JPS5811493B2 - Continuous annealing equipment for cold rolled steel strip - Google Patents

Continuous annealing equipment for cold rolled steel strip

Info

Publication number
JPS5811493B2
JPS5811493B2 JP53162806A JP16280678A JPS5811493B2 JP S5811493 B2 JPS5811493 B2 JP S5811493B2 JP 53162806 A JP53162806 A JP 53162806A JP 16280678 A JP16280678 A JP 16280678A JP S5811493 B2 JPS5811493 B2 JP S5811493B2
Authority
JP
Japan
Prior art keywords
zone
direct
heating
furnace
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53162806A
Other languages
Japanese (ja)
Other versions
JPS5591942A (en
Inventor
庫良 渡辺
英男 横山
一郎 新橋
良雄 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP53162806A priority Critical patent/JPS5811493B2/en
Publication of JPS5591942A publication Critical patent/JPS5591942A/en
Publication of JPS5811493B2 publication Critical patent/JPS5811493B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Description

【発明の詳細な説明】 本発明は冷延鋼帯の連続焼鈍設備に関するものである。[Detailed description of the invention] The present invention relates to continuous annealing equipment for cold rolled steel strip.

従来、冷延鋼帯の連続焼鈍方法においては加熱に際し、
輻射管式バーナーによる間接加熱を行なっている。
Conventionally, in the continuous annealing method of cold rolled steel strip, during heating,
Indirect heating is performed using a radiant tube burner.

この方法を実施する場合、冷延鋼帯の表面に付着してい
てそのまま焼鈍すると製品表面性状を劣化させる所の冷
間圧延油及び冷間圧延時に発生する鉄粉等を事前に除去
する必要があるため、アルカリ浸漬槽、ブラシスクラバ
ー、電解脱脂槽等により成る洗浄部をライン内炉部入側
に配置しており、その結果この洗浄部の設置に伴なう設
備費の増(ライン全体の約1割)及び操業コストの増(
蒸気・水・アルカリ等)が大きな問題となっている。
When implementing this method, it is necessary to remove in advance cold rolling oil and iron powder generated during cold rolling, which are attached to the surface of the cold rolled steel strip and would deteriorate the surface quality of the product if annealed as is. Therefore, a cleaning section consisting of an alkaline soaking tank, a brush scrubber, an electrolytic degreasing tank, etc. is placed on the inlet side of the furnace section of the line. approx. 10%) and increase in operating costs (
(steam, water, alkali, etc.) are becoming a major problem.

かかる問題を解決するために、溶解亜鉛メツキラインあ
るいは電磁鋼板連続焼鈍ラインに採用されている直火式
バーナーによる直接加熱を(以後「直火加熱」と呼ぶ)
導入できれば、(1)その燃焼火炎及び廃ガス流による
ガスクリーニング効果により上記の洗浄部は省略できて
設備費及び操業コストが節減でき、さらには(11)輻
射管の耐熱温度の制約から解放されて高炉温による急速
加熱が可能となり、従って冊炉長も短縮できて建屋費用
を含めた設備費が低減でき、また(〜)炉部保全費用の
大部分を占める輻射管の整備費が不要となる等の多大の
利点を生ずる。
In order to solve this problem, direct heating using a direct-fired burner (hereinafter referred to as "direct-fired heating") used in molten galvanizing lines or continuous annealing lines for electrical steel sheets has been developed.
If it can be introduced, (1) the above-mentioned cleaning section can be omitted due to the gas cleaning effect of the combustion flame and waste gas flow, reducing equipment costs and operating costs, and (11) it will be freed from restrictions on the heat-resistant temperature of the radiant pipe. This enables rapid heating at the blast furnace temperature, which in turn shortens the length of the furnace, reducing equipment costs including building costs, and (~) eliminates the cost of radiant pipe maintenance, which accounts for most of the furnace maintenance costs. It brings about many advantages such as:

しかしながら、冷延鋼板の連続焼鈍において直火加熱を
採用するにあたっては、得られる製品の外観・表面性状
について配慮せねばならない。
However, when employing direct flame heating for continuous annealing of cold-rolled steel sheets, consideration must be given to the appearance and surface properties of the resulting product.

さ羨に述べた如く溶融亜鉛メツキラインおよび電磁鋼板
連続焼鈍ラインにおいて直火加熱が採用されているけれ
ども、これらの製品は厚メッキあるいは絶縁皮膜をコー
ティングしたものであるから、鋼板自体の外観・表面性
状についてはあまり厳しい要求はされていない。
As mentioned in Saen, direct flame heating is used in hot-dip galvanizing lines and continuous annealing lines for electrical steel sheets, but since these products are coated with thick plating or insulating film, the appearance and surface properties of the steel sheets themselves may be affected. There are not very strict requirements regarding this.

ところが冷延薄鋼等の場合には、いわゆる「冷延鋼板」
としてそのまま出荷されることが多いので、表面性状に
ついては厳しい要求がある。
However, in the case of cold-rolled thin steel, so-called "cold-rolled steel sheets"
Since it is often shipped as is, there are strict requirements regarding the surface quality.

しかも冷延薄鋼帯は冷延鋼板として出荷されて需要家に
おいて塗装して使用されるだけでなく、製鉄所内で電気
亜鉛メッキ鋼板やターン(Sn−Pb)メッキ鋼板等メ
ッキ製品にも加工されるので、表面性状としては塗装性
(化成処理性、塗装密着性、塗装耐食性)に加え、メッ
キ性(メッキ密着性、メッキ耐食性)も重要な要素であ
る。
Moreover, cold-rolled thin steel strips are not only shipped as cold-rolled steel sheets and painted and used by customers, but also processed into plated products such as electrogalvanized steel sheets and turn (Sn-Pb) plated steel sheets within the steelworks. Therefore, in addition to paintability (chemical conversion treatment properties, paint adhesion, and paint corrosion resistance), plating properties (plating adhesion and plating corrosion resistance) are also important aspects of surface properties.

またもちろん冷間圧延油及び鉄粉が付着していないこと
も重要である。
Of course, it is also important that cold rolling oil and iron powder are not attached.

何故ならば、冷間圧延油及び鉄粉の除去が不完全である
と、表面性状劣化の要因となるからである。
This is because incomplete removal of cold rolling oil and iron powder causes surface quality deterioration.

また外観上の問題としては、通常の表面疵に加えテンパ
ーカラー(直火加熱で生成した酸化膜が還元不足で残っ
たもの)、煤付き(冷間圧延油のburn off残り
又は直火雰囲気不適による炭素析出)及びスケールピッ
クアンプ疵(冷間圧延時の鉄粉や直火加熱で生成した酸
化膜がハースロールにピックアップされ、それにより生
じた押疵)等がある。
In addition to normal surface flaws, there are also problems with appearance, such as temper color (oxidized film generated by direct flame heating that remains due to insufficient reduction) and soot (cold rolling oil burn off residue or unsuitable direct flame atmosphere). These include carbon precipitation) and scale pick-up flaws (depression flaws caused by iron powder during cold rolling and oxide film generated by direct heating being picked up by the hearth roll).

本発明の目的とするところは、傾斜燃焼を行う竪型直火
式加熱帯、間接加熱する還元帯、コントロール冷却可能
な一次冷却帯、ヒーターエレメントを備えた過時効帯を
設げることにより設備費と操業コストを著しく低下せし
めると共に、優れた外観・表面性状を具備する冷延薄鋼
帯を得ることのできる連続焼鈍設備を提供しようとする
ものである。
The purpose of the present invention is to provide equipment by providing a vertical direct-fired heating zone that performs inclined combustion, a reduction zone that indirectly heats, a primary cooling zone that allows controlled cooling, and an overaging zone that is equipped with a heater element. The object of the present invention is to provide a continuous annealing facility that can significantly reduce operating costs and produce cold-rolled thin steel strips with excellent appearance and surface properties.

本発明は炉部の入側より順次、燃焼廃ガスを利用する予
熱帯、傾斜燃焼設備により制御される直火式バーナーを
備えた直接加熱方式の加熱帯、輻射管式バーナー及び/
又はヒーターエレメントを備えた間接加熱方式の還元帯
、ガスジェットクーラー、気液冷却、沸騰水冷却の1種
又は数種を備えた一次冷却帯、過時効帯及び二次冷却帯
を設け、少くとも前記加熱帯以後を竪型炉の形で配置し
たことを特徴とする冷延鋼帯の連続焼鈍設備を要旨とす
る。
The present invention sequentially includes, from the entrance side of the furnace section, a preheating zone that utilizes combustion waste gas, a direct heating type heating zone equipped with a direct-fired burner controlled by inclined combustion equipment, a radiant tube type burner, and/or
or a primary cooling zone, an overaging zone, and a secondary cooling zone equipped with one or more of indirect heating type reduction zone equipped with a heater element, gas jet cooler, gas-liquid cooling, and boiling water cooling, and at least The gist of the present invention is a continuous annealing facility for cold-rolled steel strip, characterized in that the heating zone and subsequent parts are arranged in the form of a vertical furnace.

本発明者らは、直火加熱を冷延薄鋼帯の連続焼鈍に採用
した場合に、銅帯の外観・表面性状への影響因子として
直火加熱炉(以下直火炉という)の出口における銅帯温
度と空気比、及び還元帯における還元条件があり、と(
に直火炉出口温度と空気比の鋼板表面性状への影響が大
きいことを確めた。
The present inventors have discovered that when direct flame heating is adopted for continuous annealing of cold rolled thin steel strips, copper at the exit of the direct flame heating furnace (hereinafter referred to as direct flame furnace) is an influential factor on the appearance and surface properties of the copper strip. There are the zone temperature, air ratio, and reduction conditions in the reduction zone, and (
It was confirmed that the direct-fired furnace outlet temperature and air ratio have a large influence on the steel sheet surface properties.

すなわち直火炉出口鋼帯温度(直火加熱帯域における最
終段階の銅帯温度)が低過ぎると冷間圧延時に生成した
鉄粉の除去が不十分となり、一方高過ぎると直火炉にお
いて生成する銅帯表面の酸化皮膜が厚(なり、次の還元
帯において還元し切れず銅帯表面に残り、いわゆる「テ
ンパーカラー」という外観不良を生じ、またたとえ完全
に還元されたとしても、一旦生成した酸化皮膜層は、多
孔質の層として残り、塗装時又はメッキ時にピンホール
を生じて塗装耐食性、メッキ耐食性を基だしく劣化させ
ることが明らかにされた。
In other words, if the temperature of the steel strip at the exit of the direct-fired furnace (the copper strip temperature at the final stage in the direct-fired heating zone) is too low, the removal of iron powder produced during cold rolling will be insufficient, while if it is too high, the copper strip produced in the direct-fired furnace will be removed. The oxide film on the surface becomes thick (and cannot be completely reduced in the next reduction zone and remains on the surface of the copper strip, resulting in a poor appearance called "temper color", and even if it is completely reduced, the oxide film that has formed once It has been revealed that the layer remains as a porous layer and causes pinholes during painting or plating, which basically deteriorates paint corrosion resistance and plating corrosion resistance.

直火炉出口鋼帯温度と空気比(後述)の表面性状への影
響を第4図に示す。
Figure 4 shows the influence of the steel strip temperature at the outlet of the direct-fired furnace and the air ratio (described later) on the surface texture.

第4図から直火炉出口鋼帯温度の適正範囲は、酸化膜厚
みと残存鉄粉量から判断して400〜900℃に保持す
べきことが分る。
From FIG. 4, it can be seen that the appropriate range of the temperature of the steel strip at the outlet of the direct-fired furnace should be maintained at 400 to 900°C, judging from the oxide film thickness and the amount of residual iron powder.

さきに述べた酸化膜の生成には空気比も大きく影響する
The air ratio also has a large effect on the formation of the oxide film mentioned earlier.

第4図から明らかなように空気比がi、o未満では直火
炉内雰囲気は微酸化雰囲気であって、 Fe+C02−+FeO+C0 Fe+H2O→FeO+H2 なる反応により酸化が緩やかに進行するが、空気比が1
.0を越えると遊離0°の存在によりなる反応にて鋼板
表面は激しく酸化される。
As is clear from Fig. 4, when the air ratio is less than i, o, the atmosphere in the direct-fired furnace is a slightly oxidizing atmosphere, and oxidation proceeds slowly due to the reaction Fe+C02-+FeO+C0 Fe+H2O→FeO+H2.
.. If it exceeds 0, the surface of the steel sheet will be violently oxidized due to the reaction caused by the presence of free 0°.

従って、と(に板温か高(なっていて酸化が進行し易い
直火炉出口部分における空気比は1.0を越えてはいけ
ない。
Therefore, the air ratio at the outlet of the direct-fired furnace, where the plate temperature is high and oxidation tends to proceed, should not exceed 1.0.

一方空気比が低過ぎると熱効率が低くなり燃料消費量が
増えるので、炉の後述の傾斜燃焼法を実施するとしても
、直火炉出口空気比は0.6以上を確保すべきである。
On the other hand, if the air ratio is too low, thermal efficiency will decrease and fuel consumption will increase, so even if the inclined combustion method described below is implemented in the furnace, the air ratio at the outlet of the direct-fired furnace should be maintained at 0.6 or more.

さらに、製品品質を確保しつつ、直火炉の熱効率を上げ
るため、第5図に1例を示すように直火炉入口から出口
にかげて銅帯温度の上昇に応じて空気比を漸減する空気
比傾斜燃焼法を採用する必要がある。
Furthermore, in order to increase the thermal efficiency of the direct-fired furnace while ensuring product quality, the air ratio is gradually decreased from the inlet to the outlet of the direct-fired furnace as the temperature of the copper strip increases, as shown in Figure 5. It is necessary to adopt the inclined combustion method.

従来法では空気比設定が直火炉内で一定であったので製
品品質と燃焼効率の相克に悩んでいたが、本発明に従っ
て、銅帯温度が高(酸化反応の進行し易い直火炉出口で
は空気比を低(して酸化膜生成を抑制し、逆に銅帯温度
が低く酸化速度の遅い直火炉入口では空気比を高くして
低空気比の出口側より未燃分を含んで流れて(る燃焼廃
ガスを十分に燃焼させる傾斜燃料法を採用することによ
って、直火炉全体としての熱効率を高度に維持しうると
共に、直火炉出口におげろ鋼帯表面の酸化膜を薄(コン
トロールすることが可能になる。
In the conventional method, the air ratio setting was constant in the direct-fired furnace, which caused problems between product quality and combustion efficiency. On the other hand, at the inlet of the direct-fired furnace where the copper zone temperature is low and the oxidation rate is slow, the air ratio is increased so that the air containing unburned matter flows from the outlet side with a low air ratio ( By adopting a tilted fuel method that fully burns the combustion waste gas, it is possible to maintain a high level of thermal efficiency as a whole of the direct-fired furnace, and to thin (control) the oxide film on the surface of the steel strip at the outlet of the direct-fired furnace. becomes possible.

また熱効率向上のためには、直火炉燃焼廃ガスの顕熱を
有効に利用しなければならないが、そのためには本発明
に従って直火炉の入側に予熱帯を設け、廃ガスと鋼帯の
対向流による熱交換、すなわち銅帯の予熱を行なう。
In addition, in order to improve thermal efficiency, it is necessary to effectively utilize the sensible heat of the direct-fired furnace combustion waste gas, and in order to do so, according to the present invention, a preheating zone is provided on the inlet side of the direct-fired furnace, and the waste gas and the steel strip are opposed to each other. Heat exchange by flow, ie preheating of the copper strip.

その際予熱帯においては直火炉の低空気比操業により残
った未燃焼の燃料を完全に燃焼せしめる。
At this time, in the preheating zone, the remaining unburned fuel is completely combusted by operating the direct-fired furnace at a low air ratio.

なお予熱帯を出た廃ガスはレキュペーターに導と直火炉
燃焼用空気の予熱に使用するのが有利である。
Note that it is advantageous to use the waste gas leaving the preheating zone to guide the recuperator and preheat the air for combustion in the direct-fired furnace.

前記した如く、直火炉での加熱に際して酸化膜生成を抑
制した銅帯は次いで還元炉において還元されるが、この
還元に際して酸化膜の厚みにもよるが、例えば水素を2
〜15%、爆発防止の観点から好ましくは3〜6%、残
部窒素より成る雰囲気(露点は10℃以下、望ましくは
0℃以下)にて、600℃以上の温度で10秒以上、望
ましくは30秒以上保持すれば十分である。
As mentioned above, the copper strip whose oxide film formation has been suppressed during heating in a direct-fired furnace is then reduced in a reduction furnace.During this reduction, depending on the thickness of the oxide film, for example, hydrogen is
~15%, preferably 3 to 6% from the viewpoint of explosion prevention, and the balance is nitrogen (dew point is 10°C or lower, preferably 0°C or lower) for 10 seconds or more at a temperature of 600°C or higher, preferably 30°C. It is sufficient to hold it for more than a second.

なお保持時間の上限は設備経済面より90秒とするのが
好ましい。
Note that the upper limit of the holding time is preferably 90 seconds from the standpoint of equipment economy.

前記した如(本発明に従って予熱帯、直火式加熱帯、還
元帯及び冷却帯からなる設備は、下記の理由により竪型
炉の型式とするものである。
As described above (according to the present invention), the equipment consisting of a preheating zone, a direct-fired heating zone, a reduction zone, and a cooling zone is of the type of vertical furnace for the following reasons.

(1)最近の大容量高速ラインでは横型炉にすると炉長
が長くなり建屋費用も含めて設備費が割高となる。
(1) In recent high-capacity, high-speed lines, if a horizontal furnace is used, the furnace length will be long and equipment costs, including building costs, will be relatively high.

それに反し竪型炉にするとコンパクトな設備にまとめら
れ、スペースセービングが可能となる。
On the other hand, using a vertical furnace allows for compact equipment and space savings.

(11)竪型炉では、直火炉での酸化反応、還元帯での
還元反応が銅帯表裏均一に行われ製品特性上好ましい結
果を得る。
(11) In the vertical furnace, the oxidation reaction in the direct-fired furnace and the reduction reaction in the reduction zone are performed uniformly on both sides of the copper strip, resulting in favorable product characteristics.

(rrr)竪型炉では、直火炉・還元帯におけるハース
ロールと銅帯の間のスリップが少な(、スケールピック
アップ防止にも断熱有利である。
(rrr) In the vertical furnace, there is less slip between the hearth roll and the copper band in the direct-fired furnace/reduction zone (it is also advantageous for insulation to prevent scale pickup.

(iV)竪型炉にすると直火炉と還元帯は下部のスロー
ト部でつながるのみとなり、炉圧管理により直火炉と還
元帯間の雰囲気分離が容易に行なえる。
(iv) When a vertical furnace is used, the direct-fired furnace and the reduction zone are connected only through the lower throat portion, and the atmosphere between the direct-fired furnace and the reduction zone can be easily separated by controlling the furnace pressure.

竪型炉の炉高は、設備費上の観点及び操業面(板破断、
フラッタリング等)を考慮すると、上下ムースロール芯
間距離で15〜25m程度が望ましい。
The furnace height of a vertical furnace is determined from the viewpoint of equipment costs and operational aspects (plate breakage,
Considering the possibility of fluttering, etc., the distance between the upper and lower mousse roll cores is preferably about 15 to 25 m.

本発明に従った設備の実施例を第1図に示す。An embodiment of the installation according to the invention is shown in FIG.

1は捲戻機、2は入側剪断機、3は溶接機、4は入側ル
ーパー、5は予熱帯、6は直火式加熱帯(直火炉)、1
は還元帯、8は1次冷却帯、9は過時効帯、10は2次
冷却帯、11は出側ルーパー、12は調質圧延機、13
は検査精整部、14は出側剪断機、15は捲取機である
1 is a winding machine, 2 is an entrance shearing machine, 3 is a welding machine, 4 is an entrance looper, 5 is a preheating zone, 6 is a direct-fired heating zone (direct-fired furnace), 1
8 is a reduction zone, 8 is a primary cooling zone, 9 is an overaging zone, 10 is a secondary cooling zone, 11 is an exit side looper, 12 is a temper rolling mill, 13
14 is an inspection and finishing section, 14 is an output shearing machine, and 15 is a winding machine.

5〜10より成る炉部は後述する第6図の焼鈍サイクル
が実現されるよう構成される。
The furnace parts 5 to 10 are constructed so as to realize the annealing cycle shown in FIG. 6, which will be described later.

予熱帯5は直火炉6の燃焼廃ガスを熱源とし、直火炉6
は直火バーナーを備えており、還元帯7は輻射開式バー
ナーを備えた加熱帯とヒーターエレメントを備えた均熱
炉のいずれか一方又は両方より成る。
The preheating zone 5 uses the combustion waste gas from the direct-fired furnace 6 as a heat source.
is equipped with an open flame burner, and the reduction zone 7 consists of one or both of a heating zone equipped with a radiation-opening burner and a soaking furnace equipped with a heating element.

1次冷却帯8はガスジェットクーラーによる冷却、気液
冷却又は沸騰水冷却等の1種又は数種の手段が用いられ
る。
For the primary cooling zone 8, one or several types of cooling methods such as gas jet cooler cooling, gas-liquid cooling, or boiling water cooling are used.

過時効帯9はヒーターエレメントを備えており、2次冷
却帯10はガスジェットクーラーによる冷却、冷水冷却
又はエアプラスト等の1種以上の手段が用いられる。
The overaging zone 9 is equipped with a heater element, and the secondary cooling zone 10 uses one or more types of cooling such as a gas jet cooler, cold water cooling, or airplast.

直火炉6は第1図では1パスとしているが、これは複数
パスも可能である。
Although the direct-fired furnace 6 is shown as having one pass in FIG. 1, multiple passes are also possible.

耐火材としてはプラスチックれんが等が用いられる。Plastic bricks or the like are used as the fireproof material.

緊急停止時の銅帯破断対策としては銅帯張力弛緩に加え
N2吹込みによる冷却等の手段がとられる。
As a countermeasure against copper strip breakage during an emergency stop, measures such as relaxing the tension of the copper strip and cooling with N2 injection are taken.

第2図は予熱帯および直火式加熱帯の詳細を示す図であ
る。
FIG. 2 is a diagram showing details of the preheating zone and the direct heating zone.

21は鋼帯、22は予熱帯、23は直火式加熱帯、24
は輻射式加熱帯、25は均熱帯、26は還元帯、27は
ハースロール分室、28はシールロール、29は廃ガス
取出口、30は直火式バーナー、31は加熱帯23をバ
ーナ30の群毎に仕切るゾーン仕切壁、32は輻射管式
加熱帯24内に配設された輻射管式バーナー、33は均
熱帯25内に配設されたヒーターエレメント、34はレ
キュペレータ−135は廃ガスブロワ−136は燃焼空
気プロワ、37は燃料ガス、38は予熱空気、39は廃
ガスを示す。
21 is a steel strip, 22 is a preheating zone, 23 is a direct heating zone, 24
25 is a soaking zone, 26 is a reduction zone, 27 is a hearth roll compartment, 28 is a seal roll, 29 is a waste gas outlet, 30 is a direct burner, 31 is a heating zone 23 and a burner 30. A zone partition wall partitioning each group, 32 is a radiant tube burner disposed within the radiant tube heating zone 24, 33 is a heater element disposed within the soaking zone 25, 34 is a recuperator, and 135 is a waste gas blower. 136 is a combustion air blower, 37 is a fuel gas, 38 is a preheated air, and 39 is a waste gas.

第3図は直火式加熱帯33において本発明に従い傾斜燃
焼法を実施するための制御方式の一例を示す図である。
FIG. 3 is a diagram showing an example of a control method for implementing the inclined combustion method according to the present invention in the direct-fired heating zone 33.

直火炉23内に、通板される銅帯面に平行な軸をもつ互
に対向する複数のバーナー30が配設され、之等のバー
ナーはゾーン仕切壁31により、バーナ一群毎に複数の
ゾーンに分けられている。
A plurality of burners 30 facing each other and having axes parallel to the surface of the copper strip to be threaded are arranged in the direct-fired furnace 23, and these burners are divided into a plurality of zones for each group of burners by a zone partition wall 31. It is divided into

又各ゾーン毎に空気弁40、燃料弁41を連結した供給
導管により空気及び燃料供給源と連結されている。
Further, each zone is connected to an air and fuel supply source through a supply conduit connecting an air valve 40 and a fuel valve 41.

さらに各ゾーン毎に、空気弁40および燃料弁41を調
節する空気比調節器42が設けられる。
Further, an air ratio controller 42 for adjusting an air valve 40 and a fuel valve 41 is provided for each zone.

しかして各ゾーンの空気比調節器42は、すべて共通の
ゾーン別空気比分布設定器43に連結される。
Thus, the air ratio controllers 42 of each zone are all connected to a common zonal air ratio distribution setter 43.

前記設定器43は各空気比調節器42に所定の空気比を
指令し、各調節器42において所定の空気比となるよう
に空気弁40および燃料弁41を調節する。
The setting device 43 instructs each air ratio regulator 42 to a predetermined air ratio, and each regulator 42 adjusts the air valve 40 and fuel valve 41 so that the predetermined air ratio is achieved.

なおゾーン別空気分布比の設定は直火炉におけるヒート
サイクルによって可変とする。
The air distribution ratio setting for each zone is variable depending on the heat cycle in the direct-fired furnace.

次に本発明の設備による操業例について説明する。Next, an example of operation using the equipment of the present invention will be explained.

第6図は本発明の連続焼鈍設備を用いて操業する際の焼
鈍サイクルの一実施例である。
FIG. 6 shows an example of an annealing cycle when operating using the continuous annealing equipment of the present invention.

C0,05%、Si0.01%、Mn0.23%、PO
,014%、80.012%なる成分のキャップド鋼を
冷間圧延して得られた冷延鋼帯を本発明の連続焼鈍設備
に通板した。
C0.05%, Si0.01%, Mn0.23%, PO
A cold rolled steel strip obtained by cold rolling a capped steel having a composition of .014% and 80.012% was passed through the continuous annealing equipment of the present invention.

前記した如く直接加熱方式の加熱帯の鋼帯出口温度は生
成酸化膜、残留鉄粉の観点から400℃以上900℃以
丁とすべきである。
As mentioned above, the temperature at the exit of the steel strip of the heating zone of the direct heating method should be 400° C. or higher and 900° C. or higher from the viewpoint of the generated oxide film and residual iron powder.

第6図においては之を600℃とした。In FIG. 6, the temperature was set at 600°C.

その際燃焼用空気比は加熱帯の初期段階において1.0
〜1.6、最終段階において0.6〜1.0未満とすべ
ぎであるところから、第6図の焼鈍サイクルの場合は燃
焼用空気比を初期段階で1.4、最終段階において0.
9とした。
In this case, the combustion air ratio is 1.0 at the initial stage of the heating zone.
~1.6, and less than 0.6 to 1.0 in the final stage, so in the case of the annealing cycle shown in Figure 6, the combustion air ratio is 1.4 in the initial stage and 0.6 in the final stage.
It was set as 9.

次に還元帯における還元時間t1は雰囲気中水素濃度に
もよるが銅帯温度600℃以上での保定時間として10
秒以上、望ましくは30秒以上90秒以下とする必要が
ある。
Next, the reduction time t1 in the reduction zone depends on the hydrogen concentration in the atmosphere, but the retention time is 10
It is necessary to set the time to at least 30 seconds, preferably at least 30 seconds and at most 90 seconds.

第6図においては水素濃度4%として之を60秒とした
In FIG. 6, the hydrogen concentration was 4% and the time was 60 seconds.

均熱温度T2と均熱時間t2は再結晶・粒成長の冶金面
から決定されるべきものであり、通常600℃以上90
0℃以下において10秒以上、望ましくは20秒以上6
0秒以下とするが、第6図においては700℃、40秒
とした。
Soaking temperature T2 and soaking time t2 should be determined from the metallurgical aspect of recrystallization and grain growth, and are usually 600°C or higher and 90°C or higher.
10 seconds or more, preferably 20 seconds or more at 0°C or below6
The heating time is 0 seconds or less, but in FIG. 6, the heating time is 700° C. and 40 seconds.

以上の熱処理に続いて二次冷却帯と過時効帯を空通しし
て二次冷却帯において冷却すれば、真空脱ガスした極低
炭素材、Ti等でCを固定した材料、又は複合組織型高
張力鋼板等の場合は、焼鈍が完了する。
Following the above heat treatment, if the secondary cooling zone and overaging zone are passed through and cooled in the secondary cooling zone, it is possible to produce ultra-low carbon materials that have been vacuum degassed, materials that have C fixed with Ti, etc., or composite structure types. In the case of high-tensile steel plates, annealing is completed.

他方、前記したキャップド鋼あるいはアルミギルド鋼等
の如き通常の冷延鋼板の場合には炭化物析出のための過
時効処理を施す必要があるので、還元帯、均熱帯に後続
された過時効帯において、過時効開始温度T3を500
〜400℃、過時効終了温度T4を400〜250℃と
し、その間の過時効時間t3を30秒以上、好ましくは
1分以上4分以下とする適時処理を行なう。
On the other hand, in the case of ordinary cold-rolled steel sheets such as the above-mentioned capped steel or aluminum guild steel, it is necessary to perform an over-aging treatment to prevent carbide precipitation. , the overaging start temperature T3 was set to 500
~400°C, the overaging end temperature T4 is 400~250°C, and the overaging time t3 is 30 seconds or more, preferably 1 minute or more and 4 minutes or less.

第6図においてはT3:450℃、T4:300℃、t
3:3分とした。
In Figure 6, T3: 450℃, T4: 300℃, t
3:3 minutes.

この焼鈍が終了したら、そのまま製品とされる複合組織
型高張力鋼板等を除いても上記例示のキャップド鋼の如
き通常の冷延鋼板では引続いて降伏点伸びの除去、形状
矯正、又は表面粗度の調整のため、冷却帯に後続してル
ーパーを介して連設したスキンパスミルにより、0.3
%以上7%以下、通常は0.5%以上1.5%以丁の伸
率にて調質圧延を行なう。
After this annealing is completed, except for composite structure type high-strength steel sheets, etc., which are used as products as is, ordinary cold-rolled steel sheets such as the above-mentioned capped steel undergo removal of yield point elongation, shape correction, or surface treatment. To adjust the roughness, a skin pass mill connected to the cooling zone through a looper is used to adjust the roughness to 0.3
Temper rolling is performed at an elongation rate of % to 7%, usually 0.5% to 1.5%.

その際鋼帯温度が高過ぎては降伏点伸びが直ちに回復し
、またワークロールのサーマルクラウンにより平坦度が
確保できず、一方鋼帯温度が低過ぎては大気中の水分が
銅帯表面に結露するので調質圧延温度T5は30℃以上
50℃以下とすべぎである。
At this time, if the steel strip temperature is too high, the yield point elongation will recover immediately and flatness cannot be ensured due to the thermal crown of the work roll, while if the steel strip temperature is too low, moisture in the atmosphere will reach the surface of the copper strip. Since dew condensation occurs, the temper rolling temperature T5 should be 30°C or more and 50°C or less.

第6図の場合は40℃とした。かくして優れた外観・表
面性状を具備する冷延鋼板が得らる。
In the case of FIG. 6, the temperature was 40°C. In this way, a cold-rolled steel sheet with excellent appearance and surface properties is obtained.

以上の説明から明らかなように、本発明の設備によれば
冷延薄鋼帯の連続焼鈍にあたり、高品質の製品を安価に
大量に生産することができるので産業界に稗益するとこ
ろが極めて犬である。
As is clear from the above explanation, the equipment of the present invention can produce high-quality products in large quantities at low cost when continuously annealing cold-rolled thin steel strips, so it is extremely beneficial to the industry. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冷延薄鋼帯連続焼鈍設備の配列を示す
概略図、第2図は同じ(予熱帯、直火式加熱帯、輻射管
式加熱帯、均熱帯の詳細図、第3図は直火式加熱帯にお
けるゾーン別燃焼空気比の制御の態様を示す図、第4図
は直火式加熱帯における適正操業条件を示す図、第5図
は直火式加熱帯における燃焼空気比の分布を示す図、第
6図は本発明の設備の操業に適した焼鈍サイクルを示す
図である。 1……捲戻機、2……入側剪断機、3……溶接機、4…
…入側ルーパー、5……予熱帯、6……直火式加熱帯、
7……還元帯、8……1次冷却帯、9……過時効帯、1
0……2次冷却帯、11……出側ルーパー、12……調
質圧延機、13……検査精整部、14……出側剪断機、
15……捲取機、21……鋼帯、22……予熱帯、23
……直火式加熱帯、24……輻射管式加熱帯、25……
均熱帯、26……還元帯、27……ハ一スロール分室、
28……シールロール、29……廃ガス取出口、30…
…直火式バーナー、31……ゾーン仕切壁、32……輻
射管式バーナー、33……ヒーターエレメント、34…
…レキュペレータ−135……廃ガスプロワ、36……
燃焼空気ブロワ、31……燃料ガス、38……予熱空気
、39……廃ガス。
Figure 1 is a schematic diagram showing the arrangement of the continuous annealing equipment for cold rolled thin steel strips of the present invention, and Figure 2 is the same (detailed diagram of the pre-heating zone, direct-fire heating zone, radiant tube heating zone, and soaking zone). Figure 3 is a diagram showing how the combustion air ratio is controlled by zone in a direct-fired heating zone, Figure 4 is a diagram showing appropriate operating conditions in a direct-fired heating zone, and Figure 5 is a diagram showing combustion in a direct-fired heating zone. A diagram showing the air ratio distribution, and FIG. 6 is a diagram showing an annealing cycle suitable for operation of the equipment of the present invention. 1... Unwinding machine, 2... Entry side shearing machine, 3... Welding machine, 4...
... Entrance looper, 5... Preheating zone, 6... Direct-fired heating zone,
7... Reduction zone, 8... Primary cooling zone, 9... Overaging zone, 1
0... Secondary cooling zone, 11... Output side looper, 12... Temper rolling mill, 13... Inspection and refinement department, 14... Output side shearing machine,
15... Winding machine, 21... Steel strip, 22... Preheating zone, 23
...Direct fire type heating zone, 24...Radiation tube type heating zone, 25...
Soaking zone, 26...Reduction zone, 27...Hath roll branch,
28... Seal roll, 29... Waste gas outlet, 30...
... direct flame burner, 31 ... zone partition wall, 32 ... radiation tube burner, 33 ... heater element, 34 ...
...Recuperator-135...Waste gas blower, 36...
Combustion air blower, 31...fuel gas, 38...preheating air, 39...waste gas.

Claims (1)

【特許請求の範囲】[Claims] 1 炉部の入側より順次、燃焼廃ガスを利用する予熱帯
、傾斜燃焼設備により制御される直火式バーナーを備え
た直接加熱方式の加熱帯、輻射管式バーナー及び/又は
ヒーターエレメントを備えた間接加熱方式の還元帯、ガ
スジェットクーラー、気液冷却、沸騰水冷却の1種又は
数種を備えた一次冷却帯、過時効帯及び二次冷却帯を設
け、少なくとも前記加熱帯以後を竪型炉の形で配置した
ことを特徴とする冷延鋼帯の連続焼鈍設備。
1 From the entrance side of the furnace section, a preheating zone that utilizes combustion waste gas, a direct heating heating zone equipped with a direct burner controlled by inclined combustion equipment, a radiant tube burner, and/or a heating element are installed. A primary cooling zone, an overaging zone, and a secondary cooling zone equipped with one or more types of indirect heating type reduction zone, gas jet cooler, gas-liquid cooling, and boiling water cooling are provided, and at least after the heating zone, a vertical cooling zone is provided. Continuous annealing equipment for cold rolled steel strip characterized by being arranged in the form of a mold furnace.
JP53162806A 1978-12-29 1978-12-29 Continuous annealing equipment for cold rolled steel strip Expired JPS5811493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53162806A JPS5811493B2 (en) 1978-12-29 1978-12-29 Continuous annealing equipment for cold rolled steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53162806A JPS5811493B2 (en) 1978-12-29 1978-12-29 Continuous annealing equipment for cold rolled steel strip

Publications (2)

Publication Number Publication Date
JPS5591942A JPS5591942A (en) 1980-07-11
JPS5811493B2 true JPS5811493B2 (en) 1983-03-03

Family

ID=15761565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53162806A Expired JPS5811493B2 (en) 1978-12-29 1978-12-29 Continuous annealing equipment for cold rolled steel strip

Country Status (1)

Country Link
JP (1) JPS5811493B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136636A (en) * 1984-12-07 1986-06-24 Nippon Kokan Kk <Nkk> Cooling and drying apparatus for continuous annealing apparatus of strip
JPH0734921Y2 (en) * 1989-04-25 1995-08-09 日本鋼管株式会社 Direct-fire non-oxidizing furnace piping header
JPH0781167B2 (en) * 1990-07-10 1995-08-30 新日本製鐵株式会社 Direct-fire continuous annealing method and apparatus for steel strip
AT405055B (en) * 1997-06-10 1999-05-25 Ebner Peter Dipl Ing TOWER STOVES FOR THE HEAT TREATMENT OF METAL STRIPS
DE102011050243A1 (en) * 2011-05-10 2012-11-15 Thyssenkrupp Steel Europe Ag Apparatus and method for the continuous treatment of a flat steel product
JP7243668B2 (en) * 2020-03-18 2023-03-22 Jfeスチール株式会社 Method for manufacturing cold-rolled steel sheet and hot-dip galvanized steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539213A (en) * 1976-07-13 1978-01-27 Daido Steel Co Ltd Directtfiring vertical furnace free from risk of oxidation
JPS5317518A (en) * 1976-08-02 1978-02-17 Nippon Kokan Kk <Nkk> Preparation of continous annealing and its apparatus for soft steel belt
JPS5354106A (en) * 1976-10-27 1978-05-17 Nippon Steel Corp Vertical direct heating furnace
JPS5388611A (en) * 1977-01-17 1978-08-04 Nippon Steel Corp Controlling method for combustion in non-oxi-dation furnace
JPS53132418A (en) * 1977-04-26 1978-11-18 Nippon Kokan Kk <Nkk> Continuous treating equipment including overaging treatment zone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539213A (en) * 1976-07-13 1978-01-27 Daido Steel Co Ltd Directtfiring vertical furnace free from risk of oxidation
JPS5317518A (en) * 1976-08-02 1978-02-17 Nippon Kokan Kk <Nkk> Preparation of continous annealing and its apparatus for soft steel belt
JPS5354106A (en) * 1976-10-27 1978-05-17 Nippon Steel Corp Vertical direct heating furnace
JPS5388611A (en) * 1977-01-17 1978-08-04 Nippon Steel Corp Controlling method for combustion in non-oxi-dation furnace
JPS53132418A (en) * 1977-04-26 1978-11-18 Nippon Kokan Kk <Nkk> Continuous treating equipment including overaging treatment zone

Also Published As

Publication number Publication date
JPS5591942A (en) 1980-07-11

Similar Documents

Publication Publication Date Title
US2197622A (en) Process for galvanizing sheet metal
US4759807A (en) Method for producing non-aging hot-dip galvanized steel strip
KR20090089317A (en) Annealing and pickling process
JP2010538163A (en) Method and apparatus for controlling and oxidizing the surface of a continuously running steel strip with a radiant tube furnace for galvanizing
US9713823B2 (en) Continuous galvanizing line having an annealing furnace
CN102899599B (en) Control method for reducing generation amount of strip steel zinc crust in starting up hot-dip galvanizing aluminum and zinc machine set
JP4797601B2 (en) High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
JP2007191745A (en) High-strength hot-dip galvanized steel sheet, its manufacturing device, and manufacturing method of high-strength hot dip zincing steel sheet
JPS5811493B2 (en) Continuous annealing equipment for cold rolled steel strip
JP2530939B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet containing high Si
JPH04254532A (en) Manufacture of galvannealed steel sheet having excellent workability
EP0233944B1 (en) Continuous strip steel processing line having direct firing furnace
JPH04254531A (en) Method for annealing high si-containing high tensile strength steel before galvanizing
JPS5844133B2 (en) Continuous annealing method for cold rolled steel strip
US5192485A (en) Continuous annealing line having carburizing/nitriding furnace
US5628842A (en) Method and apparatus for continuous treatment of a strip of hot dip galvanized steel
US4123292A (en) Method of treating steel strip and sheet surfaces for metallic coating
US11414736B2 (en) Production method of hot-dip galvanized steel sheet
US4123291A (en) Method of treating steel strip and sheet surfaces, in sulfur-bearing atmosphere, for metallic coating
CN110369496B (en) Cold rolling preheating method for high-grade non-oriented silicon steel
EP0086331A1 (en) Continuous heat treating line for mild and high tensile strength stell strips or sheets
JPS59577B2 (en) Short-time continuous annealing method for cold-rolled steel strip
JP3742596B2 (en) Method for producing hot dip zinc-aluminum alloy plated steel sheet
JP2704819B2 (en) Method for producing high-Si hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
Astesiano et al. Strip Annealing Furnaces for New Galvanizing Lines