JPS60135821A - Heat-sensitive flow detector - Google Patents

Heat-sensitive flow detector

Info

Publication number
JPS60135821A
JPS60135821A JP58249071A JP24907183A JPS60135821A JP S60135821 A JPS60135821 A JP S60135821A JP 58249071 A JP58249071 A JP 58249071A JP 24907183 A JP24907183 A JP 24907183A JP S60135821 A JPS60135821 A JP S60135821A
Authority
JP
Japan
Prior art keywords
fluid
resistor
heating resistor
flow rate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58249071A
Other languages
Japanese (ja)
Inventor
Koji Tanimoto
考司 谷本
Hiroshi Sato
博 佐藤
Mikio Bessho
別所 三樹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58249071A priority Critical patent/JPS60135821A/en
Publication of JPS60135821A publication Critical patent/JPS60135821A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To make accurate the temperature compensation for the temperature of a fluid and thereby to enable the accurate detection of a flow rate, by detecting the flow rate of the fluid from an output signal proportional to the quantity of heat in a heating resistor. CONSTITUTION:A heating resistor 3 and a resistor 4 for fluid temperature compensation are disposed in a pipe line 10 through which a fluid flows in the direction of an arrow, resistances 3 and 4 are connected in series to fixed resistances 1 and 5 respectively, the temperature coefficients of the resistances 3 and 4 are made equal to each other, and the value of the resistance 4 is made 50 to 100 times larger than the value of the resistance 3. Moreover, a point of connection between the resistances 1 and 3 and a point of connection between 2 and 5 are connected to the inversion input terminal and the noninversion input terminal of an operational amplifier 8, while the output terminal thereof is connected to the base of a transistor 7 which supplies a current to a bridge circuit. Then, an output voltage of a subtractor 11 and a voltage in the resistor 3 are multiplied by a multiplier 12, and thereby an output voltage 9 is obtained. As a result, the voltage 9 turns to be a function of the rate of the fluid alone, and thus a flow rate can be detected with high accuracy.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は流体の流量を発熱体と流体における熱伝達を
利用して検出する流量検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a flow rate detector that detects the flow rate of a fluid using heat transfer between a heating element and the fluid.

〔従来技術〕[Prior art]

流路(管路)中に電気抵抗が温度の関数である発熱抵抗
体を配設し、該発熱抵抗体が発する発熱量と流体の流速
との関係から流量を電気的忙計測する手法は従来から一
般的に用いられている。従来この種の装置として第1図
に示すような装置があった。
Conventional methods include disposing a heating resistor whose electrical resistance is a function of temperature in a flow path (pipeline) and electrically measuring the flow rate from the relationship between the amount of heat generated by the heating resistor and the flow velocity of the fluid. It is commonly used since. Conventionally, there has been a device as shown in FIG. 1 as this type of device.

図において、l、2及び5は固定抵抗であり、3は抵抗
lと直列に接続された発熱抵抗体、4は抵抗5と直列に
接続された流体温度補償用抵抗体であり、上記の抵抗と
ともにブリッジ回路を構成している。
In the figure, l, 2, and 5 are fixed resistors, 3 is a heating resistor connected in series with resistor l, 4 is a fluid temperature compensation resistor connected in series with resistor 5, and Together, they form a bridge circuit.

抵抗1と3との接続点は演算増幅器8における反転入力
端子、抵抗2と5との接続点は上記演算増幅器8におけ
る非反転入力端子となる。6は直流電源、7はブリクジ
回路に電流を供給するトランジスタであり、そのトラン
ジスタのベースは演算増幅器8における出力端子に接続
される。9はトランジスタ7と抵抗lとの接続点で出力
電圧である。管路10には発熱抵抗体3と流体温度補償
用抵抗体4が配設されており、管路中には流体が矢印方
向に流れている。
The connection point between resistors 1 and 3 becomes an inverting input terminal of operational amplifier 8, and the connection point between resistors 2 and 5 becomes a non-inverting input terminal of operational amplifier 8. Reference numeral 6 denotes a DC power supply, and 7 a transistor for supplying current to the bridge circuit, the base of which is connected to the output terminal of the operational amplifier 8. 9 is the output voltage at the connection point between the transistor 7 and the resistor l. A heating resistor 3 and a fluid temperature compensating resistor 4 are disposed in the conduit 10, and fluid flows in the direction of the arrow in the conduit.

次に、上記装置の動作について説明する。Next, the operation of the above device will be explained.

発熱抵抗体3と温度補償用抵抗体4とは同一の等しい値
の、抵抗温度係数αを具有し、各々次式により表わされ
る。
The heating resistor 3 and the temperature compensating resistor 4 have the same resistance temperature coefficient α, and are each expressed by the following equation.

R,=R,。(1+α’rs) ・・・(1)R4= 
R40(1+αT4 ) −(2)ただし、R,Io、
R4゜は、発熱抵抗体3と流体温度補償用抵抗体4との
0℃における各々の抵抗値であり−Ts、T4は発熱抵
抗体3と温度補償用抵抗体4の各々の温度である。
R,=R,. (1+α'rs) ... (1) R4=
R40(1+αT4) −(2) However, R, Io,
R4° is the resistance value of the heat generating resistor 3 and the fluid temperature compensating resistor 4 at 0°C, and -Ts and T4 are the respective temperatures of the heat generating resistor 3 and the temperature compensating resistor 4.

また、ブリッジ回路の平衡条件は、 R3・(Rs + 14 ) = Rt・R8・・・(
3)であるから、発熱抵抗体3と流体温度補償用抵抗体
4との温度差△Tは(1)〜(3)式から、・・・(4
) で表わされる。ここで、R1・Rso = RI” R
4゜になるように回路定数を選択することにより、上記
温度差ΔTは次式によシ与えられ、 ΔT=!3−=c<cは定数) ・・・(5)αRφ となシ4Tは一定値となる。
In addition, the equilibrium condition of the bridge circuit is R3・(Rs + 14) = Rt・R8...(
3), the temperature difference ΔT between the heating resistor 3 and the fluid temperature compensating resistor 4 is calculated from equations (1) to (3) as follows:
). Here, R1・Rso=RI”R
By selecting the circuit constants to be 4°, the above temperature difference ΔT is given by the following equation, ΔT=! 3-=c<c is a constant) (5) αRφ and 4T becomes a constant value.

ところで、流路(管路)中に配設された円筒形発熱抵抗
体3の発熱量Qと流体の流速■との間には一般に次のよ
うな関係式が成立する。
Incidentally, the following relational expression generally holds between the calorific value Q of the cylindrical heat generating resistor 3 disposed in the flow path (pipe line) and the flow velocity (2) of the fluid.

Q = I” ・Rs= (a 十bV+)ΔT −(
6まただし、工は発熱抵抗体3を流れる電流である。
Q = I” ・Rs= (a 10bV+)ΔT −(
6 However, h is the current flowing through the heating resistor 3.

また% a、bは発熱抵抗体3の形状又は大きさ及び流
体の物理的性質により決定され、限定された温度範囲に
おいては、はとんど一定゛と考えることができる。よっ
て、発熱抵抗体3と流体の各々の温度が一定であれば発
熱量を検出することにより流速をめることができる。
Further, % a and b are determined by the shape or size of the heating resistor 3 and the physical properties of the fluid, and can be considered to be almost constant within a limited temperature range. Therefore, if the respective temperatures of the heating resistor 3 and the fluid are constant, the flow velocity can be increased by detecting the amount of heat generated.

(6)式よシミ施工は、 により与えられ、出力電圧9は次式のように表わされる
According to equation (6), the stain construction is given by, and the output voltage 9 is expressed as shown in the following equation.

従来の感熱形流量検出器□は出力信号として、以上のよ
うにブリッジ回路における電圧値を用いていたため、例
えば、流体の流速が一定の場合においても、流体の温度
が変”イヒ゛することKよる抵抗値R,の変化がそのま
ま測定誤゛差となる。よって、測定□流体温度に対する
正確な温度補償が実現不可能であるという欠点を有して
いた@ 〔発明の概要〕 この発明は上記のような従来装置の欠点を除去するため
になされたものであシ、発熱抵抗体に流れる電流に比例
した電圧と、発熱抵抗体における両端部間の電圧を検出
し、□上記検出された2個の電圧値を乗算することによ
う演算した発熱量と実質的に等価である値から流体の流
速をめることによシ、流体における温度変化の影響をこ
うむることなく流体の流速を検出可能である高い精度を
具有する感熱形流量検出器を提供することを目的として
いる。
Conventional heat-sensitive flow rate detectors use the voltage value in the bridge circuit as the output signal, as described above, so even when the fluid flow rate is constant, the temperature of the fluid may change. Changes in the resistance value R directly result in measurement errors.Therefore, there was a drawback that accurate temperature compensation for the measured fluid temperature was impossible to achieve. This was done to eliminate the drawbacks of the conventional device.It detects the voltage proportional to the current flowing through the heating resistor and the voltage between both ends of the heating resistor, and By multiplying the voltage value of the fluid by calculating the fluid flow velocity from a value that is substantially equivalent to the calorific value calculated as follows, it is possible to detect the fluid flow velocity without being affected by temperature changes in the fluid. It is an object of the present invention to provide a heat-sensitive flow rate detector having a certain high degree of accuracy.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を添付の図面を引用して説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図はこの発明の一実施例を示すものである。FIG. 2 shows an embodiment of the present invention.

図において、1 ”’ 、 ’ 2 ”及び5は固定抵
抗であり、3は抵抗lと直列に接続された発熱抵抗体、
4は抵抗5と直列に接続された流体温度補償用抵抗体で
ある。抵抗3及び4はその電気抵抗が温度の関数であり
、抵抗4の値は抵抗3の値の約50乃至100倍とし、
かつ、双方の抵抗の温度係数・は同一の等しいものを選
択する。
In the figure, 1 ``'', ``2'' and 5 are fixed resistors, 3 is a heating resistor connected in series with the resistor l,
4 is a fluid temperature compensating resistor connected in series with the resistor 5. The electrical resistance of resistors 3 and 4 is a function of temperature, and the value of resistor 4 is about 50 to 100 times the value of resistor 3,
In addition, the temperature coefficients of both resistances are selected to be the same.

また、抵抗lと3との接続点は演算増幅器8における反
転入力端子、抵抗2と5との接続点は演算増幅器8にお
ける非反転入力端子となる。6は直流電源、7はブリッ
ジ回路に電流を供給するトランジスタであシ、そのトラ
ンジスタ7のペースは演算増幅器8に診ける出力端子に
接続されている。
Further, the connection point between the resistors 1 and 3 becomes an inverting input terminal of the operational amplifier 8, and the connection point between the resistors 2 and 5 becomes a non-inverting input terminal of the operational amplifier 8. Reference numeral 6 denotes a DC power supply, and 7 a transistor for supplying current to the bridge circuit.

管路10内には発熱抵抗体3と流体温度・補償用抵抗体
4とが配設されておシ、管路1O内には流体が矢印方向
に流れている。11は減算器であり抵抗lにおける両端
部間の電圧が出力として現われる。12は上記減算器1
1における出力電圧と発熱抵抗体3における電圧を乗算
する乗算器であり、9はその出力電圧である。
A heating resistor 3 and a fluid temperature/compensating resistor 4 are disposed within the conduit 10, and fluid flows in the direction of the arrow in the conduit 1O. 11 is a subtracter, and the voltage between both ends of the resistor l appears as an output. 12 is the above subtractor 1
This is a multiplier that multiplies the output voltage at 1 by the voltage at heating resistor 3, and 9 is its output voltage.

本実施例において、抵抗2と5と4との和は、抵抗1と
3との和に比較して、十分大になるように選択する。こ
の時、ブリッジ回路の平衡条件はR3・(Rs + R
4) = Rt・R3・・・(9)である。
In this embodiment, the sum of resistors 2, 5, and 4 is selected to be sufficiently large compared to the sum of resistors 1 and 3. At this time, the equilibrium condition of the bridge circuit is R3・(Rs + R
4) = Rt·R3 (9).

ここで、(1)弐及び(2)式を(9)式に代入して、
発熱抵抗体3と流体温度補償用抵抗体4との温度差ΔT
をめると、 R3Rso l Rs &Rs。
Here, substituting equations (1) 2 and (2) into equation (9),
Temperature difference ΔT between the heating resistor 3 and the fluid temperature compensation resistor 4
When you add , R3Rsol Rs &Rs.

ΔT= (1−−)Ts+H”C””−I) 、−(1
0)R+ R40 となる。ここで、& Rso = R+ R2Oを満足
するような各回路定数を設定することにより、上記温度
差△Tは一定となり、 により表わされる。
ΔT= (1--)Ts+H"C""-I), -(1
0) R+ R40. Here, by setting each circuit constant such that &Rso=R+R2O is satisfied, the temperature difference ΔT becomes constant, and is expressed by the following.

ところで流路(管路)中に配設した発熱抵抗体30発熱
量Qと流体の流速Vとの間には一般に次のような関係式
が成立する。
By the way, the following relational expression generally holds between the calorific value Q of the heat generating resistor 30 disposed in the flow path (pipe line) and the flow velocity V of the fluid.

Q = I’Rs= (a+ bV4)△T ・(1ま
ただし、■は発熱抵抗体3を流れる電流で% a。
Q = I'Rs = (a + bV4) △T ・(1, where ■ is the current flowing through the heating resistor 3 and is % a.

、bは発熱抵抗体3の形状又は大きさ、及び、流体の物
理的性質によシ決定され、限定された温度範囲において
はほとんど一定と考えることができる。
, b are determined by the shape or size of the heating resistor 3 and the physical properties of the fluid, and can be considered to be almost constant within a limited temperature range.

α4式よジ、電流■は、 で与えられる。According to the α4 formula, the current ■ is, is given by

図において、減算器11と乗算器12との入力インピー
ダンスは、抵抗1,2に比較して十分大であり、抵抗1
に流れる電流は上記電流IK等しい。よって、抵抗lと
トランジスタ7との接続点における電圧値は、(R+ 
+Rs ) Iであり、抵抗lと発熱抵抗体3との接続
点における電圧値はR3Iであるため、減算器11にお
ける出力電圧v1.は、VH= I (R1+Rs) 
IRs= I& ”’ Q4)となる。
In the figure, the input impedance of subtracter 11 and multiplier 12 is sufficiently large compared to resistors 1 and 2, and resistor 1
The current flowing through is equal to the above current IK. Therefore, the voltage value at the connection point between resistor l and transistor 7 is (R+
+Rs ) I, and the voltage value at the connection point between the resistor l and the heating resistor 3 is R3I, so the output voltage v1. is, VH=I (R1+Rs)
IRs=I&''Q4).

乗算器工2においては、上記電圧R,Iと電圧V11と
の乗算が実行され、出力電圧9は次式によシ与えられる
In the multiplier 2, the voltages R and I are multiplied by the voltage V11, and the output voltage 9 is given by the following equation.

Vo= R1’ & ’ I” = R+ ・(a+b
V’)△T −(i!19ここで、抵抗値R5及び温度
差ΔTは流体温度の変化に関係なく一定であるため、出
力電圧9は流体の流速Vのみの関数となる。
Vo= R1'&'I' = R+ ・(a+b
V') ΔT - (i!19 Here, since the resistance value R5 and the temperature difference ΔT are constant regardless of changes in fluid temperature, the output voltage 9 is a function only of the fluid flow velocity V.

第3図はこの発明の他の実施例である。同一の等しい温
度係数を具有する発熱抵抗体3と流体温度補償用抵抗体
4、及び抵抗1,2及び5によυブリクジ回路を構成し
、ブリッジ回路における中端電位を零にさせるように、
演算増幅器8とトランジスタ7とにより、ブリッジ回路
に印加された電圧を制御させる時、発熱抵抗体3に流れ
る電流と流体の流速Vとの間には上記の(13)式が成
立する。
FIG. 3 shows another embodiment of the invention. The heating resistor 3, the fluid temperature compensation resistor 4, and the resistors 1, 2, and 5, which have the same temperature coefficient, constitute a bridge circuit, so that the middle end potential in the bridge circuit is brought to zero.
When the voltage applied to the bridge circuit is controlled by the operational amplifier 8 and the transistor 7, the above equation (13) holds true between the current flowing through the heating resistor 3 and the flow velocity V of the fluid.

第3図において、第2図と同様にブリッジ回路に印加さ
れた電圧と発熱抵抗体3に印加された電圧をブリッジ回
路より出力し、〜勺変換器13によりデジタル値に変換
し、マイクロプロセッサ14へ入力し、(14)弐及び
(1句式の計算を実行する。その計算結果はデジタル信
号として出力信号9に出力される。
In FIG. 3, similarly to FIG. 2, the voltage applied to the bridge circuit and the voltage applied to the heating resistor 3 are outputted from the bridge circuit, converted into digital values by the converter 13, and converted to digital values by the microprocessor 14. (14) 2 and (1) calculations are performed. The calculation results are output as a digital signal to the output signal 9.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、発熱抵抗体における
発熱量に比例した出力信号から流体の流量を検出するこ
とにより、流体温度に対する正確な温度補償が実現可能
であり、精度の極めて高い装置を得る仁とができる効果
を奏する。
As described above, according to the present invention, by detecting the flow rate of the fluid from the output signal proportional to the amount of heat generated by the heating resistor, accurate temperature compensation for the fluid temperature can be realized, and an extremely highly accurate device can be realized. It has the effect of being able to get the benefit of others.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の感熱形流量検出器の回路を示す回路図、
第2図及び第3図はこの発明の実施例による感熱形流量
検出器の回路を示す回路図である。 1.2.5・・・固定抵抗、3・・・発熱抵抗体、4・
・・流体温度補償用抵抗体、6・・・直流電源、7・・
・トランジスタ、8・・・演算増幅器、9・・・出力信
号、IO・・・管路、11・・・減算器、12・・・乗
算器、13・・・A/()変換器、14・・・マイク算
プロセッサ。 なお、図において、同一符号は同−又は相当部分を示す
。 代理人 大岩増雄 第1図 第2図 ら 第3図
Figure 1 is a circuit diagram showing the circuit of a conventional heat-sensitive flow rate detector.
FIGS. 2 and 3 are circuit diagrams showing circuits of a heat-sensitive flow rate detector according to an embodiment of the present invention. 1.2.5...Fixed resistance, 3...Heating resistor, 4.
... Resistor for fluid temperature compensation, 6... DC power supply, 7...
- Transistor, 8... Operational amplifier, 9... Output signal, IO... Pipe line, 11... Subtractor, 12... Multiplier, 13... A/() converter, 14 ...Mike arithmetic processor. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa Figures 1, 2 and 3

Claims (1)

【特許請求の範囲】[Claims] (υ管路中に配設され、該電気抵抗が温度の関数である
発熱抵抗体と流体温度補償用抵抗体とを包含するブリッ
ジ回路から成る感熱殖流量検出器において、上記ブリッ
ジ回路から出力された上記発熱抵抗体における両端部間
に印加された電圧値と上記発熱抵抗体を流れる電流に比
例した電圧値から演算した上記発熱抵抗体における発熱
量に比例した電圧値又は該電圧値に実質的に等価である
出力信号により流量を検出するように構成したことを特
徴とする感熱形流量検出器。
(In a heat-sensitive multiplication flow rate detector consisting of a bridge circuit disposed in a υ pipe and including a heating resistor whose electric resistance is a function of temperature and a fluid temperature compensation resistor, the output from the bridge circuit is A voltage value proportional to the amount of heat generated in the heating resistor calculated from a voltage value applied between both ends of the heating resistor and a voltage value proportional to the current flowing through the heating resistor, or a voltage value substantially equal to the voltage value. A heat-sensitive flow rate detector characterized in that the flow rate is detected by an output signal equivalent to .
JP58249071A 1983-12-26 1983-12-26 Heat-sensitive flow detector Pending JPS60135821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58249071A JPS60135821A (en) 1983-12-26 1983-12-26 Heat-sensitive flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249071A JPS60135821A (en) 1983-12-26 1983-12-26 Heat-sensitive flow detector

Publications (1)

Publication Number Publication Date
JPS60135821A true JPS60135821A (en) 1985-07-19

Family

ID=17187569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249071A Pending JPS60135821A (en) 1983-12-26 1983-12-26 Heat-sensitive flow detector

Country Status (1)

Country Link
JP (1) JPS60135821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353806A (en) * 2011-06-24 2012-02-15 清华大学 Temperature compensation circuit and method thereof for heat-sensitive flow rate sensor, and automatic adjusting method for power of heat-sensitive flow rate sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353806A (en) * 2011-06-24 2012-02-15 清华大学 Temperature compensation circuit and method thereof for heat-sensitive flow rate sensor, and automatic adjusting method for power of heat-sensitive flow rate sensor

Similar Documents

Publication Publication Date Title
US4043195A (en) Digital thermodynamic flow-meter
US3754442A (en) Temperature measuring system producing linear output signal from non-linear sensing resistance
US3913403A (en) Temperature measurement with three-lead resistance thermometers by dual constant current method
US4109196A (en) Resistance measuring circuit
US6244744B1 (en) Three-wire RTD interface
US3731187A (en) Temperature compensated fouling measuring method and apparatus
US4011746A (en) Liquid density measurement system
JPS58108466A (en) Bridge type impedance detector
JPS60135821A (en) Heat-sensitive flow detector
US4090151A (en) Temperature sensing device for producing alternating electric signals whose period is a function of a temperature
JP3410562B2 (en) Temperature / wind speed measurement device
RU2034248C1 (en) Device for measuring temperature
CN215865540U (en) Thermocouple cold junction compensation circuit and thermocouple temperature measurement system
JP2879256B2 (en) Thermal flow meter
JPS5816073Y2 (en) Resistance/electrical signal converter
SU1723461A1 (en) Device for measuring temperature difference
SU849085A1 (en) Linear converter of ac voltage effective value to dc voltage
JPS6347999Y2 (en)
JP2595858B2 (en) Temperature measurement circuit
JPS6221958Y2 (en)
SU1578507A1 (en) Meter of radiant heat flow
JP2512934B2 (en) Temperature measurement circuit
JPS6042626A (en) Cold junction compensating circuit of temperature measuring device utilizing thermocouple
JPH044980Y2 (en)
SU911368A1 (en) Device for measuring resistance increment