perpendicular to the drive electrode 12. When performing an ultrasonic sector scan, the dependence of the radiated ultrasonic intensity on the deflection angle can be improved. This deflection angle dependence can be arbitrarily set by appropriately selecting the diameter of the drive electrode 12.

なお、導電膜13の外部に任意の整合層保護
層、超音波レンズ、プリズム等を付加してもよ
く、またバツキング部材11として超音波吸収特
性の良いものを使用してもよい。
Note that an arbitrary matching layer protective layer, an ultrasonic lens, a prism, etc. may be added to the outside of the conductive film 13, and a material with good ultrasonic absorption characteristics may be used as the backing member 11.

ただしこの場合の超音波レンズは、駆動電極1
2の方向において超音波を集束するものを意味し
ており、このようなものは周知である。
However, in this case, the ultrasonic lens has a drive electrode 1
This means something that focuses ultrasonic waves in two directions, and such something is well known.

第4図に第2の実施例を示す。 FIG. 4 shows a second embodiment.

本例の場合は、適宜直径の金属線等の円形断面
の駆動電極21の周囲に同心円筒状にPVDF等の
有機性圧電膜22を設け、その外側に金属メツ
キ、真空蒸着、導電塗料塗装等により導電膜(外
部電極)23を形成したものを基本とし、この電
線状構造体24をバツキング部材25上に配設し
て振動子を構成している。この場合、各駆動電極
21と圧電膜22とこれを包囲する導電膜23と
が素子を構成し、前例と同様の効果を奏すること
が可能である。なお、導電膜23の外部に整合層
保護層、超音波レンズ、プリズム等を付加しても
よく、またバツキング部材25として超音波吸収
特性の良いものを使用してもよい。
In the case of this example, an organic piezoelectric film 22 such as PVDF is provided in a concentric cylindrical shape around a driving electrode 21 having a circular cross section made of metal wire or the like with an appropriate diameter, and the outside thereof is coated with metal plating, vacuum evaporation, conductive paint coating, etc. Basically, a conductive film (external electrode) 23 is formed thereon, and this wire-like structure 24 is disposed on a backing member 25 to constitute a vibrator. In this case, each drive electrode 21, the piezoelectric film 22, and the conductive film 23 surrounding it constitute an element, and it is possible to achieve the same effect as the previous example. Note that a matching layer protective layer, an ultrasonic lens, a prism, etc. may be added to the outside of the conductive film 23, and a material with good ultrasonic absorption characteristics may be used as the backing member 25.

電線状構造体の素材(導電膜を形成しないも
の)は通常の電線と同様の製法で容易に作製でき
るが、この場合、駆動電極素材を伸線しながら
PVDF被覆を形成する際にその温度を制約し引張
りを与えることで分子配列をそろえたり、PVDF
被覆形成用の外部ダイスと駆動電極素材間に電圧
を印加しつつ適当な温度でPVDF層を形成成極さ
せたりすることが可能である。
The material for the wire-like structure (one that does not form a conductive film) can be easily manufactured using the same manufacturing method as for ordinary wires, but in this case, while drawing the drive electrode material,
When forming a PVDF coating, by restricting the temperature and applying tension, the molecular arrangement can be aligned, and the PVDF
It is possible to form and polarize the PVDF layer at an appropriate temperature while applying a voltage between the external die for coating formation and the drive electrode material.

また、電線状構造体の素材は第5図に示す手順
により作製することができる。すなわち、PVDF
板26上の端部に駆動電極となる導電性樹脂27
をセツトし、これを導電性樹脂27側から巻き込
んで作製することができる。
Further, the material for the wire-like structure can be produced by the procedure shown in FIG. i.e. PVDF
A conductive resin 27 serving as a driving electrode is placed at the end of the plate 26.
It can be manufactured by setting the conductive resin 27 and rolling it in from the conductive resin 27 side.

以上のようにして作製された素材の表面に導電
膜を形成してなる電線状構造体を用い、第6図ま
たは第7図に示す手順により第4図に示す形式の
位相配列振動子を得ることができる。
Using the wire-like structure formed by forming a conductive film on the surface of the material produced as described above, a phased array oscillator of the type shown in Fig. 4 is obtained by the procedure shown in Fig. 6 or 7. be able to.

第6図の場合は、第6図aに示すように四角柱
状のバツキング部材の素材28に電線状構造体2
4を複数回巻回した後、これを鎖線の位置で切断
して切り出すことによつて、第6図bに示す形状
の振動子本体29を得ることができる。
In the case of FIG. 6, as shown in FIG.
4 is wound a plurality of times and then cut at the position of the chain line to obtain the vibrator main body 29 having the shape shown in FIG. 6b.

第7図の場合は、第7図aに示すように離型芯
30(これは後で不要となる)に電線状構造体2
4を複数回巻回してその外周にバツキング部材の
素材31の皮膜を形成し、離型芯30を取外した
後これを鎖線の位置で切断することによつて、第
7図bに示す形状の振動子本体29′を得ること
ができる。この場合は、電線状構造体24が第8
図に示すようにその並設方向と直角方向で凹状に
湾曲しているため、上述の効果の他に、送信され
る超音波ビーム31が図示のように電線状構造体
24の湾曲形状の焦点Oの付近で絞られるという
効果を奏することができる。
In the case of FIG. 7, as shown in FIG. 7a, the wire-like structure 2
4 is wound several times to form a film of the backing member material 31 on its outer periphery, and after removing the mold release core 30, this is cut at the chain line position to form the shape shown in FIG. 7b. A vibrator body 29' can be obtained. In this case, the wire-like structure 24 is the eighth
As shown in the figure, since it is concavely curved in the direction perpendicular to the juxtaposed direction, in addition to the above-mentioned effect, the transmitted ultrasonic beam 31 is focused on the curved shape of the wire-like structure 24 as shown in the figure. It is possible to achieve the effect of narrowing down near O.

〔考案の効果〕[Effect of idea]

以上述べたように、本考案によれば、放射超音
波強度の偏向角度依存性を任意に設定することが
可能である。
As described above, according to the present invention, it is possible to arbitrarily set the dependence of the radiated ultrasound intensity on the deflection angle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の位相配列振動子の概要図、第2
図は同素子の放射超音波強度分布を示す説明図、
第3図は本考案に係る位相配列振動子の第1の実
施例を示す要部正面図、第4図は同第2の実施例
を示す要部正面図、第5図は第4図に示す電線状
構造体の形成要領図、第6図および第7図はそれ
ぞれ第4図に示す振動子本体の作製要領図、第8
図は第7図の手順により作製された振動子による
超音波ビーム絞り作用説明図で、図中、2は遅延
素子、11,25はバツキング部材、12,21
は駆動電極、13,23は導電膜、14,22は
圧電膜、24は電線状構造体、29,29′は振
動子本体である。
Figure 1 is a schematic diagram of a conventional phase array oscillator, Figure 2
The figure is an explanatory diagram showing the radiated ultrasound intensity distribution of the same element.
FIG. 3 is a front view of the main part showing the first embodiment of the phase array resonator according to the present invention, FIG. 4 is a front view of the main part showing the second embodiment of the same, and FIG. 6 and 7 are diagrams showing the procedure for forming the electric wire-like structure shown in FIG. 4 and FIG. 8, respectively.
The figure is an explanatory diagram of the ultrasonic beam narrowing effect by the transducer produced by the procedure shown in Fig. 7. In the figure, 2 is a delay element, 11 and 25 are backing members, 12 and 21
13, 23 are conductive films, 14, 22 are piezoelectric films, 24 is a wire-like structure, and 29, 29' are vibrator bodies.

Claims (1)

【実用新案登録請求の範囲】 超音波送信受信用の有機性圧電膜からなる圧電
素子に複数の電極をもたせて、これら電極にそれ
ぞれ位相差をもたせて送信受信することにより、
有機性圧電膜によつて形成される合成超音波ビー
ムを偏向させる位相配列振動子において、 前記電極が円柱形状を有する金属材料から成つ
ており、かつ、少なくとも放射面が円弧状の有機
圧電膜か前記電極に接して形成されてなることを
特徴とする位相配列振動子。
[Claims for Utility Model Registration] A piezoelectric element made of an organic piezoelectric film for transmitting and receiving ultrasonic waves is provided with a plurality of electrodes, and each of these electrodes has a phase difference for transmitting and receiving,
In a phase array transducer that deflects a synthetic ultrasound beam formed by an organic piezoelectric film, the electrode is made of a metal material having a cylindrical shape, and at least the radiation surface is an arc-shaped organic piezoelectric film. A phase array vibrator, characterized in that it is formed in contact with the electrode.
JP1987196191U 1987-12-24 1987-12-24 Expired - Lifetime JPH0520079Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987196191U JPH0520079Y2 (en) 1987-12-24 1987-12-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987196191U JPH0520079Y2 (en) 1987-12-24 1987-12-24

Publications (2)

Publication Number Publication Date
JPS63108299U JPS63108299U (en) 1988-07-12
JPH0520079Y2 true JPH0520079Y2 (en) 1993-05-26

Family

ID=31154787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987196191U Expired - Lifetime JPH0520079Y2 (en) 1987-12-24 1987-12-24

Country Status (1)

Country Link
JP (1) JPH0520079Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538929B2 (en) * 2007-04-06 2009-05-26 Harris Corporation RF phase modulation technique for performing acousto-optic intensity modulation of an optical wavefront
JP5530994B2 (en) * 2011-09-27 2014-06-25 富士フイルム株式会社 Ultrasonic probe and manufacturing method thereof
US9056333B2 (en) 2011-09-27 2015-06-16 Fujifilm Corporation Ultrasound probe and method of producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529990A (en) * 1975-07-14 1977-01-25 Matsushita Electric Ind Co Ltd Ultrasonic probe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529990A (en) * 1975-07-14 1977-01-25 Matsushita Electric Ind Co Ltd Ultrasonic probe

Also Published As

Publication number Publication date
JPS63108299U (en) 1988-07-12

Similar Documents

Publication Publication Date Title
EP0027542B1 (en) Ultrasonic transducer element
EP0019267B1 (en) Piezoelectric vibration transducer
US5511296A (en) Method for making integrated matching layer for ultrasonic transducers
US5706820A (en) Ultrasonic transducer with reduced elevation sidelobes and method for the manufacture thereof
EP0018614A1 (en) An improved electro-acoustic transducer element
GB2129253A (en) Method of manufacturing an apodized ultrasound transducer
JPH07121158B2 (en) Ultrasonic probe
EP0631272B1 (en) Ultrasonic transducer
US4401910A (en) Multi-focus spiral ultrasonic transducer
JPH0520079Y2 (en)
JP4017934B2 (en) Ultrasonic probe
US5511043A (en) Multiple frequency steerable acoustic transducer
JPH03133300A (en) Composite piezoelectric ultrasonic wave probe
JPS6052823B2 (en) Probe for ultrasound diagnostic equipment
JP3327497B2 (en) Ultrasonic probe
TWI695981B (en) Underwater ultrasonic device
JPH0965489A (en) Ultrasonic probe
EP0134346B1 (en) Ultrasonic transducers
JPH08275944A (en) Arrangement type ultrasonic probe
JPS60264200A (en) Ultrasonic wave vibrator
JP2814903B2 (en) Ultrasonic probe
JP3281719B2 (en) Ultrasonic probe and manufacturing method thereof
JP2003087897A (en) Ultrasonic wave vibrator and its manufacturing method
JPH03151948A (en) Ultrasonic probe
JPH0510880B2 (en)