JPS60135758A - Method and device for flaw detection of metallic surface - Google Patents

Method and device for flaw detection of metallic surface

Info

Publication number
JPS60135758A
JPS60135758A JP24835683A JP24835683A JPS60135758A JP S60135758 A JPS60135758 A JP S60135758A JP 24835683 A JP24835683 A JP 24835683A JP 24835683 A JP24835683 A JP 24835683A JP S60135758 A JPS60135758 A JP S60135758A
Authority
JP
Japan
Prior art keywords
detectors
detector
inspection
output
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24835683A
Other languages
Japanese (ja)
Inventor
Masaharu Yokoyama
横山 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24835683A priority Critical patent/JPS60135758A/en
Publication of JPS60135758A publication Critical patent/JPS60135758A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Abstract

PURPOSE:To detect defects on surfaces of a metallic pipe and a metallic plate with less noises by moving plural parallel arranged detectors and preventing them from oscillating. CONSTITUTION:Plural parallel detectors 20 are arranged on the machine table 1 of a flaw detector A and adjusted upward and downward by a fitting device 41 to approach the metallic surface. Further, the machine table 1 is equipped with a running machine 10 having caterpillars and it is driven forth and back by a centralized controller 17. Further, a television camera 11 and a lighting lamp 12 are provided atop of the machine table 1 and an image is displayed on a cathode-ray tube 16. This flaw detector A is loaded in the metallic pipe 3 and the detector 20 is advanced over a lock through the television camera 11 to display a defect in the metallic pipe surface on an output device 6. The detector 20 uses an ultrasonic wave, laser light, etc. Therefore, there is no mechanically movable part which makes a sweep on the inspected surface and inspection is carried out by advancing the detectors 20 which are arranged closely in parallel simultaneously, so the inspection is performed with less noise and the inspecting device is reduced in weight.

Description

【発明の詳細な説明】 本発明は金属管或いは金属板の表面に生じる腐蝕、クラ
ック等の欠陥を検査する方法及び装置に関するものであ
る。□ 金属管表面の欠陥を検出するため、出願人は磁気探傷検
出器を先端に取付けた揺動杆を、走行機構を具えた機台
へ枢止し、管中にて揺動杆を揺動させながら機台を走行
させて、検出器は管の周方向に往復揺動しつつ管軸方向
に進行し、金属表面を検査する装置を既に提案した(特
開昭57−14’444’4 )。 □ 該装置は箸の内面を自動、的に検査出来る点、で優び・
 、、:)1 れているが、揺動杆を駆動するための揺動装置を機台へ
装備して揺動杆を“往復させすいるため、揺 ”j動に
伴なう振動が検出器に伝わり、検出データに′ノイズが
入る原因とながている。又揺動装置を構成するモータ及
びリンク機構が検査装置自体を大形化し、重量を増すた
め、検査にあたって検査装置の運搬及び検査すべき管中
への装入を面倒に、、シていた。更に管表面を漏れな、
 <悼専する。、に、は・検4出器の往復速度と機台の
走行′連層と□の簡に一定の関係があって、検出器の1
振、り毎に機台に許され 5る進行距離は最大で検出器
の直径を限度とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for inspecting defects such as corrosion and cracks occurring on the surface of metal pipes or metal plates. □ In order to detect defects on the surface of a metal tube, the applicant pivots a swinging rod with a magnetic flaw detector attached to the tip to a machine base equipped with a traveling mechanism, and swings the swinging rod inside the tube. We have already proposed a device that inspects metal surfaces by running the machine while moving the machine and moving the detector in the axial direction of the tube while swinging back and forth in the circumferential direction of the tube (Japanese Patent Laid-Open No. 57-14'444'4). ). □ This device has the advantage of being able to automatically inspect the inner surface of chopsticks.
,, :)1 However, since the machine base is equipped with a rocking device to drive the rocking rod and the rocking rod is made to reciprocate, the vibrations associated with the rocking motion are detected. This is transmitted to the detector and causes noise to be included in the detected data. Furthermore, the motor and link mechanism that make up the swinging device make the inspection device itself larger and heavier, making it cumbersome to transport the inspection device and insert it into the pipe to be inspected. Furthermore, do not leak on the pipe surface.
<Condolences only. , there is a simple constant relationship between the reciprocating speed of the detector, the running speed of the machine, and the
The maximum distance the machine can travel per shake is limited to the diameter of the detector.

検査作業の能率化を画るには検出器の往復速度を高める
必要があるが、揺動装置蚤こよって揺動杆を往復駆動出
来る速度は高々400 rpmであって、ソノため検査
作業のスピードアップは検出器の揺動速度によって制約
された。
In order to improve the efficiency of inspection work, it is necessary to increase the reciprocating speed of the detector, but the speed at which the swinging rod can be driven back and forth by the swinging device is at most 400 rpm, and the speed of inspection work is limited due to the speed of the swinging device. up was constrained by the rocking speed of the detector.

本発明は探傷検出器を揺動させず、機械的な可動部分を
減らして金属表面を検査する方法及び該方法の実施に使
用する装置を目的とする。
The present invention is directed to a method of inspecting a metal surface without shaking a flaw detector and with fewer mechanically moving parts, and to an apparatus used to carry out the method.

本発明の、探傷方法は、被検査面の検査方向に直交して
、金属面の異常を検出する複数の検出器を′轍をヒ並列
配置し、被検査面と検出器を検査方向に−い相対的に移
動させて、各検出器の出力を出力装置に表示することを
特徴とする。
In the flaw detection method of the present invention, a plurality of detectors for detecting abnormalities on a metal surface are arranged in parallel in a track perpendicular to the inspection direction of the surface to be inspected, and the surface to be inspected and the detectors are aligned in the inspection direction. The output of each detector is displayed on an output device by relatively moving the detector.

本発明の探傷装置は、複数の検出器(2O)を接近して
並列配置5した検出装置(2)と、該検出装置(2)を
機構、、[1)へ昇降、可能に取付けて各検出器(20
)の検査面を0870↑79 ;J: L r ;7i
 (oJ 6E ft l、“17“1711する取付
装置(4)と、検出装置(2)と被検査面とを検。小器
の並列配置方、向と、は直交して相対後5動させる駆、
動装置と、各検出器(加)の出力を表示面へ同時に出力
する出力装置(6)とを具えたことを特徴とする。
The flaw detection device of the present invention includes a detection device (2) in which a plurality of detectors (2O) are arranged close to each other in parallel, and the detection device (2) is attached to a mechanism [1] so that it can be raised and lowered. Detector (20
) inspection surface 0870↑79 ;J: L r ;7i
(oJ 6E ft l, "17" Inspect the mounting device (4), the detection device (2), and the surface to be inspected. Drive,
and an output device (6) that simultaneously outputs the outputs of the respective detectors (additionally) to a display screen.

本発明は検査面を掃引するための機械的な可動部を有さ
ず、密に並列した検出器を同時に進行させるだけで検査
出来るから、ノイズの少ない検出データが得られ、検査
装置は軽量化され、しかも検査装置の進行速度を増速し
で検査時間を短縮出来る優れた効果を有するものである
The present invention does not have mechanical movable parts to sweep the inspection surface, and inspection can be performed simply by moving the detectors arranged closely in parallel at the same time. Therefore, detection data with less noise can be obtained, and the inspection equipment can be lightweight. Moreover, it has the excellent effect of shortening the inspection time by increasing the advancing speed of the inspection device.

本発明装置は第1図及び−2図に示す如く、車輪、ベル
ト、キャタピラ等の走行機構f10) q具えた機台(
1)の前部に検出装置(2)及び検査範囲を撮影するテ
レビカメラ(11)と照明灯+121を配備してお2、
検査すべき管(3)中へ機台(1)を装入し、走行機構
(10)を駆動して管中を進行させつつ、検出装置(2
,)ζこよっテ検査し、同時1こテレビカメラtil)
iこよって検査範囲を撮影する。
As shown in FIGS. 1 and 2, the device of the present invention includes a machine base (
1) A detection device (2), a television camera (11) for photographing the inspection area, and a lighting lamp +121 are installed in the front of the machine.
The machine (1) is inserted into the pipe (3) to be inspected, and the detection device (2) is moved through the pipe by driving the traveling mechanism (10).
,) ζKyote inspection, at the same time 1 TV camera til)
i Photograph the inspection range.

検出装置(2)は本発明の特徴牽なすものであって、金
属面の異常を検出する複数の検出器(20)を、管の曲
面に合わせて彎曲している取付板(40)へ、第4図a
の如(−列に、或いは第4図すの如く千鳥状に密に並べ
て配置しており、各検出器■は超音波、レーザ光線、電
波等を検査面へ発射して反射信号を解析す6”式或°゛
′1高周波!交番磁界を発生して管壁に過電流を生じさ
せ1、コイルの自己誘導或いは相互誘導によってコイル
に生じる逆起電力を測定し、腐蝕或いはクラックによる
管壁の異常箇所での渦電流の乱れを検出する渦流探傷方
式等、機台(1)の前部には一対の案内杆+411 (
411及び両端を回転自由に軸受したねじ軸(42)を
互いに平行に配備し、取付板(40)は案内杆(41)
(41)に嵌合するブラケ・ノドを有しねじ軸(4りと
嵌合する 支赫ブラケ、y”” ) (44)を備えており、ねじ
軸(42)の回顧に1って取付板(4″o)は案内杆+
41+ +2案内されながら上下に移動し、検出装置(
2)と管−面との距離即ちリフトオフを調節する。ねじ
軸(42)の回転駆動は、機台(1)に具えたパルスモ
ータ等の回転駆動機′(13)を、機台へ水平に軸受さ
れている回転軸(14)に連繋し、回転軸(14)の他
端を歯車列(15)によって前記ね″じ軸(42)に結
合して、回顧駆動機(13)の制御された王立回転検出
装置(2)のリフトオフを調節する取付装置(4)は、
上記構成に限定されることはなく、各種の構成を用いる
ことが出来るのは当然てあ゛る。又リフトオフ訊調節は
、゛検査中に検出装置(2)からの検出□ トオフ信号
を形成し、これを 回転駆動機(13)へへ力讐ることによってリフトオフ
を常に一定に保つことが出来る。或いは予め手動によっ
て検出装置のリフトオフを設定して検査中はリフトオフ
を固定することも出来る。
The detection device (2) is a feature of the present invention, in which a plurality of detectors (20) for detecting abnormalities on metal surfaces are attached to a mounting plate (40) that is curved to match the curved surface of the pipe. Figure 4a
They are arranged closely in rows or in a staggered pattern as shown in Figure 4, and each detector emit ultrasonic waves, laser beams, radio waves, etc. to the inspection surface and analyze the reflected signals. 6" type or °゛'1 High frequency! Generates an alternating magnetic field to generate an overcurrent on the tube wall. 1. Measures the back electromotive force generated in the coil due to self-induction or mutual induction of the coil, and detects corrosion or cracks in the tube wall. A pair of guide rods +411 (
411 and a screw shaft (42) rotatably supported at both ends are arranged parallel to each other, and the mounting plate (40) is connected to the guide rod (41).
It is equipped with a screw shaft (44) that has a bracket and throat that fits into the screw shaft (44), and is installed by turning the screw shaft (42). The board (4″o) is the guide rod +
41+ +2 Move up and down while being guided, detecting device (
2) Adjust the distance between the tube and the surface, that is, the lift-off. The rotation of the screw shaft (42) is achieved by connecting a rotary drive device (13) such as a pulse motor provided on the machine base (1) to a rotating shaft (14) that is horizontally supported on the machine base. Attachment for coupling the other end of the shaft (14) to said threaded shaft (42) by means of a gear train (15) to adjust the lift-off of the controlled royal rotation sensing device (2) of the retrospective drive (13). The device (4) is
It goes without saying that the configuration is not limited to the above configuration, and that various configurations can be used. The lift-off adjustment can also be performed by forming a detection □ off signal from the detection device (2) during the inspection and transmitting it to the rotary drive machine (13) to keep the lift-off constant at all times. Alternatively, the lift-off of the detection device can be manually set in advance and the lift-off can be fixed during the inspection.

機台(1)は蓄電池を積装し或いは外部から電力線を接
続してモータ等で構成された駆動装置に通電して走行機
構(10)を駆動し、管中を進行させる。又検査対象が
帯状或いは異形の金属板であるときは、機台を固定し、
金属板を駆動装置によって搬送しながら検査する。
The machine base (1) is loaded with storage batteries or connected to a power line from the outside to energize a drive device composed of a motor or the like to drive the traveling mechanism (10) and move it through the pipe. Also, when the object to be inspected is a strip-shaped or irregularly shaped metal plate, fix the machine base and
The metal plate is inspected while being transported by a drive device.

検出装置(2)の各検出器(瀾の出力は、検出器毎に接
続した信号線を通じて管外のモニター室に備えた出力装
置(6)に表示し記録することが出来るが、この場合、
検出器の数だけ信号線の数が必要となり、機台に接続す
るケーブルが太(なりすぎる。
The output of each detector of the detection device (2) can be displayed and recorded on the output device (6) provided in the monitor room outside the tube through the signal line connected to each detector, but in this case,
The number of signal lines required is equal to the number of detectors, and the cables connected to the machine stand are too thick.

又、隣り合う2つの検出器+20) +20)から発す
る磁界、超音波等の非破壊検査信号が、互いに干渉しあ
って検出信号に誤信号を生じるおそれがある。
Furthermore, there is a risk that non-destructive inspection signals such as magnetic fields and ultrasonic waves emitted from two adjacent detectors +20) +20) may interfere with each other and produce erroneous detection signals.

第3図は各検出器(2O)からの検出信号を時分割方式
に基づき1本のケーブル線を使用して外部モニター室の
出力装置(6)に伝送する構成を示している。
FIG. 3 shows a configuration in which detection signals from each detector (2O) are transmitted to an output device (6) in an external monitoring room using a single cable line based on a time-sharing method.

検出装置(2)は渦流探傷検出器を複数配列し、各検出
器(20)の励磁コイル(21)及び検出コイル(22
)は夫々第1及び第2マルチプレクサt23) +24
) lこ接続され、各マルチプレクサ(23+ +24
)を共通のクロックパルス発生器(25)によって制御
することにより、複数の検出器(20)の励磁コイル(
21)及び検出コイル(22)を同時に作動させて検査
面での渦電流の発生及び傷信号の検出を行なう。マルチ
プレクサ+23) (24)はクロックパルス発生器(
25)からのクロックパルスか人力される毎に、作動す
べき検出器(2O)を切り替えるから、隣接検出1 器
の間で相互干渉は起らない。
The detection device (2) has a plurality of eddy current flaw detectors arranged, and an excitation coil (21) and a detection coil (22) of each detector (20).
) are respectively the first and second multiplexers t23) +24
) are connected to each multiplexer (23+ +24
) of the plurality of detectors (20) by controlling them by a common clock pulse generator (25).
21) and the detection coil (22) are operated simultaneously to generate an eddy current on the inspection surface and detect a flaw signal. Multiplexer +23) (24) is the clock pulse generator (
Since the detector (2O) to be activated is switched every time a clock pulse from 25) is manually applied, mutual interference does not occur between adjacent detectors.

検出器の切替速度はクロックパルスの周期によって決定
される。検出器(20)の切り替えを次々と行ない、全
部の検出器について切り替えを終えたとき、それは出願
人が以前に提案した検査装置に於て、検出器を管壁i沿
って1回揺動したことに相当する。そしてクロックパル
スの周期はクロックパルス発生器(25)の調節によっ
て任意に設定出来るから、以前の検査装置であれば検出
器の揺動速度は400 rpmが限度であったことと較
べて、それ以、上の任意の高速度で検出器を、、、切り
替えて金属面を走査出来、従って機台と金属面との相対
移動速度、を□増して、検査能率は著しく向上する。
The switching speed of the detector is determined by the period of the clock pulse. The detectors (20) were switched one after another, and when all the detectors had been switched, the detector was swung once along the tube wall i in the inspection device previously proposed by the applicant. It corresponds to that. And since the period of the clock pulse can be set arbitrarily by adjusting the clock pulse generator (25), the rocking speed of the detector was limited to 400 rpm in the previous inspection equipment, but it is now possible to The metal surface can be scanned by switching the detector at any of the above high speeds, and therefore the inspection efficiency is significantly improved by increasing the relative movement speed between the machine and the metal surface.

各検出器(20)の励磁コイル(21)は、第1マルチ
プレクサ囚)を介して発振回路圀)と並列接続されてお
り、′マルチプレクサの切り替えによって発振回路□□
□)に導通した励磁コイル4には約5’ 0 KH2の
高周波電圧が加わって交番磁界を発生し金属面に渦電流
を生じさせる。又谷検出コイル(221は第2マルチプ
レクサ(24)を介して差動増幅器(2)と並列接続さ
れており、第2マルチプレクサ圀)の切り替えにより、
発振回路(26)に導通している励磁コイル(21)と
対応して誘起電流を発生し、この出力信号は同期検波器
圀)に入力して同期検波が行なわれる。同期検波は検出
コイル(22)の出力信号□が、金属面の欠陥箇所では
、金属面の正常箇所での位相より更にずれる現象を利用
するものであって、発振回路(イ)から出力される励磁
電流の位相を移相器(29)によって、金属面の正常箇
所での位相を90’移相した方向に設定して、差動増幅
器鰭の出力信号中の傷信号を検出するの1t5/L・傷
信号0“;冨器障・比較4% 、)51)び1・0属面
の欠陥を表示する傷信号を出力する。検出装置(2)か
ら出力される傷信号は光信号1.マイクロウェーブ信号
或いは電気信号に変調して、伝送回路(5)を通′じて
管外のモニター室に伝送される。モニター室では機台か
ら伝送さ□れた信号を復調し、s/p変換回路(60)
によって、検出器毎の傷信号を分離して出力装置に表示
するのである。
The excitation coil (21) of each detector (20) is connected in parallel with the oscillation circuit (2) via the first multiplexer (2), and the oscillation circuit (21) is connected in parallel by switching the multiplexer.
A high frequency voltage of about 5'0 KH2 is applied to the excitation coil 4 which is in conduction to generate an alternating magnetic field and an eddy current on the metal surface. The detection coil (221) is connected in parallel with the differential amplifier (2) via the second multiplexer (24), and by switching the second multiplexer,
An induced current is generated corresponding to the excitation coil (21) conducting to the oscillation circuit (26), and this output signal is input to a synchronous detector for synchronous detection. Synchronous detection utilizes the phenomenon that the output signal □ of the detection coil (22) is further out of phase at a defective location on the metal surface than at a normal location on the metal surface, and is output from the oscillation circuit (A). The phase of the excitation current is set by the phase shifter (29) in a direction in which the phase at the normal part of the metal surface is shifted by 90', and the flaw signal in the output signal of the differential amplifier fin is detected. L/Flaw signal 0"; Fuji defect/Comparison 4%, )51) and 1/0 A flaw signal indicating a defect on the surface is output. The flaw signal output from the detection device (2) is an optical signal 1. .The signal is modulated into a microwave signal or an electric signal and transmitted to a monitor room outside the area through the transmission circuit (5).The monitor room demodulates the signal transmitted from the machine and converts it into an s/ p conversion circuit (60)
The flaw signals for each detector are separated and displayed on the output device.

出力装置(6)は、第5図に示す如(、横軸を検査面□
の幅に設定し、縦軸を出力量に設定して、各検出器の出
力を棒グラ゛)或いは線分によって表示面へ同時に表示
することにより、各検出器出力値を繋□いだ包絡線の形
状によ゛つて管表面の形状を表わすことが出来る。
The output device (6) is as shown in Fig. 5 (with the horizontal axis being the inspection surface □
By setting the width of the detector to the width of The shape of the tube surface can be expressed by the shape of the line.

出力装置(6)の他の例として、傷信号をS/P変換回
路(60)によって再び各検出器毎の出力に分け、第6
図に示す如く横軸を時間軸として検出器毎の出力を同時
に表わすことが出来る。
As another example of the output device (6), the flaw signal is again divided into outputs for each detector by the S/P conversion circuit (60), and the sixth
As shown in the figure, the outputs of each detector can be expressed simultaneously with the horizontal axis as the time axis.

出力装置(6)に表示された傷信号のデータは同時に記
録装置(61)に記録し、又テレビカメラ(11)によ
つて撮影した検査面の表面状態を伝送回路(5)を経て
モニター室のモニターテレビf16)に映して金属面を
監視する。
The flaw signal data displayed on the output device (6) is simultaneously recorded in the recording device (61), and the surface condition of the inspection surface photographed by the television camera (11) is sent to the monitor room via the transmission circuit (5). Monitor the metal surface by displaying it on a monitor TV f16).

管中に装入した機台(1)に対しては、モニター室での
中央集中制御装置(17)の操作によって、走行機構t
101の駆動装置に対し前進、停止、後退を指令して制
御し、又検出装置の取付装置(4)に対しても、リフト
オフ設定を外部操作によって調節することも可能である
For the machine (1) loaded into the pipe, the traveling mechanism t is controlled by the operation of the central control device (17) in the monitor room.
It is also possible to command and control the drive device 101 to advance, stop, and retreat, and also adjust the lift-off setting of the detection device mounting device (4) by external operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状況を示す説明図、第2図は第1
図に示す装置の正面図、第3図は検出装置の信号処理回
路図、第4図a及びbは検出装置の検出器配置状況を示
す説明図、第5図及び第6図は出力装置の表示面に於け
る出力図である。
FIG. 1 is an explanatory diagram showing the implementation status of the present invention, and FIG.
3 is a signal processing circuit diagram of the detection device, FIGS. 4a and b are explanatory diagrams showing the arrangement of the detectors in the detection device, and FIGS. 5 and 6 are diagrams of the output device. It is an output diagram on a display screen.

Claims (1)

【特許請求の範囲】 ■ 金属面の異常を検査する複弊の検出器を密に並列配
置して、検出器の並列配置方向とは直交する方向に被検
査面と検出器を相対的に移動させ、各検出器の出力を出
力装置に表示することを特徴とする金属面の探傷方法。 ■ 各検出器の出力は、出力装置の表示面の縦又は横軸
方向に配列してそれと直交方向に出力量を表わした特許
請求の範囲第1項の探傷方法。 ■ 各検出器の出力は、出力装置の表示面へ縦軸方向に
配置し、横軸を時間軸として同時に掃引して表示する特
許請求の範囲第1項の探傷方法。 ■ 複数の検出器を接近して並列配置した検出装置と、
該検出装置を機台へ昇降可能に取付けて検出装置の検査
面を金属表面へ接近して対向配置しリフトオフを調節す
る取付装置と、検出装置と被検査面とを検出器の並列配
置方向とは直交して相対移動させる駆動装置と、各検出
器の出力を表示面へ同時に出力する出力装置とによって
構成したことを特徴とする金属面の探傷装置。 ■ 検査装置の検出器は一列に配置されている特許請求
の範囲第4項の検査装置。 ■ 検査装装置の検出器は交互にずれて千鳥状に配置さ
れている特許請求の範囲第4項の検査装置。 ■ 機台は走行機構を具備しており、駆動装置は該走行
装置を駆動する特許請求の範囲第4項の検査装置。
[Claims] ■ Multiple detectors for inspecting abnormalities on metal surfaces are arranged closely in parallel, and the surface to be inspected and the detectors are moved relative to each other in a direction orthogonal to the direction in which the detectors are arranged in parallel. A flaw detection method for a metal surface, characterized in that the output of each detector is displayed on an output device. (2) The flaw detection method according to claim 1, wherein the output of each detector is arranged in the vertical or horizontal direction of the display surface of the output device, and the output amount is expressed in a direction orthogonal thereto. (2) The flaw detection method according to claim 1, wherein the outputs of the respective detectors are arranged in the vertical axis direction on the display surface of the output device and are simultaneously swept and displayed with the horizontal axis as the time axis. ■ A detection device with multiple detectors arranged close together in parallel,
a mounting device that mounts the detection device on a machine base so that it can be raised and lowered so that the inspection surface of the detection device faces the metal surface and adjusts lift-off; 1. A flaw detection device for a metal surface, characterized in that it is constituted by a drive device that moves orthogonally relative to each other, and an output device that simultaneously outputs the output of each detector to a display screen. (2) The inspection device according to claim 4, wherein the detectors of the inspection device are arranged in a line. (2) The inspection device according to claim 4, wherein the detectors of the inspection device are arranged in a staggered manner with alternating shifts. (2) The inspection device according to claim 4, wherein the machine base is equipped with a traveling mechanism, and the drive device drives the traveling device.
JP24835683A 1983-12-24 1983-12-24 Method and device for flaw detection of metallic surface Pending JPS60135758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24835683A JPS60135758A (en) 1983-12-24 1983-12-24 Method and device for flaw detection of metallic surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24835683A JPS60135758A (en) 1983-12-24 1983-12-24 Method and device for flaw detection of metallic surface

Publications (1)

Publication Number Publication Date
JPS60135758A true JPS60135758A (en) 1985-07-19

Family

ID=17176880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24835683A Pending JPS60135758A (en) 1983-12-24 1983-12-24 Method and device for flaw detection of metallic surface

Country Status (1)

Country Link
JP (1) JPS60135758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783884A (en) * 1993-09-14 1995-03-31 Kenzo Miya Flaw examination method, flow examination device and flaw examination sensor
KR20030079250A (en) * 2002-04-03 2003-10-10 주식회사 포스코 An apparatus for exploring the pipe
JP2013015514A (en) * 2011-06-10 2013-01-24 Hitachi-Ge Nuclear Energy Ltd Eddy current flaw detection probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783884A (en) * 1993-09-14 1995-03-31 Kenzo Miya Flaw examination method, flow examination device and flaw examination sensor
KR20030079250A (en) * 2002-04-03 2003-10-10 주식회사 포스코 An apparatus for exploring the pipe
JP2013015514A (en) * 2011-06-10 2013-01-24 Hitachi-Ge Nuclear Energy Ltd Eddy current flaw detection probe

Similar Documents

Publication Publication Date Title
US11587217B2 (en) Systems and methods for inspecting pipelines using a robotic imaging system
US20230228694A1 (en) Systems and methods for inspecting pipelines using a pipeline inspection robot
SE454464B (en) SET AND APPARATUS FOR INSPECTING THE INSURING OF RODS
US10890505B2 (en) Systems and methods for inspecting pipelines using a robotic imaging system
CN106706709A (en) Line scanning excitation continuous large-area infrared thermal imaging detection method
RU2285252C1 (en) In-tube mole for inspecting quality of edge welds
JPS60135758A (en) Method and device for flaw detection of metallic surface
EP3798622A1 (en) Systems and methods for inspecting pipelines using a robotic imaging system
CN107831211A (en) A kind of method and device of metal weldment defects detection
WO2018120597A1 (en) X-ray testing and linear three-dimensional scanning and imaging device for gis apparatus
JP2011154002A (en) Apparatus and method of measuring scale in pipe
JPS5943355A (en) Detector supporting apparatus for inspection of pipe inner surface
JPS5932864A (en) Inspector for inner surface of pipe
JPH06288734A (en) Three-dimensional object inspection device
JPH0375544A (en) Apparatus for inspecting inside of laser tube
CN207586176U (en) A kind of device of metal weldment defects detection
JPS60133363A (en) Detection of defect on metal surface
CN206740678U (en) For tube panel digital radiography system X-ray machine movement in a curve device
JPH0453257B2 (en)
JPH10185514A (en) Coil position detector
JPH0849804A (en) Radiation inspecting device and method
JPS5944654A (en) Running device of pipe inside face inspecting device
JP2584344B2 (en) Distance measurement method and surface roughness measurement method for underwater robot
JPH10206352A (en) X-ray inspection device for foreign matter
KR20220138212A (en) Inspection system of tunnel structure