JPS60135530A - Continuous annealing method of steel strip - Google Patents

Continuous annealing method of steel strip

Info

Publication number
JPS60135530A
JPS60135530A JP24083483A JP24083483A JPS60135530A JP S60135530 A JPS60135530 A JP S60135530A JP 24083483 A JP24083483 A JP 24083483A JP 24083483 A JP24083483 A JP 24083483A JP S60135530 A JPS60135530 A JP S60135530A
Authority
JP
Japan
Prior art keywords
temperature
furnace
heating furnace
heating
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24083483A
Other languages
Japanese (ja)
Inventor
Yoshihiro Iida
祐弘 飯田
Norihisa Shiraishi
典久 白石
Takeo Fukushima
丈雄 福島
Kanaaki Hyodo
兵頭 金章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24083483A priority Critical patent/JPS60135530A/en
Publication of JPS60135530A publication Critical patent/JPS60135530A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum

Abstract

PURPOSE:To prevent decrease in thermal efficiency for heating owing to indirect heating in the stage of annealing continuously a cold rolled steel strip by indirect heating using radiant tubes by making use of the heat retained by the waste combustion gas in the radiant tubes in preheating the steel strip. CONSTITUTION:A cold rolled steel strip 1 is first passed through the inside of a preheating furnace 12 and after the strip is preheated by the high-temp. air blown from a plenum chamber 18, the strip is passed through the inside of an indirect heating furnace 2 in which a reducing atmosphere is maintained. The strip is thus subjected to bright annealing by the radiant heat from many radiant tubes. The waste combustion gas in the tubes 6 is collected in a duct 23 and is introduced into a heat exchanger 7 where the gas heats the atmosphere gas in the furnace 12. The heated gas is fed to the plenum chamber 18 of the furnace 12. The waste combustion gas of the tubes 6 cooled by the heat exchanger 7 is fed by a blower 8 into a chimney 9. The decrease in the thermal efficiency of heating by the furnace 2 is prevented by utilizing the waste heat in the furnace 12.

Description

【発明の詳細な説明】 技 術 分 野 連続炉なまし設備、とくに間接式加熱炉の前に予熱炉を
少くともそなえる場合において、該加熱炉に用いたラジ
アントチューブにおける燃焼廃ガスの保有熱量の有効利
用に関しこの明細書に述べ′。
[Detailed Description of the Invention] Technical Field Continuous furnace annealing equipment, especially when at least a preheating furnace is provided before an indirect heating furnace, is used to evaluate the amount of heat retained in the combustion waste gas in the radiant tube used in the heating furnace. Effective use is discussed in this specification.

る技術内容は、銅帯表面性状の劣化を伴うことなしによ
り短い加熱炉における必要な昇温を一層有利に実現し得
る銅帯の連続炉なまし方法に関連し、上記連続炉なまし
設備の祝している技術分野に位置している。
The technical content relates to a method for continuous furnace annealing of copper strips that can more advantageously achieve the necessary temperature increase in a shorter heating furnace without deteriorating the surface properties of the copper strips, and is based on the above-mentioned continuous furnace annealing equipment. It is located in a technology field that is celebrated.

背 景 技 術 従来、冷延鋼帯の連続炉なましにおける加熱方式として
、ラジアントチューブを用いる間接式加熱炉が広く採用
されている。 ′ この方式は、加熱炉内に多数のラジアントチェ1−ブを
配列し、その内部における燃料の燃焼、に基くラジアン
トチューブ表面からの輻射により、−帯の加熱を行う。
Background Technology Traditionally, indirect heating furnaces using radiant tubes have been widely used as a heating method for continuous furnace annealing of cold rolled steel strips. ' In this method, a large number of radiant tubes are arranged in a heating furnace, and the tubes are heated by radiation from the surface of the radiant tubes based on combustion of fuel inside the tubes.

この間接式加熱炉は還元雰囲気で満たされているために
、−帯が無酸化の状態で゛加熱される特色があるけれど
も所詮、間接加熱であってラジアントチューブの耐熱温
度の制約などにより、加熱炉の炉温をぜいぜい900 
’C程度に上昇させるのが限界であるために、一般に熱
効率が悪く、炉長を長くせざるを得ないところに大き1
0な欠点があった。
Since this indirect heating furnace is filled with a reducing atmosphere, it has the characteristic that the -band is heated in a non-oxidized state. The temperature of the furnace should be set to 900℃.
Since the limit is to raise the temperature to about
There were 0 flaws.

この種間接式加熱方式における上述の欠点を回避するこ
とに関し近年いくつかの提案がみられる。
Several proposals have been made in recent years to avoid the above-mentioned drawbacks of this indirect heating system.

すなわち、まず間接方式とは対立する直火加熱方式を採
用するか、直火加熱方式と間接加熱方式と15を併用す
ることによって熱効率を向上させ、連続炉なましライン
な短くコンパクトにし、がっ板温の制ml f4を向上
させようというものである。
In other words, first, by adopting a direct heating method as opposed to an indirect method, or by using a combination of a direct heating method and an indirect heating method, thermal efficiency can be improved, the continuous furnace annealing line can be shortened and compact, and the The purpose is to improve the plate temperature control ml f4.

しかし直火加熱方式は、直接火焔を銅帯に接触させて銅
帯を急速に加熱する方式であって、がが20(8) る加熱炉の後に溶融金属メッキ過程を連結したた1とえ
ば、連続溶融亜鉛メツキラインなどにてすでに以前から
採用されていたところであって・、冷延鋼帯の連続炉な
まし炉の加熱方式として・も近年に至り、あらためて採
用が検討されるに至ったけれど5も、本質的に次の問題
を含む。
However, the direct flame heating method is a method in which the copper strip is rapidly heated by bringing a flame into direct contact with the copper strip. It has already been used in continuous hot-dip galvanizing lines, etc., and in recent years, its adoption as a heating method in continuous annealing furnaces for cold-rolled steel strips has come under consideration. 5 also essentially includes the following problems.

すなわち間接加熱方式によれば、銅帯が還元雰囲気中で
加熱されるため、鋼板表面が光輝状態を保ったまま焼な
ましされるのに反し直火加熱方式では焼なまし後の鋼板
表面の性状が悪化し、と< 10に塗装の前処理として
行われる化成処理性などが著しく劣化する。
In other words, with the indirect heating method, the copper strip is heated in a reducing atmosphere, so the surface of the steel sheet is annealed while maintaining its bright state, whereas with the direct heating method, the surface of the steel sheet after annealing is The properties deteriorate, and when < 10, chemical conversion treatment performed as a pre-treatment for painting, etc., deteriorates significantly.

この直火加熱方式にて鋼板表面の性状が悪化する理由と
しては、まず厚い酸化皮膜の生成が不可避でありその後
に還元雰囲気の炉中に通板して還15元を行ったとして
も、酸化皮膜が完全に除去されずに、むらができ、その
ため化成処理など塗装の前処理において、不均一な皮膜
が発生するのである。加えてとくに燃焼廃ガスが、直接
鋼板に接するため、燃焼廃ガス中に含まれるS化合物、
0化20(4) 合物など微量な不純物が、鋼板表面に付着し、こ1れも
また塗装の前処理において、不均一な皮膜が発生する原
因となることが次のように明らかとなった。
The reason why the surface properties of the steel sheet deteriorate with this direct flame heating method is that the formation of a thick oxide film is unavoidable, and even if the sheet is then passed through a furnace in a reducing atmosphere to reduce The film is not completely removed and becomes uneven, resulting in an uneven film during pre-painting treatments such as chemical conversion treatment. In addition, since the combustion waste gas is in direct contact with the steel plate, S compounds contained in the combustion waste gas,
It has become clear that trace amounts of impurities such as 0 chemical compounds (4) adhere to the surface of steel sheets, and that this also causes uneven film formation during pre-painting treatment. Ta.

基礎実験の内容 まず直火式加熱を調帯の加熱方式として採用した場合に
、銅帯の表面性状を劣化させる要因を明らかにした。そ
れによると、従来言及されているような、直火炉出(1
J!I鋼帯温度や、直火炉における1゜空気比、の影智
の他に、直火炉の燃焼廃ガス中に含まれる不純物とくに
S化合物が、表面性状に大きな影曽をもつことをつきと
めた。
Contents of the basic experiment First, we clarified the factors that cause the surface quality of the copper strip to deteriorate when direct flame heating is used as the heating method for the strip. According to this, direct-fired furnace output (1
J! In addition to the effects of I steel strip temperature and the 1° air ratio in direct-fired furnaces, we have found that impurities, especially S compounds, contained in the combustion waste gas of direct-fired furnaces have a large impact on surface properties.

一般に、直火炉出口温度が高過ぎたり、あるいは、空気
比が1.0穐を越え、過剰空気側で燃焼さ15せたりす
ると、鋼板表面が激しく酸化され、鋼板表面に生成した
酸化皮膜を、がりに直火炉の後に続いたラジアントチュ
ーブ式加熱炉で、還元したとしても、酸化皮膜層が十分
に除去されずして、化成処理性などを著しく劣化させる
ということは々すでに知られているところであるが、発
明者らは(これらの因子の他に、直火炉の燃焼廃ガス中
に不純物特にS化合物が存在して、その濃度が高い場合
に化成処理性が劣化することを明らかにした。
Generally, if the outlet temperature of a direct-fired furnace is too high, or if the air ratio exceeds 1.0 and combustion is performed on the excess air side, the surface of the steel sheet will be severely oxidized, and the oxide film formed on the surface of the steel sheet will be It is already well known that even if reduction is performed in the radiant tube heating furnace that followed the direct-fired furnace, the oxide film layer is not sufficiently removed, resulting in a significant deterioration of chemical conversion properties. However, the inventors have clarified that in addition to these factors, impurities, particularly S compounds, are present in the combustion waste gas of a direct-fired furnace, and when the concentration thereof is high, the chemical conversion properties deteriorate.

第 1図に、直火炉の燃焼廃ガス中のS濃度(H2へS
換算(1)1)m ) )および直火炉出側鋼帯温度を
種々に変えて、化成処理性のテストをした結果の1例を
示す。
Figure 1 shows the S concentration in the combustion waste gas of a direct-fired furnace (S to H2).
An example of the results of chemical conversion treatment tests with various conversion (1) 1) m )) and steel strip temperature on the exit side of the direct-fired furnace is shown below.

この試験で直火炉出側鋼帯温度は、600°Cまでとし
、空気比は0.9程度とし、かついずれも直1・・火炉
での加熱後、還元炉H,7%、N、98%)において、
700℃以上で80秒の還元を行った。
In this test, the temperature of the steel strip on the exit side of the direct-fired furnace was up to 600°C, the air ratio was about 0.9, and in both cases, after heating in the direct-fired furnace, H, 7%, N, 98 %),
Reduction was performed at 700°C or higher for 80 seconds.

銅帯を500°C以上に直火炉で昇温すると、いずれの
場合も、従来知られているように酸化皮膜の生成か激し
く、還元しても、化成処理性は、劣l゛化する(×印)
。また、直火炉の燃焼廃ガス中のS濃度が、1100p
p以上では、直火炉出側の一帯の温度が500°Cより
低くても化成処理性が劣化(△、×印)している。
When a copper strip is heated to 500°C or higher in a direct-fired furnace, in any case, as is known in the art, an oxide film is formed violently, and even if it is reduced, the chemical conversion properties deteriorate ( ×mark)
. In addition, the S concentration in the combustion waste gas of the direct-fired furnace is 1100p.
At temperatures above p, the chemical conversion properties deteriorate (triangle, x marks) even if the temperature of the area on the exit side of the direct-fired furnace is lower than 500°C.

これはおそらく燃焼廃ガス中のS濃度が100′!“p
pmを越えると直火炉における昇温中に燃焼廃ガゝスに
含まれるS化合物の銅帯への付着が激しくなり、還元後
も、この付着した8分により化成処理における結晶の核
の生成をさまたげ、かくして化成処理性が劣化すること
が明らかとなった。 5一般に、製鉄所における、加熱
炉などに使用される燃料ガスは、コークス炉などで生成
するいわゆるコークスガスを主体とするものが多く利用
され、もちろん直火炉など鋼板の表面性状への影響が考
慮されるとき脱硫処理を行って8分を少なく10される
とは云え、実際上、脱硫処理の状態により、燃焼ガス中
のS濃度が変動し、また、S濃度が低い場合であっても
、8分が鋼板表面に付着するのは不可避なので表面処理
性が劣化する恐れが皆無とは言えないのである。
This is probably because the S concentration in the combustion exhaust gas is 100'! “p
If the temperature exceeds pm, S compounds contained in the combustion waste gas will adhere to the copper band intensely during temperature rise in the direct-fired furnace, and even after reduction, this adhering 8 minutes will prevent the formation of crystal nuclei during chemical conversion treatment. It has become clear that the chemical conversion treatment property is deteriorated. 5 In general, the fuel gas used in heating furnaces in steel plants is mainly composed of so-called coke gas produced in coke ovens, etc., and of course the effect on the surface properties of steel sheets in direct-fired furnaces is taken into consideration. However, in practice, the S concentration in the combustion gas fluctuates depending on the state of the desulfurization treatment, and even when the S concentration is low, Since it is unavoidable that the 8 minute particles adhere to the surface of the steel plate, there is a possibility that the surface treatment properties will be deteriorated.

発 明 の 目 的 上記のように直火式加熱方式によって銅帯の表面性状が
劣化する原因についての究明事実に基いてとくにラジア
ントチューブを用いる間接加熱炉20(7) における燃焼廃ガスの保有熱量の有効な利用を図するこ
とによって有効な板温制御の実を挙げることができる新
規な、加熱方法に立脚した鋼帯の連続焼なまし方法を提
案することがこの発明の目的である。
Purpose of the Invention Based on the above-mentioned investigation into the cause of the deterioration of the surface quality of copper strips due to the direct heating method, the amount of heat retained in the combustion waste gas in the indirect heating furnace 20 (7) using radiant tubes has been investigated. It is an object of the present invention to propose a continuous annealing method for steel strip based on a novel heating method that can achieve effective sheet temperature control by making effective use of.

発明の構成 上記の目的は次の事項を骨子とする手順により有利に成
就される。
Structure of the Invention The above objects are advantageously achieved by a procedure consisting of the following points.

間接式加熱炉に配設された多数のラジアントチューブに
おける燃焼廃ガスを、熱交換器に、上記1(゛加熱炉の
前部に設置した予熱炉内の雰囲気ガスとともに個別導入
し、該ガスとの間の熱交換により、廃ガス吸引プロアお
よび廃ガス煙道の耐熱温度以下にまで冷却してから放散
させる一方、該熱交換器にて加熱された高温雰囲気ガス
を、上記加熱炉)゛の前部に設置した予熱炉内にて該炉
内を通過する鋼帯に吹きつけ、かくして予熱された銅帯
に上記ラジアントチューブによる間接加熱を施すことか
らなる銅帯の連続焼なまし方法。
Combustion waste gas from a large number of radiant tubes installed in an indirect heating furnace is individually introduced into the heat exchanger together with the atmospheric gas in the preheating furnace installed at the front of the heating furnace (see step 1 above). The heat exchange between the heat exchanger cools the waste gas to below the heat-resistant temperature of the waste gas suction proir and the waste gas flue before dissipating it, while the high temperature atmospheric gas heated by the heat exchanger is transferred to the heating furnace). A continuous annealing method for a copper strip, which comprises blowing onto a steel strip passing through the furnace in a preheating furnace installed at the front, and subjecting the thus preheated copper strip to indirect heating by the radiant tube.

この発明の実施態様として、予熱炉にて鋼帯に一□゛吹
きつける高温ガス量を、該銅帯の板厚、板幅、1通過速
度および鋼帯に吹きつけるガス温度ならびに加熱炉の炉
温および出側目標板温に応じ調節して予熱炉出側の板温
を制御し、加熱炉出側の板温を、目標板温に適合させる
こと、また予熱炉にお−ける所要の高温雰囲気ガス量に
対し過剰量の高温雰囲気ガスを、熱交換器から予熱炉を
バイパスして大気に放散゛させること、さらに過剰量の
高温雰囲気ガスから、これを第2の熱交換器に通して熱
回収を行うこと、また予熱炉内を通過する銅帯に10対
して板厚、板幅又は加熱炉出側目標板温を異にする鋼板
との接続部が、予熱炉に導入されてから加熱炉を通り抜
けるまでの非定常加熱の際、予熱炉において鋼帯に吹き
つける高温雰囲気ガスの温度、先行、後行両画帯の各加
熱炉出側目標板温に15応じて銅帯通過速度を、この間
過渡的に発生する両画帯の各加熱炉出側目標板温からの
偏差を両画帯の加熱出側板温の上限値と下限値の共通範
囲内に納める制御もあわせ施すことがより好適である。
As an embodiment of the present invention, the amount of high-temperature gas blown onto the steel strip in a preheating furnace is determined based on the thickness of the copper strip, the width of the copper strip, the one-pass speed, the gas temperature blown onto the steel strip, and the temperature of the heating furnace. To control the plate temperature on the outlet side of the preheating furnace by adjusting it according to the target plate temperature on the outlet side and the plate temperature on the outlet side of the heating furnace, and to adjust the plate temperature on the outlet side of the heating furnace to the target plate temperature, and to maintain the required high temperature in the preheating furnace. A method of dissipating an excess amount of high-temperature atmospheric gas from a heat exchanger to the atmosphere by bypassing a preheating furnace with respect to the amount of atmospheric gas, and further passing the excessive amount of high-temperature atmospheric gas through a second heat exchanger. Heat recovery should be carried out, and after the copper strip passing through the preheating furnace is connected to a steel plate that has a different plate thickness, plate width, or target plate temperature on the exit side of the heating furnace, During unsteady heating until the steel strip passes through the heating furnace, the copper strip passing speed is determined according to the temperature of the high-temperature atmospheric gas that is blown onto the steel strip in the preheating furnace, and the target plate temperature on the exit side of the heating furnace in both leading and trailing zones. It is also possible to perform control to keep the deviation from the target plate temperature on the outlet side of the heating furnace in both zones, which occurs transiently during this period, within the common range of the upper limit value and lower limit value of the plate temperature on the heating outlet side in both zones. More suitable.

さて直火方式、またラジアントチューブを用い20る間
接加熱方式の何れを問わず高温の燃焼廃ガス1の処理お
よび廃熱回収は、また大きな課題である。
Regardless of the direct heating method or the indirect heating method using radiant tubes, the treatment of high temperature combustion waste gas 1 and the recovery of waste heat are also major issues.

それというのは、高温の燃焼廃ガスを、そのまま廃棄し
ようとすると、膨大な熱量の損失となるほかに、廃ガス
煙道および煙突そして、奥方スを5吸引する必要のある
場合は、吸込みファンなどが、高温にさらされるため、
それらの設備につき全て高い耐熱性をもった高価な設備
とする必要があるためである。
This is because if you try to dispose of high-temperature combustion waste gas as it is, you will not only lose a huge amount of heat, but also use a suction fan if it is necessary to suck the waste gas into the flue, chimney, and back space. etc. are exposed to high temperatures,
This is because all of the equipment needs to be expensive equipment with high heat resistance.

従来、この燃焼廃ガスの処理として、代表的な1O方法
は、熱交換器を介して、該ガスを冷却し、その熱交換の
媒体としてとくに水を用いこの水を昇温することにより
廃熱回収を行うがこの方法では、水を通した熱交換器内
において、燃焼廃ガスが冷却されるため、ガス中の水分
が結露し、さらに、1″廃ガス中のS化合物などがこの
水分に溶解し、配管の腐食を起す原因となり、熱交換器
の耐久性が害されるという問題があった。
Conventionally, the typical 1O method for processing this combustion waste gas is to cool the gas through a heat exchanger, use water as the heat exchange medium, and raise the temperature of this water to recover the waste heat. However, in this method, the combustion waste gas is cooled in a heat exchanger through which water is passed, so the moisture in the gas condenses, and the S compounds in the 1" exhaust gas condense into this moisture. There was a problem in that it melted and caused corrosion of the pipes, impairing the durability of the heat exchanger.

なおこの他の廃ガス活用方法として、加熱炉の前に予熱
炉を設置し、この予熱炉内に、燃焼廃ガ2″スを導入し
て、加熱炉に通板される前の鋼帯を千1熱することも試
みられたが、すでに述べたように燃焼廃ガスを直接鋼帯
にさらす方法では、燃焼廃ガス中の8分を代表例とする
不純分により、銅帯板の表面処理性が劣化する恐れがあ
るため冷延鋼帯5の連続焼なまし炉では適合しない。
In addition, as another method of utilizing waste gas, a preheating furnace is installed in front of the heating furnace, and a 2" gas of combustion waste gas is introduced into this preheating furnace to cool the steel strip before it is passed through the heating furnace. Attempts have also been made to heat the copper strip by 1,000 yen, but as mentioned above, in the method of directly exposing the steel strip to the combustion waste gas, impurities, typically 80% in the combustion waste gas, may cause surface treatment of the copper strip. A continuous annealing furnace for cold-rolled steel strip 5 is not suitable because there is a risk of deterioration in properties.

この発明では、鋼板の表面性状の問題および、廃熱回収
の問題を一挙に解決し、さらに、板温の制御性をも有利
に完備させ得る。なお、熱媒体として用いる予熱炉内の
雰囲気ガスは空気以外でもl窒素あるいは窒素と水素の
混合刃スなどでもよく、以下空気の場合について説明す
る。
In this invention, the problem of the surface properties of the steel sheet and the problem of waste heat recovery can be solved all at once, and furthermore, the controllability of the sheet temperature can be advantageously completed. Note that the atmospheric gas in the preheating furnace used as a heat medium may be other than air, such as nitrogen or a mixture of nitrogen and hydrogen, and the case of air will be described below.

図示に従う具体説明 第2図にこの発明の方法の適用に好適な連続焼1″なま
しラインを例示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 illustrates a continuous 1" annealing line suitable for application of the method of the present invention.

■は銅帯、2は間接式加熱炉、8はハースロール、4は
炉内温度計、5は加熱炉出側板温計、6はラジアントチ
ューブであり、また7は熱交換器を示し、そして8は吸
込みブロア、9は煙突、 ′。
2 is a copper strip, 2 is an indirect heating furnace, 8 is a hearth roll, 4 is an in-furnace thermometer, 5 is a plate thermometer on the outlet side of the heating furnace, 6 is a radiant tube, and 7 is a heat exchanger, and 8 is a suction blower, 9 is a chimney, '.

10は廃ガス圧力計、11は廃ガス温度計であつlて、
12は予熱炉である。
10 is a waste gas pressure gauge, 11 is a waste gas temperature gauge,
12 is a preheating furnace.

この予熱炉12には熱風循環配管18と熱風循環ファン
14とを、ファン入側バイパス弁15、ファン出側バイ
パス弁16および熱風調整弁17Xを介して接続したプ
レナムチャンバー18を配置する。図中19は熱風温度
計、20はブレナム圧力計、また21は予熱炉出側板温
計さらに22は廃ガス煙道、28は廃ガスダクトである
This preheating furnace 12 is provided with a plenum chamber 18 in which a hot air circulation pipe 18 and a hot air circulation fan 14 are connected via a fan inlet bypass valve 15, a fan outlet bypass valve 16, and a hot air regulating valve 17X. In the figure, 19 is a hot air thermometer, 20 is a Blenheim pressure gauge, 21 is a preheating furnace exit plate temperature gauge, 22 is a waste gas flue, and 28 is a waste gas duct.

間接式加熱炉2内のラジアントチューブ6から1([排
出される高温の廃ガスは、廃ガスダクト28により熱交
換器7に導入して、熱交換を行い、廃ガス煙道22、お
よび吸引ブロア8の耐熱温度以下に冷却してからI12
引ファン8を経て煙突9より放散廃棄する。
Radiant tubes 6 to 1 in the indirect heating furnace 2 ([The high-temperature waste gas discharged is introduced into the heat exchanger 7 through the waste gas duct 28 for heat exchange, and is then transferred to the waste gas flue 22 and suction blower. I12 after cooling to below the heat resistant temperature of 8.
It passes through a pulling fan 8 and is disposed of through a chimney 9.

熱交換器7において、高温の廃ガスを冷却する冷媒とし
て、予熱炉12内の空気を熱交換器7に導入し、上記高
温の廃ガスとの熱交換によって、14濡した後、熱風循
環ファン14により昇圧し、予熱炉12の中に設置され
たプレナムチャンバー211(12) 18に送入し、このプレナムチャンバー8から高l温の
空気を、予熱炉12内を通過中の鋼帯1に吹きつけその
予熱に供する。
In the heat exchanger 7, the air in the preheating furnace 12 is introduced into the heat exchanger 7 as a refrigerant to cool the high-temperature waste gas, and after being wetted by heat exchange with the high-temperature waste gas, a hot air circulation fan is used. 14 and sent to a plenum chamber 211 (12) 18 installed in the preheating furnace 12. From this plenum chamber 8, high temperature air is applied to the steel strip 1 passing through the preheating furnace 12. Spray on it and use it to preheat it.

鋼帯1は、間接式加熱炉2に、予熱炉12での上記の予
熱をした上で送り込み、さらに加熱するδいま厚み0.
8翻X1llllIl O00助の冷廷済み銅帯を85
0 m/minの通板速度下に加熱炉2の出側板温75
0℃を要する場合、加熱炉2内のラジアントチューブ6
で燃焼するガス(約2800 Kcal/Mm8)は約
21 X 106K cal、/ Hr (約o o 
o o Nm8/Hr+)であり、一方加熱炉2からの
廃ガスの熱量は約5X 10 K calzIr 、約
600℃で廃ガスiは約80000 Nm /[(rで
ある。
The steel strip 1 is fed into the indirect heating furnace 2 after being preheated as described above in the preheating furnace 12, and further heated until the thickness δ is 0.
8 translation
The sheet temperature at the exit side of the heating furnace 2 was 75 at a sheet passing speed of 0 m/min.
If 0°C is required, radiant tube 6 in heating furnace 2
The gas burned (about 2800 Kcal/Mm8) is about 21
o o Nm8/Hr+), while the calorific value of the waste gas from the heating furnace 2 is about 5X 10 K calzIr, at about 600°C, the waste gas i is about 80000 Nm/[(r).

この廃ガスを熱交換器7に導入し、予熱炉12内で循環
する空気と熱交換したところ廃ガスは II熱熱交後後
約500℃なり、その後、煙道22を通り煙突9より放
散排出させた。
When this waste gas is introduced into the heat exchanger 7 and heat exchanged with the air circulating in the preheating furnace 12, the waste gas reaches a temperature of about 500°C after II heat exchange, and then passes through the flue 22 and is dissipated from the chimney 9. It was discharged.

一方、予熱炉12内を循環する空気量は約85000 
Nm /)Irであり、熱交換により、約2.5X 1
06K cal/Hr ノ熱sが得うレテ、熱交換器7
20の入側の空気温度約800°Cが出側で約400℃
゛まで加熱され予熱炉12のプレナムチャンバ18から
鋼板表面に吹きつけかくして鋼帯を約2゛00°Cまで
加熱することができた。
On the other hand, the amount of air circulating in the preheating furnace 12 is approximately 85,000.
Nm/)Ir, and by heat exchange, approximately 2.5X 1
06K cal/Hr heat exchanger 7
The air temperature on the inlet side of 20 is about 800°C, and the air temperature on the outlet side is about 400°C.
The steel strip was heated to approximately 2'00°C and was blown onto the surface of the steel sheet from the plenum chamber 18 of the preheating furnace 12, thus heating the steel strip to approximately 2'00°C.

この予熱炉12の設置により、約aoooo ”K c
al/Tの燃料の節約をすることが可能となった。
By installing this preheating furnace 12, approximately aooo ”K c
It has become possible to save fuel for al/T.

ここで予熱炉12において、銅帯に吹きつける高温空気
量は、プレナムチャンバー18内の圧力をプレナム圧力
計20で測定することにより該圧力でもって制御され得
る。
Here, in the preheating furnace 12, the amount of high-temperature air blown onto the copper strip can be controlled by measuring the pressure in the plenum chamber 18 with a plenum pressure gauge 20.

また、予熱炉12の出側板温計21によって予熱炉出側
の銅帯温度を測定し、予熱炉12において鋼帯に吹きつ
ける空気量をかりに減少させる制御を、行う場合には、
熱風調節弁17を閉方向に制御し、ファン入側バイパス
弁15と、ファン出15側バイパス弁16を連動させて
開方向に制御することにより容易に実現される。
In addition, when the temperature of the copper strip on the exit side of the preheating furnace is measured by the exit plate thermometer 21 of the preheating furnace 12, and control is performed to reduce the amount of air blown onto the steel strip in the preheating furnace 12,
This can be easily achieved by controlling the hot air regulating valve 17 in the closing direction and controlling the fan inlet side bypass valve 15 and the fan outlet 15 side bypass valve 16 in the open direction in conjunction with each other.

この方法を採用することにより、予熱炉12において鋼
帯に吹きつける空気量が減少する場合も、ラジアントチ
ューブ式加熱炉2より排出されるaillカスヲ、熱交
換器7において、吸引ファン8およ1び煙道22の耐熱
温度以下になるように常時制御することが可能である。
By adopting this method, even if the amount of air blown onto the steel strip in the preheating furnace 12 is reduced, the air scum discharged from the radiant tube heating furnace 2, the suction fans 8 and 1 in the heat exchanger 7 It is possible to constantly control the temperature to be below the heat-resistant temperature of the flue 22.

また、吸引ファン8の制御は、熱交換器7の廃ガス圧力
計10および廃ガス温度計11により測5定された圧力
および温度により行われる。
Further, the suction fan 8 is controlled based on the pressure and temperature measured by the exhaust gas pressure gauge 10 and exhaust gas thermometer 11 of the heat exchanger 7.

このようにして間接式加熱炉2内のラジアントチューブ
で発生する高温の廃ガスの保有熱かを有効に利用し、し
かも11114帯1の表面性状に劣化のない予熱をする
ことが可能となる。すなわち上記空気】0との熱交換に
より燃焼廃ガスが銅帯表面に直接接触することがないた
め、鋼板の表面性状を常に良好に保つことが可能なので
ある。
In this way, it is possible to effectively utilize the retained heat of the high-temperature waste gas generated in the radiant tube in the indirect heating furnace 2, and to preheat the 11114 zone 1 without deteriorating its surface quality. That is, because the combustion waste gas does not come into direct contact with the surface of the copper strip due to heat exchange with the above-mentioned air, it is possible to always maintain good surface quality of the steel sheet.

さらに、この方法は予熱炉12における鋼帯の昇熱の応
答性がとくに早く、これに着目して、加1″熱炉出側の
肯帯の板温を、常時目標温度に制御する要因として活用
できる。
Furthermore, this method has a particularly fast response to the heating of the steel strip in the preheating furnace 12, and focusing on this, we have used this method as a factor to constantly control the strip temperature of the strip on the exit side of the heating furnace 1'' to the target temperature. Can be used.

すなわち第2図における予熱炉12に導入する熱風の風
量の制御を行ってまず予熱炉12の出側板温を制御でき
るようにする。
That is, by controlling the amount of hot air introduced into the preheating furnace 12 in FIG. 2, the temperature of the outlet plate of the preheating furnace 12 can be controlled.

また当然であるが、間接式加熱炉2には、その1炉瀉を
変更することが可能な炉温制?liJ系を設け、さらに
は鋼帯1の通過速度を変更することが可能な速度制御系
も設ける。
Of course, the indirect heating furnace 2 also has a furnace temperature control that allows you to change the furnace temperature. A liJ system is provided, and a speed control system capable of changing the passing speed of the steel strip 1 is also provided.

従来は、たとえば直火加熱方式とラジアントチ5ユーブ
加熱方式を併用した場合の板温の制御方法としてラジア
ントチューブによる加熱炉出側の板温を測定し、目標温
度との偏差により、ラジアントチューブによる加熱炉の
炉内温度制御と、直火による加熱炉の燃料流量制御との
組み合わせによ10るフィードバック制御が行なわれて
いる。
Conventionally, for example, when a direct fire heating method and a radiant tube heating method are used together, the method of controlling the plate temperature is to measure the plate temperature at the exit side of the heating furnace using a radiant tube, and depending on the deviation from the target temperature, the plate temperature is controlled by the radiant tube. Feedback control is performed by a combination of internal temperature control of the heating furnace and fuel flow rate control of the heating furnace using direct fire.

しかし、この方法によると、フィードバック制御である
ために、制御の遅れが存在し、板温の制御が正確に行な
われないことおよび、ラジアントチューブ式加熱炉の炉
内温度の変更時の炉内温度゛5の整定時間が非常に長く
かかるために、ラジアントチューブ式加熱炉出側の板温
が長い間目標瀉度から外れてしまうなどの欠点があった
However, since this method uses feedback control, there is a delay in control, and the plate temperature cannot be controlled accurately. Since the settling time of step (5) is very long, there are drawbacks such as the plate temperature at the exit side of the radiant tube heating furnace deviating from the target temperature for a long time.

これに対しこの発明に適合する制御系につき、第8図で
具体的な制御例を示す。 ′。
On the other hand, FIG. 8 shows a specific control example of a control system adapted to the present invention. '.

予熱炉12には、予熱炉出側板温を変更するこ】とが可
能な板温制御装置25を設置し、予熱炉12において、
鋼帯に吹きつける空気量を熱風調節弁17およびバイパ
ス弁15.16の開度調節によって変え、予熱炉出側板
温を変更可能にして5ある。
The preheating furnace 12 is equipped with a plate temperature control device 25 that can change the plate temperature on the exit side of the preheating furnace.
The amount of air blown onto the steel strip can be changed by adjusting the opening of the hot air control valve 17 and the bypass valves 15 and 16, so that the plate temperature at the exit side of the preheating furnace can be changed.

弁開度は、ブレナム圧力計20によって測定されるプレ
ナムチャンバー18の圧力信号のフィードバックにより
制御し、このプレナム圧力の設定値は、主計算器28か
ら板温制御装置25を介し10て、直接設定される場合
と、主計算器28から、予熱炉口側目標板温か板温制御
装置25に設定され、予熱炉出側板温計21の出力信号
からのフィードバックにより、設定される場合とがある
The valve opening degree is controlled by feedback of the pressure signal of the plenum chamber 18 measured by the blennium pressure gauge 20, and the set value of this plenum pressure is directly set from the main calculator 28 via the plate temperature control device 10. In some cases, the main calculator 28 sets the target plate temperature at the inlet side of the preheating furnace to the plate temperature control device 25, and in other cases, it is set by feedback from the output signal of the plate thermometer 21 on the outlet side of the preheating furnace.

加熱炉2には、炉温制御装置26が設置され、15主計
算器28からの炉温設定値により、制御する場合と、主
計算器28から、加熱炉出側目標板温が炉温制御装置2
6に設定され、加熱炉出側板温計5の出力信号からのフ
ィードバックにより制御する場合がある。
A furnace temperature control device 26 is installed in the heating furnace 2, and the furnace temperature is controlled by the furnace temperature set value from the main calculator 28, and the furnace temperature is controlled by the furnace exit side target plate temperature from the main calculator 28. Device 2
6, and may be controlled by feedback from the output signal of the plate thermometer 5 on the outlet side of the heating furnace.

また、鋼帯の板厚、板幅又は加熱炉出側目標板1温のい
ずれか1つまたは2つ以上が異なる点(以下役付点と呼
ぶ)を追跡し、その点を計算する段付点位置計算器29
より主n器28へ段付点の通過情報が送られる。
In addition, stepped points are used to track and calculate points where one or more of the steel strip thickness, width, or target plate temperature on the exit side of the heating furnace differs (hereinafter referred to as service points). position calculator 29
The passage information of the stepped points is sent to the main n unit 28.

加熱炉2における炉温は、非常に応答性が遅く、予熱炉
12における出側板温の制御応答性は早いことから、定
常時において、炉温の変動、通過速度の変動などにかか
わらず、次式(1)により、予熱炉の制御を実施するこ
とにより、−”jo、 −加熱炉出側板温を安定させ ることに成功した。
The response of the furnace temperature in the heating furnace 2 is very slow, and the response of control of the outlet plate temperature in the preheating furnace 12 is fast. By controlling the preheating furnace using equation (1), it was possible to stabilize the temperature of the plate on the outlet side of the heating furnace.

T8P= f (D 、 W 、 TsH,TA 、 
TH、V )−(11ここで、D:予熱炉通過中の板の
板厚 W: 板幅 TSH’ 加熱炉出側目 標板温 TA:熱風温度 (実績) TH:加熱炉炉温(〃) ■:通過速度 (〃)7υ T8.二予熱炉出側目標板温 (11式)D 、 W 、 T0n、 TA、 ’rH
gヨヒvけ、主計算器28に収集し、主計算器28にお
いて、(1)式にしたがって予熱炉出側目標板温TSP
が計算され、板温制御装置θ25に設定される。
T8P=f (D, W, TsH, TA,
TH, V) - (11 where, D: Thickness W of the plate passing through the preheating furnace: Width TSH' Target plate temperature on exit side of the heating furnace TA: Hot air temperature (actual) TH: Furnace temperature of the heating furnace (〃) ■: Passage speed (〃)7υ T8. Target plate temperature on exit side of second preheating furnace (11 formula) D, W, T0n, TA, 'rH
The data are collected in the main calculator 28, and the target plate temperature TSP on the exit side of the preheating furnace is calculated in the main calculator 28 according to equation (1).
is calculated and set in the plate temperature control device θ25.

板温制御装置25は、該目標板温TSPになるように、
予熱炉においてM帯に吹きつける風匍を制御する。ある
いは、主計算器28において、次式(2)にしたがって
、予熱炉内プレナムチャンバー圧ヵPAを計算して、設
定することも可能である l1lPA= g (D 、
 W 、 TsH,TA、 TH,V )−(Z)この
方法は、加熱炉炉In THs熱風温度TAS通過速度
Vなど操業状況により、加熱炉出側板温を安定させるよ
うに、予熱炉を制御するという方法であり、応答性の早
い予熱炉を制御することによ5って、加熱炉出側板温を
常に安定させることが可能である。
The plate temperature control device 25 controls the plate temperature so that the target plate temperature TSP is reached.
Controls the wind blowing to the M band in the preheating furnace. Alternatively, the main calculator 28 can calculate and set the preheating furnace plenum chamber pressure (PA) according to the following equation (2): l1lPA=g (D,
W, TsH, TA, TH, V) - (Z) This method controls the preheating furnace to stabilize the temperature of the plate on the exit side of the heating furnace depending on operating conditions such as heating furnace In THs hot air temperature TAS passing speed V By controlling the preheating furnace with quick response, it is possible to always stabilize the plate temperature at the exit side of the heating furnace.

第4図に従来方法(ラジアントチューブ式加熱炉)およ
びこの発明の方法による予熱炉を制御した場合の比較を
示す。
FIG. 4 shows a comparison between a conventional method (radiant tube heating furnace) and a preheating furnace controlled by the method of the present invention.

(19) たとえば、通過速度v0がA点からB点までの1間にV
、に減少したとすると、従来方法では、A〜Bの間で、
そのまま加熱炉出側板温がTSHIからTSH2へ破線
のように上昇することとなっていたが、この発明による
方法によれば、■□が−v2に減少した場合に、その変
化を(1)式あるいは(2)式により、予熱炉12の操
業に反映し、予熱炉出側板温をTSPIからTSP2へ
減少させる結・果として、加熱炉出側板温はTSHIの
まま実線のように安定している。
(19) For example, if the passing speed v0 is V during one period from point A to point B,
, then in the conventional method, between A and B,
The plate temperature on the outlet side of the heating furnace was supposed to rise from TSHI to TSH2 as shown by the broken line, but according to the method of this invention, when ■□ decreases to -v2, the change can be expressed by equation (1). Alternatively, according to equation (2), the plate temperature on the outlet side of the heating furnace is reduced from TSPI to TSP2 by reflecting the operation of the preheating furnace 12, and as a result, the plate temperature on the outlet side of the heating furnace remains at TSHI and is stable as shown by the solid line. .

また、炉温がTHIからTH2へ上昇した場合でも、従
来方法によれは、その影智がそのまま、TSHI が 
TSH8へ上昇(又は減少)して図の破線のようにあら
れれるが、この発明による方法によれば、予熱炉出側板
温をTSPIから’rspaへ減15少させることによ
り、加熱出側板温を図の実線のように常に一定に保つこ
とが可能である。
In addition, even if the furnace temperature rises from THI to TH2, the effect remains unchanged and TSHI increases according to the conventional method.
However, according to the method of the present invention, by reducing the temperature of the plate at the exit side of the preheating furnace from TSPI to 'rspa by 15, the temperature at the outlet side of the heating furnace can be reduced by 15%. It is possible to always keep it constant as shown by the solid line in the figure.

第4図において、D ” L、8 闘、■□= 800
 m/min。
In Figure 4, D ” L, 8 fights, ■□ = 800
m/min.

’I’H1=880℃、T8P1=200℃、’I’8
1(1=750’C17)場合かりにVs ”” 25
0 vmlnとなツz0(20) たとすると、従来方法ではTSH2=780℃とな1つ
でしまうが、この発明の方法により、TSP2=40℃
とすれば、TSHIのまま操業できる。
'I'H1=880℃, T8P1=200℃, 'I'8
1 (1=750'C17), Vs "" 25
0 vmln and z0(20), the conventional method results in TSH2 = 780°C, but with the method of this invention, TSP2 = 40°C.
If so, it can be operated as TSHI.

一方TH2=845℃となったとしても、従来方法では
TSH8=770°Cとなってしまうが1こ5の発明の
方法により、TSP8=100°Cとすれは、’l”s
Hlのまま操業できる。
On the other hand, even if TH2 = 845°C, the conventional method would result in TSH8 = 770°C, but by the method of the invention, TSP8 = 100°C.
It can be operated as Hl.

次に、板厚、板幅、又は加熱炉出側目標板温のいずれか
1つまたは2つ以上が異なる鋼帯を接続して、その段付
点が炉を通過する場合の非定常時10の予熱炉12の制
御方法は次のようにすることができる。
Next, we will discuss 10 unsteady times when steel strips that differ in one or more of the plate thickness, plate width, or target plate temperature at the exit side of the heating furnace are connected, and the stepped point passes through the furnace. The preheating furnace 12 can be controlled as follows.

第5図において、板厚り、、通過速度v1、加熱炉炉温
TH1、予熱炉出側板温TSP1、加熱炉出側板温TS
H0で安定している状態から、板厚DgS通15過速度
v8、加熱炉炉′tnTH2、予熱炉出側板温’I’S
P2加熱炉出側板湛TSH0の安定状態に移行する場合
の制御を例にとって説明する。
In Fig. 5, plate thickness, passing speed v1, heating furnace furnace temperature TH1, preheating furnace exit side plate temperature TSP1, heating furnace exit side plate temperature TS
From a stable state at H0, plate thickness DgS through 15 overspeed v8, heating furnace furnace 'tnTH2, preheating furnace outlet side plate temperature 'I'S
The control when the P2 heating furnace exit side plate TSH0 shifts to a stable state will be explained by taking as an example.

まず、板厚変更点が予熱炉入側に到達するt□分前から
、加熱炉炉温TH1を次設定値’I’H2に向つ2Oて
変更を始める。同時に加熱炉出側板温が目標板1rMT
sHoとなるように(1)式あるいは(2)式にしたが
い予熱炉出側板温を、順次制御していく。
First, t□ minutes before the plate thickness change point reaches the entrance side of the preheating furnace, the heating furnace furnace temperature TH1 is started to be changed by 2O toward the next set value 'I'H2. At the same time, the heating furnace outlet plate temperature is the target plate 1rMT.
The plate temperature on the outlet side of the preheating furnace is sequentially controlled according to equation (1) or equation (2) so that sHo is achieved.

予熱炉出側板温が最小となった時点Hより、板厚D2の
板が予熱炉に入る工までの間は、加熱炉5出側板渇の上
昇を防ぐために、次式(3)にしたかい、通過速度を制
御する。
From the point H when the plate temperature on the outlet side of the preheating furnace becomes the minimum until the plate of plate thickness D2 enters the preheating furnace, the following formula (3) is used to prevent the plate temperature on the outlet side of the heating furnace 5 from increasing. , to control the passing speed.

V = h、(D、W、TSHO,TH,TSHU、T
SHL)−(81この場合は、予熱炉全閉とした場合の
式であり、D 、W 、TSHO,TH,TSHU、T
SHL は、板厚10D1の方の板の値であり、(8)
式中にTSHU、TSHLを入れたのは、これらの値に
よっては、■の変更をせずに前のままの■、で操業する
という簡単な操業方法を採用することも可能であるから
である。
V = h, (D, W, TSHO, TH, TSHU, T
SHL) - (81 In this case, the equation is when the preheating furnace is completely closed, and D, W, TSHO, TH, TSHU, T
SHL is the value of the plate with a thickness of 10D1, (8)
The reason why TSHU and TSHL are included in the formula is that depending on these values, it is possible to adopt a simple operation method of operating as before without changing ■. .

続いて板厚D2の板が予熱炉に入った時点で、1″予熱
炉を全開とし、予熱炉出側板温を工からJまで上昇させ
る。同時に(8)式に代って次式(4)により、加熱炉
出側板温か目標板温TSHOになるように、通過速度V
を計算して、設定し、その後(3)式にしたがい、加熱
炉炉温THが上昇し、目標炉温 2゛TH2に到達する
まで、通過速度■の計算をくり返゛し設定する。
Subsequently, when the plate with the plate thickness D2 enters the preheating furnace, the 1" preheating furnace is fully opened, and the plate temperature on the exit side of the preheating furnace is increased from 1 to J. At the same time, the following equation (4) is used instead of equation (8). ), the passing speed V is adjusted so that the plate temperature on the exit side of the heating furnace reaches the target plate temperature TSHO.
is calculated and set, and then, according to equation (3), the calculation of the passage speed (2) is repeated and set until the heating furnace furnace temperature TH rises and reaches the target furnace temperature 2゛TH2.

V=h、(D 、W、TSHO、TA、TH,TSHU
、TSHL )・・・(4)第5図に示した場合には、
板厚D2の板が入った以降は、予熱炉は、全開で制御し
、予熱炉におい5てS銅帯に吹きつける風h1も最大と
なっているとして(81式で■を計算することとなる。
V=h, (D, W, TSHO, TA, TH, TSHU
, TSHL )...(4) In the case shown in Figure 5,
After the plate of plate thickness D2 is inserted, the preheating furnace is controlled to be fully open, and assuming that the wind h1 blowing on the S copper strip in the preheating furnace is at its maximum (calculating ■ using formula 81). Become.

従来の方法では、加熱炉出側板温の図に破線で示したよ
うに、予熱炉における制御がないために、通過速度を制
御しても、板厚変更点前後で、目標l。
In the conventional method, as shown by the broken line in the diagram of the plate temperature at the exit side of the heating furnace, there is no control in the preheating furnace, so even if the passing speed is controlled, the target l is not reached before and after the plate thickness change point.

板温からの外れが非常に大きくなり、板温の上下限内に
入らないケースが多くあった。
There were many cases where the deviation from the plate temperature was very large and the plate temperature did not fall within the upper and lower limits.

たとえば、板厚の変化が80%つまり、Dg−1,8X
 D□の場合、通過速度400m/分で710熱すると
すれば、従来方法では、加熱炉出側板温の板1゛厚変更
点前後における偏差(第5図QとRの温度差)は60°
C〜80℃にもなり上下限を外れる恐れがあるが、この
発明による予熱炉の制御を行うと、この偏差をほとんど
なくシ、理想的な制御をすることが可能である。 2O (28) 第5図は、板厚が厚くなる場合の制御例を示しまたが、
板厚が薄くなる場合および、加熱炉出側目標板温か変更
する場合も制御方法は同様であり、予熱炉の出側板温を
制御して、加熱炉出側板温を一定の目標値に保つことが
できる場合には、(1〕式5あるいは(2)式により予
熱炉の制御]を行い、予熱炉が全開あるいは、全閉とな
り、さらに加熱炉の出側板温が一定の目標値に保つこと
ができなくなる場合には、(8)式あるいは(4)式に
したがって通過速度■を計算し、設定していくことによ
り、加熱炉1G出側を一定に保つことが可能となった。
For example, the change in plate thickness is 80%, that is, Dg-1,8X
In the case of D□, assuming that 710 degrees of heat is generated at a passing speed of 400 m/min, in the conventional method, the deviation of the plate temperature on the exit side of the heating furnace before and after the plate 1゛ thickness change point (the temperature difference between Q and R in Figure 5) is 60 degrees.
C to 80 C, which may exceed the upper and lower limits, but by controlling the preheating furnace according to the present invention, this deviation can be almost eliminated and ideal control can be achieved. 2O (28) Figure 5 shows an example of control when the plate thickness becomes thicker.
The control method is the same when the plate thickness becomes thinner or when the target plate temperature on the outlet side of the heating furnace is changed, and the plate temperature on the outlet side of the preheating furnace is controlled to maintain the plate temperature on the outlet side of the heating furnace at a constant target value. If possible, perform (1) control of the preheating furnace using equation 5 or (2) to fully open or close the preheating furnace, and maintain the outlet plate temperature of the heating furnace at a constant target value. If this becomes impossible, the exit side of the heating furnace 1G can be kept constant by calculating and setting the passing speed (■) according to equation (8) or (4).

第5図において、D、 = 0.8闘、D、 = 1.
0訪、Vl ”8 0 0 m/min、vg= 2 
5 0 m/m1ns TH1=880℃、TH2=8
45°C,TSP1= 200’C1’[’5P2= 
200℃、TSHO= 750℃、T0=8分15の場
合、予熱炉を制御しない従来方法による制御では、加熱
炉出側板温のQ点が770°Cまで上昇し、また板厚が
l、Qsmに変ったR点は780℃まで下降してしまう
。また、この発明において、再び第2図のファン出側バ
イパス弁16と、ファン20(24) 入側バイパス弁15とを連動させて開方向に、制御御し
、予熱炉12において、銅帯に吹きつける空気量を減少
させる場合には、第6図に示す方法を、用いて、ファン
出側バイパス弁16から排出される熱風の熱回収を行う
ことができる。
In FIG. 5, D, = 0.8, D, = 1.
0 visits, Vl ”8 0 0 m/min, vg = 2
5 0 m/m1ns TH1=880℃, TH2=8
45°C, TSP1= 200'C1'['5P2=
In the case of 200°C, TSHO = 750°C, and T0 = 8 minutes 15, under the conventional control method that does not control the preheating furnace, the Q point of the plate temperature on the exit side of the heating furnace rises to 770°C, and the plate thickness increases to l, Qsm. The temperature at point R, which has changed to , drops to 780°C. In addition, in this invention, the fan outlet side bypass valve 16 and the fan 20 (24) inlet side bypass valve 15 in FIG. When reducing the amount of air blown, the method shown in FIG. 6 can be used to recover heat from the hot air discharged from the fan outlet side bypass valve 16.

図中80はクリーニングスクラバタンク、31はクリー
ニングディップタンク、82は温水熱交換器、88はリ
サーキュレーションタンク、84はポンプ、85はスプ
レー配管、36は熱風配管、87は熱風排出配管、38
は熱交入側温水配管、1089け熱交出側温水配管、4
0はレベル泪、41は温水調節バルブ、42は温辺計、
43は無気調節バルブ、44は然気配管、45は濡水循
環配管であり、46は温水戻り配管である。
In the figure, 80 is a cleaning scrubber tank, 31 is a cleaning dip tank, 82 is a hot water heat exchanger, 88 is a recirculation tank, 84 is a pump, 85 is a spray pipe, 36 is a hot air pipe, 87 is a hot air discharge pipe, 38
Heat exchange side hot water piping, 1089 heat exchange side hot water piping, 4
0 is the level, 41 is the hot water control valve, 42 is the temperature gauge,
43 is an airless control valve, 44 is air piping, 45 is wet water circulation piping, and 46 is hot water return piping.

水熱交換器82に流入させ、その後、熱風排出配管87
を通って排出させるのである。
The hot air flows into the water heat exchanger 82, and then the hot air exhaust pipe 87
It is discharged through the

一方、熱風の廃熱は、水の温度を上昇することによって
回収される。 ′(゛ 熱交換によって生成した温水は、たとえば、連l続焼な
まし炉の入側に通常設置されるクリーニングラインなど
に活用することが可能である。
On the other hand, the waste heat of the hot air is recovered by increasing the temperature of the water. (The hot water produced by heat exchange can be used, for example, in a cleaning line that is usually installed at the entrance of a continuous annealing furnace.

第6図においては、クリーニングラインに活用する例を
示しである。鋼帯1は、スプレー配管8へ5を設置され
たクリーニングスクラバタンク80を通り続いて、クリ
ーニングディップタンク81において浸漬され、クリー
ニングされる。
FIG. 6 shows an example of use in a cleaning line. The steel strip 1 passes through a cleaning scrubber tank 80 installed at 5 into the spray pipe 8 and is subsequently immersed in a cleaning dip tank 81 for cleaning.

スプレーされる温水と、クリーニングディップタンク8
1の温水は、ポンプ84によって供給さ10れ、温水戻
り配管46を通って、リサーキュレーションタンク88
に戻る。
Sprayed hot water and cleaning dip tank 8
1 hot water is supplied 10 by a pump 84 and passes through a hot water return pipe 46 to a recirculation tank 88.
Return to

リサーキュレーションタンク83の温水は、温度を温度
計42により測定され、蒸気調節バルブ48を調節する
ことにより温度を調節される。 1′温度は通常80℃
〜90℃である。またリサーキュレーションタンクのレ
ベルは、レベル計40によりレベルを測定され、温水調
節バルブ41を調節することによりレベル調節される。
The temperature of the hot water in the recirculation tank 83 is measured by the thermometer 42, and the temperature is regulated by adjusting the steam control valve 48. 1' temperature is usually 80℃
~90°C. Further, the level of the recirculation tank is measured by a level meter 40 and adjusted by adjusting a hot water control valve 41.

供給される渇水は、ファン出側バイパス弁1620が開
方向となり、熱風が温水熱交換器82に流入1する場合
は、熱交換により昇温される。この熱交換により昇温さ
れた温水を供給することにより、リサーキュレーション
タンク88の温度調節に用いる蒸気を節約することが可
能となった。
The temperature of the supplied dry water is raised by heat exchange when the fan outlet side bypass valve 1620 is in the open direction and the hot air flows into the hot water heat exchanger 82 . By supplying hot water whose temperature has been raised through this heat exchange, it has become possible to save steam used to adjust the temperature of the recirculation tank 88.

すでに述べた実施料において、85000 Nm8/H
rX400°Cの熱風を温水熱交換器に流人し、350
°Cまで冷却して排出する場合、クリーニングラインに
供給する温水的40 m /1(rを約32°C昇温し
て供給することができる。
At the royalty already mentioned, 85000 Nm8/H
rX 400°C hot air is sent to a hot water heat exchanger, and 350
When the hot water is cooled to .degree. C. and discharged, the hot water supplied to the cleaning line can be heated to about 32.degree. C. and then supplied.

発 明 の 効 果 この発明によれば、ラジアントチューブを用いる間接式
加熱炉の温度制御操作に対する鈍い広答性を、該ラジア
ントチューブ内における燃焼廃ガ15スの顕熱利用にて
有利に、しかも冷延鋼帯の表面性状劣化を伴うことなし
に改善して連続焼なまし方式による適切な焼なましが達
成される。
Effects of the Invention According to the present invention, the slow responsiveness to the temperature control operation of an indirect heating furnace using a radiant tube can be advantageously utilized by utilizing the sensible heat of combustion waste gas in the radiant tube. Appropriate annealing is achieved by the continuous annealing method, improving the surface properties of the cold-rolled steel strip without deterioration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、化成処理性の実験データを示すグラ2゜(2
7) フ、 第2図は、この発明の実施に用いる連続焼なまし装置の
スケルトン図、 第8図G;i、この発明による板温制御系統図、第4図
は制御要因のタイムチャート、 第5図は接続鋼帯についての同様なタイムチャ旨 第6図は、別例についてのスケルトン図であるO特許出
願人 川崎製鉄株式会社 同 出願人 三菱重工業株式会社 ” )’Y [1#¥14’J i’
Figure 1 shows graph 2° (2°) showing experimental data on chemical conversion treatability.
7) Fig. 2 is a skeleton diagram of the continuous annealing apparatus used to carry out the present invention; Fig. 8G; i is a sheet temperature control system diagram according to the present invention; Fig. 4 is a time chart of control factors; Fig. 5 is a similar time chart for the connecting steel strip, and Fig. 6 is a skeleton diagram of another example. 'Ji'

Claims (1)

【特許請求の範囲】 1 間接式加熱炉に配設された多数のラジアントチュー
ブから排出される燃焼廃ガスを熱 5交換器に、上記加
熱炉の前部に設置した予熱炉内の雰囲気ガスとともに個
別導入し、該雰囲気ガスとの間の熱交換により、廃ガス
吸引プロアおよび廃ガス煙道の耐熱温度以下にまで冷却
してから放散させる一方、該熱交換器にて10加熱され
た高温雰囲気ガスを、上記加熱炉の前部に設置した予熱
炉内にて該炉内を通過する銅帯に吹きつけ、かくして予
熱された調帯に上記ラジアントチューブによる間接加熱
を施すことを特徴とする鋼帯の連続焼なまし方1゛法。 東 予熱炉にて銅帯に吹きつける高温雰囲気ガスの量を
、該銅帯の板厚、板幅、通過速度および銅帯に吹きつけ
る雰囲気ガス温度ならびに加熱炉の炉温および出側目標
板温に応じ調2゜節して、予熱炉出側の板温を制御し、
加熱炉1出側の板温を、目標板温に適合させるl記載の
方法。 & 予熱炉における所要の高温雰囲気ガス量に対し過剰
量の高温雰囲気ガスを、熱交換器か5ら予熱炉をバイパ
スして大気に放散させる2記載の方法。 本 過剰量め高温雰囲気ガスから、これを第2の熱交換
器に通して熱回収を行う8記載の方法。 五 予熱炉内を通過する銅帯に対して板厚、板幅又は加
熱炉出側目標板温を異にする銅帯との接続部が、予熱炉
に導入されてから加熱炉を通り抜けるまでの非定常加熱
の際、 予熱炉において鋼帯に吹きつける高温雰囲15気ガスの
温度、先行、後行両銅帯の各加熱炉出側目標板温、に応
じて、銅帯通過速度を、この間過渡的に発生する両銅帯
の各加熱炉出側目標板温からの偏差を両銅帯の加熱出側
板温の上限値と下限値の共通範囲内に納める、2Ll制
御もあわせ旌す、1.g、8又は4記載の方法。
[Scope of Claims] 1 Combustion waste gas discharged from a large number of radiant tubes installed in an indirect heating furnace is transferred to a heat exchanger together with atmospheric gas in a preheating furnace installed at the front of the heating furnace. The high-temperature atmosphere heated by the heat exchanger is cooled down to below the heat-resistant temperature of the waste gas suction prower and the waste gas flue through heat exchange with the atmospheric gas, and then dissipated. A steel characterized in that gas is blown onto the copper strip passing through the preheating furnace installed at the front of the heating furnace, and the preheated strip is indirectly heated by the radiant tube. Method 1 for continuous annealing of obi. East: The amount of high-temperature atmospheric gas blown onto the copper strip in the preheating furnace is determined based on the plate thickness, width, passing speed, atmospheric gas temperature blown onto the copper strip, furnace temperature of the heating furnace, and outlet target plate temperature. Adjust the temperature by 2 degrees depending on the temperature to control the plate temperature on the exit side of the preheating furnace.
1. The method according to l, which adjusts the plate temperature at the exit side of the heating furnace 1 to a target plate temperature. & The method according to 2, wherein an excess amount of high-temperature atmospheric gas with respect to the required amount of high-temperature atmospheric gas in the preheating furnace is dissipated into the atmosphere from the heat exchanger 5, bypassing the preheating furnace. 8. The method according to 8, wherein heat is recovered from the excess high-temperature atmospheric gas by passing it through a second heat exchanger. (v) The connection part with a copper strip that has a different plate thickness, plate width, or target plate temperature at the exit side of the heating furnace from the time it is introduced into the preheating furnace until it passes through the heating furnace. During unsteady heating, the copper strip passing speed is adjusted according to the temperature of the high-temperature 15 atmosphere gas blown onto the steel strip in the preheating furnace and the target plate temperature of each of the leading and trailing copper strips on the exit side of the heating furnace. In addition, 2Ll control is also carried out to keep the deviation from the target plate temperature on the heating furnace exit side of both copper strips that occurs transiently during this period within the common range of the upper and lower limit values of the heating outlet side plate temperatures of both copper strips. 1. The method according to g, 8 or 4.
JP24083483A 1983-12-22 1983-12-22 Continuous annealing method of steel strip Pending JPS60135530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24083483A JPS60135530A (en) 1983-12-22 1983-12-22 Continuous annealing method of steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24083483A JPS60135530A (en) 1983-12-22 1983-12-22 Continuous annealing method of steel strip

Publications (1)

Publication Number Publication Date
JPS60135530A true JPS60135530A (en) 1985-07-18

Family

ID=17065385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24083483A Pending JPS60135530A (en) 1983-12-22 1983-12-22 Continuous annealing method of steel strip

Country Status (1)

Country Link
JP (1) JPS60135530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291925A (en) * 1985-06-20 1986-12-22 Mitsubishi Heavy Ind Ltd Continuous annealing method for steel strip
EP0216561A2 (en) * 1985-09-10 1987-04-01 Kawasaki Steel Corporation Preheating method of steel strips
JPS63157819A (en) * 1986-12-18 1988-06-30 Kawasaki Steel Corp Heat treatment of steel strip
WO2011072883A1 (en) 2009-12-15 2011-06-23 Siemens Vai Metals Technologies Sas Equipment and method for preheating a continuously moving steel strip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291925A (en) * 1985-06-20 1986-12-22 Mitsubishi Heavy Ind Ltd Continuous annealing method for steel strip
EP0216561A2 (en) * 1985-09-10 1987-04-01 Kawasaki Steel Corporation Preheating method of steel strips
EP0216561B1 (en) * 1985-09-10 1993-08-11 Kawasaki Steel Corporation Preheating method of steel strips
JPS63157819A (en) * 1986-12-18 1988-06-30 Kawasaki Steel Corp Heat treatment of steel strip
WO2011072883A1 (en) 2009-12-15 2011-06-23 Siemens Vai Metals Technologies Sas Equipment and method for preheating a continuously moving steel strip
CN102686965A (en) * 2009-12-15 2012-09-19 西门子奥钢联冶金技术有限公司 Equipment and method for preheating a continuously moving steel strip
US9631867B2 (en) 2009-12-15 2017-04-25 Primetals Technologies France SAS Equipment and method for preheating a continuously moving steel strip

Similar Documents

Publication Publication Date Title
US2288980A (en) Method of cleaning metals
CN102899599B (en) Control method for reducing generation amount of strip steel zinc crust in starting up hot-dip galvanizing aluminum and zinc machine set
CN210261916U (en) Annealing furnace for stainless steel band
JPS60135530A (en) Continuous annealing method of steel strip
JP2002294347A (en) Method and device for jet preheating strip continuous annealing facility
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
JP2007092140A (en) Method for operating soaking pit in facility for continuously treating steel strip, and soaking pit
JP4223238B2 (en) Steel strip heating temperature control method
JP2853493B2 (en) Method and apparatus for heating steel strip in continuous annealing furnace
JPS62290830A (en) Continuous annealing method for steel strip and annealing furnace therefor
JPS63157819A (en) Heat treatment of steel strip
JPS5822525B2 (en) Sealing device in cooling section of steel strip
JPS61291925A (en) Continuous annealing method for steel strip
JPS5811493B2 (en) Continuous annealing equipment for cold rolled steel strip
JPS63262417A (en) Method for heating in direct firing type continuous heating furnace under non-oxidation
GB902674A (en) System for baking carbonaceous products or the like
JPS5933176B2 (en) How to set the heating zone temperature of a continuous annealing furnace
JP2002220591A (en) Coke dry quenching facility and method for operating the same
JP3114572B2 (en) Method for controlling alloying of galvannealed steel sheet
JPH0322266Y2 (en)
JPH06142602A (en) Continuous baking method of coating
JPH08114318A (en) Preheating method of air for incinerator
JP2972028B2 (en) Vertical alloying furnace for hot dip galvanizing and its operation method
CN116536506A (en) Furnace pressure control method of atmosphere annealing furnace
JPS6160899B2 (en)