JPS60135507A - Method for charging raw material to blast furnace - Google Patents

Method for charging raw material to blast furnace

Info

Publication number
JPS60135507A
JPS60135507A JP24267083A JP24267083A JPS60135507A JP S60135507 A JPS60135507 A JP S60135507A JP 24267083 A JP24267083 A JP 24267083A JP 24267083 A JP24267083 A JP 24267083A JP S60135507 A JPS60135507 A JP S60135507A
Authority
JP
Japan
Prior art keywords
chute
speed
swiveling
raw material
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24267083A
Other languages
Japanese (ja)
Inventor
Mikio Kondo
幹夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24267083A priority Critical patent/JPS60135507A/en
Publication of JPS60135507A publication Critical patent/JPS60135507A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To charge uniformly a raw material in the circumferential direction of a bell-less blast furnace using a swiveling chute with a titled method for said furnace by changing specifically the swiveling speed of the swiveling shute. CONSTITUTION:Falling flow 5 drifts along the right wall of a vertical chute 3 and the point 7a at which the flow 5 rides on a swiveling chute 4 deviates from the swiveling shaft 6 of the chute 4 when a raw material is discharged from, for example, a furnace top hopper 1a. The time when the chute 4 is in the position L is designated as 0 deg. and the distance (d) from the point 7a to the outlet of the chute with respect to the clockwise rotating angle xsi thereof is a cosine curve. The dimensionless distribution of the charging quantity when the chute 4 swivels at an invariable speed can be approximated at the sine curve around 1 with respect to the central angle zeta. The charging quantity is max. at xsi=90 deg. and zeta=180 deg. according to the example shown in the figure and therefore the periodic function to maximize the swiveling speed at the point of the time when the raw material arrives at the outlet of the chute and to minimize the swiveling speed at the point of the time corresponding to xsi=270 deg. and zeta=360 deg. is determined as the swiveling speed. The distribution of the charging quantity in the circumferential direction is thus made uniform.

Description

【発明の詳細な説明】 本発明は高炉への原料装入方法に関し、さらに詳しくは
、炉頂ホッパ2個、垂直シュート、旋回シュートおよび
旋回シュート駆動装置からなるベルレス装入装置を有す
る高炉において、炉周方向装入物分布を均一化するため
の原料装入方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for charging raw materials into a blast furnace, and more specifically, in a blast furnace having a bellless charging device consisting of two furnace top hoppers, a vertical chute, a rotating chute, and a rotating chute drive device, The present invention relates to a raw material charging method for uniformizing the charge distribution in the circumferential direction of the furnace.

最近の高炉操業技術の進歩は炉内半径方向の装入物分布
制御技術の向上に負うところが大きい。
Recent advances in blast furnace operating technology are largely due to improvements in the control technology for charge distribution in the radial direction within the furnace.

さらに一層の操業安定化と省エネルギを図るには、半径
方向ばかりでなく、現在適切な方法が確立されていない
炉周方向での装入物分布制御法を確立し、炉周方向の熱
流比分布を制御できるようにする必要がある。
In order to further stabilize operations and save energy, it is necessary to establish a method for controlling charge distribution not only in the radial direction but also in the circumferential direction, for which no suitable method has been established at present, and to improve the heat flow ratio in the circumferential direction. We need to be able to control the distribution.

炉周方向の熱流比分布が適正であるがどうかは、 (1)高炉の高さ方向の同一レベルで炉周方向に複数個
設置された同種のセンサ、例えばサウジング装置やステ
ーブ温度計などの指示値の炉周方向偏差、 (2)炉周方向に複数個配置された出銑口間での溶銑お
よび溶滓の組成と温度の偏差、 などの指標を用いて判定している。
Whether the heat flow ratio distribution in the circumferential direction of the furnace is appropriate is determined by: (1) Indication of multiple sensors of the same type installed in the circumferential direction at the same level in the height direction of the blast furnace, such as sauging devices and stave thermometers. (2) Deviations in the composition and temperature of hot metal and slag between multiple tap holes arranged in the circumferential direction of the furnace.

これらの炉周方向偏差か許容範囲を越えると操業は不安
定になり、さらに極端な状態では炉床冷え込みの原因と
なる。そのため炉周方向の熱流比に偏差があるとき炉熱
レベルの低い側の炉周方向でも溶銑温度や(Si)を常
に所定値以上に保てるように高炉全体としてのコークス
比を余分に高めて操業するのが一般的であり、省エネル
ギ指向を損なう。
If these deviations in the circumferential direction of the hearth exceed the allowable range, the operation becomes unstable, and in more extreme conditions, it may cause the hearth to cool down. Therefore, when there is a deviation in the heat flow ratio in the circumferential direction of the furnace, the coke ratio of the blast furnace as a whole is increased extra in order to maintain the hot metal temperature and (Si) always above the specified value even in the circumferential direction on the side where the furnace heat level is low. It is common to do so, which impairs energy conservation.

炉周方向偏差の増大はタップ毎の溶銑の組成変動および
温度変動の増大をもたらし、後続の溶銑予備処理や製鋼
工程でのコス)−h’−u要因となる。
An increase in the deviation in the circumferential direction of the furnace leads to an increase in the compositional variation and temperature variation of the hot metal from tap to tap, which becomes a cost factor in the subsequent hot metal pretreatment and steelmaking process.

そのほか、高炉の設備にも悪影響をおよぼす。例えば、
特定炉周方向での炉壁れんが損傷およびステーブや羽目
の破損、炉壁付着物の生成および脱落の原因となる。従
って、高炉の寿命延長のためにも、炉周方向偏差を回避
しなければならない。
In addition, it also has a negative impact on blast furnace equipment. for example,
This can cause damage to bricks on the furnace wall in a specific direction around the furnace, damage to the staves and siding, and the formation and falling off of materials attached to the furnace wall. Therefore, deviation in the circumferential direction must be avoided in order to extend the life of the blast furnace.

高炉では、鉱石とコークスの固相と還元ガスの気相が向
流接触しつつ、伝熱と化学反応が起り、その進行状況に
応じた温度分布が形成される。この3次元的炉内温度分
布が軸対称であるのが好ましい。しかし実際には種々の
原因により軸対称性がくずれる。その原因のうち、重要
なものは次の2つである。
In a blast furnace, heat transfer and chemical reactions occur as the solid phase of ore and coke and the gaseous phase of reducing gas come into countercurrent contact, and a temperature distribution is formed depending on the progress of the reaction. Preferably, this three-dimensional furnace temperature distribution is axially symmetrical. However, in reality, the axial symmetry breaks down due to various reasons. Among the causes, the following two are important.

(a)原料装入時における炉周方向装入物分布の不均一
性 (b)炉内での装入物降下速度の炉周方向不均一性 この2つの要因が総合されて熱流比の炉周方向偏差とな
り、温度分布の非対称性を生む。その結果が上記のよう
な炉周方向偏差として検知されるのである。
(a) Non-uniformity in the charge distribution in the circumferential direction during raw material charging (b) Non-uniformity in the rate of descent of the charge in the furnace circumferential direction These two factors combine to increase the heat flow ratio This results in deviation in the circumferential direction, resulting in asymmetry in temperature distribution. The result is detected as the deviation in the circumferential direction as described above.

本発明は上記原因(a)を防止し、その効果により上記
原因(b)への好結果を意図するもので、ベルレス装入
装置を有する高炉を対象としている。
The present invention is intended to prevent the above cause (a), and to have a favorable effect on the above cause (b), and is aimed at a blast furnace having a bellless charging device.

第1図に示すベルレス装入装置を有する高炉において、
2個の炉頂ホッパのそれぞれに装入する原#1種類を鉱
石とコークスとを変更すると、装入前後の装入面レベル
の差としてまる鉱石とコークスの層厚2゜、Qcから計
算される層厚比2゜/ flCは第4図に示すように上
記炉頂ホッパ装入物の変更に伴って逆転する。すなわち
炉周方向にかなり大きな層厚分布偏差が生じており、原
料装入晟が炉周方向で不均一になっていることが推察さ
れる。
In a blast furnace having a bellless charging device shown in Fig. 1,
When the raw #1 type charged into each of the two furnace top hoppers is changed to ore and coke, the layer thickness of ore and coke is calculated from 2°, Qc, which is the difference in the charging surface level before and after charging. As shown in FIG. 4, the layer thickness ratio 2°/flC is reversed as the top hopper charge is changed. In other words, a fairly large deviation in layer thickness distribution occurred in the circumferential direction of the furnace, and it can be inferred that the raw material charging rate was non-uniform in the circumferential direction of the furnace.

まずその原因について述べる。First, I will explain the cause.

第1図に示すように原料は、炉頂ホッパla。As shown in FIG. 1, the raw material is transferred to the furnace top hopper la.

lbから流量調節弁2a、2bによって原料排出速度を
ほぼ一定に制御されつつ排出され、垂直シュー1・3を
経て、旋回シュート4によって、炉内に装入される。そ
の際、装入物の落下流5の中心が旋回シュートの旋回軸
6と旋回シュート内面との交点7に合致することが望ま
しい。しかし実際の装置では、垂直シュート3の口径断
面寸法はその高炉で予想される最大出銑量に相当する原
料排出量の場合にも流量調節弁や垂直シュート内で原料
が閉塞することなく円滑に流れるように、余裕をみて設
計されているので、垂直シュート3の口径断面を全て原
料が満たして流れることはなく、第1図に見られる如く
左側の炉頂ホッパlaから原料が排出されるときには、
落下流5は垂直シュー1・3の右側の壁に沿って偏流し
、落下流5が旋回シュート4に乗る点7aは旋回シュー
ト4の旋回軸6からずれている。
The raw material is discharged from lb with the discharge speed controlled to be almost constant by the flow control valves 2a and 2b, and charged into the furnace via the rotating chute 4 via the vertical shoes 1 and 3. In this case, it is desirable that the center of the falling flow 5 of the charge coincides with the intersection 7 of the pivot axis 6 of the pivot chute and the inner surface of the pivot chute. However, in actual equipment, the diameter cross-sectional dimensions of the vertical chute 3 are such that even when the raw material discharge amount corresponds to the maximum expected pig iron production in the blast furnace, the raw material does not become clogged in the flow control valve or within the vertical chute and smoothly. Since the material is designed with a margin in mind so that it can flow, the raw material does not fill the entire diameter cross section of the vertical chute 3, and as shown in Fig. 1, when the raw material is discharged from the left furnace top hopper la. ,
The falling flow 5 is deflected along the right side walls of the vertical shoes 1 and 3, and the point 7a where the falling flow 5 rides on the rotating chute 4 is offset from the pivot axis 6 of the rotating chute 4.

原料装入は、゛装入スケジュールに従って、2個の炉頂
ホッパから交互に1ノ<ツチずつ原料を排出して行う。
Raw material charging is performed by alternately discharging raw materials one by one from the two top hoppers according to the charging schedule.

lバッチの原料排出中に旋回シュー1・4は数回以上旋
回し原料を炉周方向に分配するが、その内の任意の1旋
回についてみると、点7aを旋回シュー1・4に固定し
た座標軸からみた場合、旋回シュート4の旋回につれ、
点7aの位置は点7を中心として変化し、旋回シュート
の1旋回で元の位置にもどる。第1図において旋回シュ
ート4が炉頂ホッパlaの方向に正中したとき、すなわ
ち第1図に示すLの位置にあるとき、点7aから旋回シ
ュート出口までの距#d1は旋回シュートのl旋回中に
おける最大値となり、旋回シュートが逆方向の位置すな
わち第1図に示すHの位置にあるときはこの距離d2は
最短の“値となる。旋回シュートの方向がLの位置にあ
るときを00として時計回りの方向すなわち旋回シュー
ト4の正旋回方向に旋回シュート4の位置として回転角
ξをとると、点7aから旋回シュート出口までの距離d
は回転角ξに対して第2図に示す余弦曲線となる。第1
図、第2図において上記距離dがdlからd2へと減少
していく局面では旋回シュート4を流下する原料を落下
流5が追いかけるかのようになり、その時間帯では点7
aにおける旋回シュー1−4−1−の原料容積が平均値
より大きくなって、見かけの装入速度が大きくなるのに
対し、距離dがd2からdlへと逆に増す時間帯では、
落丁流が旋回シュートの」一端の方へと後退することに
なり、見かけの装入速度は平均装入速度以下となる。原
料が装入面に落下するときの炉周方向位置を高炉の中心
角ζで表わすこととする。ただし炉周方向中心角ζは旋
回シュー1・の回転角ξと全く同じにとる。
During the raw material discharge of 1 batch, the rotating shoes 1 and 4 rotate several times or more to distribute the raw material in the circumferential direction of the furnace, but when looking at any one of the rotations, point 7a is fixed to the rotating shoes 1 and 4. When viewed from the coordinate axes, as the rotating chute 4 rotates,
The position of point 7a changes around point 7, and returns to the original position with one rotation of the rotating chute. In Fig. 1, when the swing chute 4 is centered in the direction of the furnace top hopper la, that is, at the position L shown in Fig. 1, the distance #d1 from the point 7a to the swing chute exit is during the swing When the rotating chute is in the opposite direction, that is, at the H position shown in Figure 1, this distance d2 becomes the shortest value.When the rotating chute is in the L position, the distance d2 is 00. If the rotation angle ξ is taken as the position of the rotating chute 4 in the clockwise direction, that is, the normal rotating direction of the rotating chute 4, then the distance d from the point 7a to the exit of the rotating chute is
becomes a cosine curve shown in FIG. 2 with respect to the rotation angle ξ. 1st
In Fig. 2, when the distance d decreases from dl to d2, the falling flow 5 seems to be chasing the raw material flowing down the rotating chute 4, and in that time period, the point 7
While the raw material volume of the rotating shoe 1-4-1- at point a becomes larger than the average value and the apparent charging speed increases, in the time period when the distance d increases from d2 to dl,
The falling bed flow will retreat toward one end of the rotating chute, and the apparent charging speed will be less than the average charging speed. The position in the furnace circumferential direction when the raw material falls onto the charging surface is expressed as the central angle ζ of the blast furnace. However, the central angle ζ in the circumferential direction of the furnace is set to be exactly the same as the rotation angle ξ of the rotating shoe 1.

例えば、ξ=90°のとき、点7aで原料容積が最大と
なり、ζ=180’で原料が装入面に達するとすれば、
このとき層厚が最大となる。一方この場合ξ=270°
、ζ−360°で層厚は最小となる。このような現象は
炉頂ホッパlaから原料を排出した場合に生ずる。今、
炉頂ホッパ1aに鉱石が装入されていたとすれば、次の
バッチのコークスは炉頂ホッパlbから排出され、偏流
の方向およびこと層厚との関係は鉱石の場合と中心角で
ほぼ18O0ずれて現れることになる。
For example, when ξ = 90°, the raw material volume reaches its maximum at point 7a, and the raw material reaches the charging surface at ζ = 180'.
At this time, the layer thickness becomes maximum. On the other hand, in this case ξ=270°
, the layer thickness is minimum at ζ-360°. Such a phenomenon occurs when raw material is discharged from the furnace top hopper la. now,
If ore is charged into the furnace top hopper 1a, the next batch of coke will be discharged from the furnace top hopper lb, and the relationship between the direction of drift and the layer thickness will be approximately 1800 deviated from the case of ore in the central angle. It will appear.

第3図はこの状況を図示したもので、横軸に高炉中心角
ζをとり、縦軸には、鉱石およびコークスの1バッチ分
が炉周方向に均一に装入されたと想定した場合の鉱石お
よびコークスのそれぞれの平均層厚う、ムを用いて、局
所的な層厚QQ 、 QCをそれぞれ無次元化して示し
である。以下に、Qo/′fo/′あるいはQc / 
Wcを無次元装入量Vと呼ぶことにする。第3図から鉱
石の多い炉周方向は逆にコークスが少なく、一方、鉱石
の少ない炉周方向ではコークスが多い。第3図の例では
(no / Qc )/(ム/Σ。)は平均値に対し、
113%の範囲で変化している。
Figure 3 illustrates this situation, with the horizontal axis representing the blast furnace center angle ζ, and the vertical axis representing the ore amount assuming that one batch of ore and coke is uniformly charged in the circumferential direction of the furnace. The local layer thicknesses QQ and QC are made dimensionless using the respective average layer thicknesses of coke and coke. Below, Qo/'fo/' or Qc/
Wc will be referred to as the dimensionless charging amount V. From FIG. 3, conversely, there is less coke in the furnace circumferential direction where there is more ore, while there is more coke in the furnace circumferential direction where there is less ore. In the example shown in Figure 3, (no/Qc)/(mu/Σ.) is the average value,
It varies within a range of 113%.

これをコークス比に換算すると平均コークス比460 
k g/THMの全量コークス操業として、その変動は
±60kg/THMに相当し、重大な問題である。
Converting this to a coke ratio, the average coke ratio is 460
In a full coke operation of kg/THM, the fluctuation is equivalent to ±60 kg/THM, which is a serious problem.

」1記のような炉周方向のCQO/Qc) / (fo
/ΣC)の分布変化を解消するために、nを整数として
2nパツチ毎に鉱石とコークスの炉頂ホッパを変更する
いわゆるバンカ振替を行って、2nチヤージを平均すれ
ば、全体として均一化されたようにする方法がよく用い
られる。この場合その効果を」二げるにはnを小さくす
る必要がある。しかしバンカ振替の機会を増加させると
、その間、装入の待ち時間を必要とするので、ストック
ラインの変更による半径方向装入物分布の不安定化とい
った別の問題が生じ、得策ではない。
CQO/Qc) / (fo
/ΣC), by changing the top hopper of ore and coke every 2n patches (where n is an integer), and by averaging the 2n charges, the overall charge can be made uniform. This method is often used. In this case, to reduce the effect, it is necessary to reduce n. However, increasing the number of bunker transfer opportunities requires waiting time for charging, which causes other problems such as instability of radial charge distribution due to stock line changes, which is not a good idea.

本発明者は以上の事実に立って、ベルレス装入装置を有
する高炉において、炉周方向の装入物層の層厚分布を均
一に制御するための原料装入方法を検討し、本発明を完
成するに至った。
Based on the above facts, the present inventor investigated a raw material charging method for uniformly controlling the layer thickness distribution of the charge layer in the circumferential direction of a blast furnace having a bellless charging device, and developed the present invention. It was completed.

本発明は上記の従来法の欠点を避け、装入量と層厚の炉
周方向分布の均一化を図るための原料装入方法を提供す
るもので、旋回シュートを用いるベルレス高炉の原料装
入方法において、高炉炉周方向での装入物分布を制御す
る場合に、旋回シュー1・の旋回速度Nωが、基準とす
る平均旋回速度80本を中心としてその上下に、旋回シ
ューI・の−旋回毎に繰返す周期関数となるように、旋
回シュー1・の旋回を変速しつつ原料装入を行うことに
より、炉周方向に均等に原料を装入することを特徴とす
る高炉への原料装入方法である。すなわち本発明の要旨
は旋回シュートを用いるベルレス高炉の原料装入方法に
おいて、一定の位相差および一定の振幅を有する周期関
数をなす変化速度と基準平均旋回速度とを重畳した速度
で、旋回シュートを一旋回ごとに最大値と最小値の間を
連続的に繰り返し変化させて旋回することを特徴とする
高炉への原料装入方法である。
The present invention provides a raw material charging method for avoiding the above-mentioned drawbacks of the conventional method and uniformizing the charging amount and layer thickness distribution in the circumferential direction. In the method, when controlling the charge distribution in the circumferential direction of the blast furnace, the rotating speed Nω of the rotating shoe 1 is centered around the reference average rotating speed of 80, and the - A method of charging raw materials to a blast furnace characterized by charging raw materials evenly in the circumferential direction of the furnace by charging the raw materials while changing the speed of rotation of the rotating shoe 1 so as to form a periodic function that repeats every rotation. This is how to enter. That is, the gist of the present invention is to provide a material charging method for a bellless blast furnace using a rotating chute, in which the rotating chute is operated at a speed that is a superposition of a reference average rotating speed and a rate of change that forms a periodic function with a constant phase difference and a constant amplitude. This is a method of charging raw materials into a blast furnace, which is characterized in that the material is rotated while continuously and repeatedly changing between a maximum value and a minimum value for each rotation.

上述のように旋回シュート4が不変速度旋回するときの
無次元装入量分布は中心角ζに対して1を中心とした正
弦曲線で近似できる。厳密にはこれは炉頂ホッパからの
原料排出速度が排出の始めから終りまで一定であること
が条件となるが、本発明者の調査によれば、流量調節弁
開度を一定にしておくと、炉頂ホッパからの排出の初期
と末期に排出速度が平均値より小さくなるが、その期間
は全排出時間の10%以下であり、上記原料排出速度一
定の条件はほぼ満足されている。従って基本的には、正
弦曲線的変化をなす装入量分布を正弦曲線的な変速旋回
によって相殺することができる。
As described above, the dimensionless charge distribution when the rotating chute 4 rotates at a constant speed can be approximated by a sine curve centered at 1 with respect to the central angle ζ. Strictly speaking, this requires that the raw material discharge rate from the furnace top hopper be constant from the beginning to the end of the discharge, but according to the inventor's research, if the opening of the flow control valve is kept constant, Although the discharge rate is smaller than the average value at the beginning and end of discharge from the furnace top hopper, this period is less than 10% of the total discharge time, and the above-mentioned condition of constant raw material discharge rate is almost satisfied. In principle, therefore, a sinusoidally varying charge distribution can be compensated for by a sinusoidally varying shift swing.

第2図、第3図の例によると、ξ−90°。According to the example of FIGS. 2 and 3, ξ-90°.

ζ=180°で装入量が最大となるので、この原料が旋
回シュート4出口に達する時点で、旋回速度を最大とし
、逆のξ=270°、ζ=360゜に対応する時点で、
旋回速度が最小となるような周期関数を旋回速度として
実現゛することにより、炉周方向装入量分布の均一化を
図ることができる。
Since the charging amount is maximum at ζ = 180°, the turning speed is maximized when this raw material reaches the exit of the turning chute 4, and at the opposite times corresponding to ξ = 270° and ζ = 360°,
By realizing a periodic function that minimizes the rotation speed as the rotation speed, it is possible to make the charging amount distribution in the circumferential direction of the furnace uniform.

これを式に表すと Nω=A s i n ((πNω本/30)×(τ−
Δτ)) 十Nω本 ・・・・・・(1) となる。ここに Nω:任意時刻τ(秒)における旋回シュート旋回速度
(瞬間値)(rpm) Nω*:旋回シュートの平均旋回速度 (rpm) A:(Nω−80本)の振幅(rpm)Δτ二位相ずれ
(秒) τ:時刻(秒) である。
Expressing this in the formula, Nω=A s i n ((πNω pieces/30)×(τ−
Δτ)) 10 Nω books...(1) Here, Nω: Turning speed of the turning chute (instantaneous value) (rpm) at arbitrary time τ (seconds) Nω*: Average turning speed of the turning chute (rpm) A: Amplitude (rpm) of (Nω-80 pieces) Δτ biphasic Discrepancy (seconds) τ: Time (seconds).

τ=0はξ−0の方向に旋回シュート4が向いた状態を
意味し、Δτ−0ならば(Nω−N0本)はl旋回毎に
周期的に変化する正弦曲線となり、Δτ洪0とすれば、 だけ旋回シューj・の正旋回方向に位相の進んだ正弦曲
線となる。通常ベルレス装入装置を有する高炉では、旋
回速度として8rpm前後の値を採用していて、上記の
80本はこうした不変速度旋回の旋回速度とすればよい
が、80本を8’ r p mに限定せず所望の値でか
まわない。
τ=0 means that the turning chute 4 is facing in the direction of ξ-0, and if Δτ-0, (Nω-N0 pieces) becomes a sine curve that changes periodically every l turning, and Δτ Hong 0 and Then, it becomes a sine curve whose phase is advanced in the normal turning direction of the turning shoe j. Normally, in a blast furnace equipped with a bellless charging device, a value of around 8 rpm is adopted as the rotation speed, and the above 80 rods can be set to the rotation speed of such constant speed rotation, but if the 80 rods are set to 8' rpm. It is not limited and may be any desired value.

1 旋回シュートの旋回速度が非常に小さい場合、炉頂ホッ
パからの原料の排出速度が一定の条件のもとでは、垂直
シュートに偏流が存在しても、原理的に炉周方向装入量
分布の偏差は生じない。しかし$5図に示すように、旋
回シュートが不変速で旋回した場合、装入量分布の偏差
は旋回速度の増加とともにはげしくなっていくので、こ
れを変速旋回によって相殺するように適切な振幅Aの値
を選択しなければならない。第5図は不変速旋回速度を
4.8,8,10,12rpmとしたときの無次元装入
量の変化を描いたものである。
1. When the rotating speed of the rotating chute is very small, and the discharge rate of raw material from the top hopper is constant, even if there is a drift in the vertical chute, the charging amount distribution in the circumferential direction is theoretically maintained. No deviation occurs. However, as shown in Figure 5, when the rotating chute rotates at a constant speed, the deviation in the charging amount distribution becomes more severe as the rotating speed increases. value must be selected. FIG. 5 depicts the change in dimensionless charging amount when the constant rotation speed is set to 4.8, 8, 10, and 12 rpm.

まず第3図において無次元装入量分布が完全な正弦曲線
であるものとみなして考える。
First, in FIG. 3, it is assumed that the dimensionless charge distribution is a perfect sine curve.

無次元装入量Vの最大値Vyaaxと最小値vIIli
nとから A= (Vmax −Vmin ) /2XN(11本
=ASt ・・・・・・(2) とし、さらに装入面上でVmaiあるいはVIlinと
なる原料が旋回シュートから放出されるときにNωが最
大あるいは最小になるように(1)式の2 Δτを決めてやれば、炉周方向装入量分布の均一化を達
成することができる。
Maximum value Vyaax and minimum value vIIli of dimensionless charging amount V
From n, A = (Vmax - Vmin) /2XN (11 pieces = ASt... (2) By determining 2Δτ in equation (1) so that Δτ is the maximum or minimum, it is possible to achieve uniformity of the charging amount distribution in the circumferential direction.

実際には無次元装入量分布は正確な正弦曲線ではなく歪
んでいる。これは、前述の、点7aから旋回シュート出
口までの距離dの増減により、旋回シュート4上で原料
が受ける加速の程度が変化し、旋回シュート4出口での
速度が変化するためであり、変速旋回の場合には、新し
く旋回シュートの旋回方向の角加速度による力が付は加
わり、特に上記(2)式のAが大きくなると、原料に関
する力学関係は複雑になり、装入量分布を厳密に完全に
均一化させるにはさらに複雑な変速制御が必要となるが
、実際には上記変速旋回によって十分に満足すべき均一
化効果が得られる。旋回シュートの駆動装置は多くの歯
車やシャフトから構成されているので、上記(2)式の
Aが大きくなるとそれらに対して不変速度旋回時よりも
余分な力が作用し設備寿命の点からも望ましくないので
適正な値を選択することが好ましい。
In reality, the dimensionless charge distribution is not exactly sinusoidal but distorted. This is because the above-mentioned increase or decrease in the distance d from the point 7a to the outlet of the rotating chute changes the degree of acceleration that the material receives on the rotating chute 4, and the speed at the outlet of the rotating chute 4 changes. In the case of rotation, a new force is added due to the angular acceleration of the rotation chute in the rotation direction, and especially when A in equation (2) above becomes large, the mechanical relationship regarding the raw material becomes complicated, and it is necessary to strictly control the charging amount distribution. Although more complicated speed change control is required to achieve complete uniformity, in reality, a sufficiently satisfactory uniformity effect can be obtained by the above-mentioned speed change rotation. The driving device of the swinging chute consists of many gears and shafts, so if A in equation (2) above becomes large, extra force will be applied to them compared to when swinging at a constant speed, which will reduce the life of the equipment. Since this is not desirable, it is preferable to select an appropriate value.

次に実施例として第3図の鉱石の場合を例にとリ、変速
旋回により不変速度旋回で生じる炉周方向装入量分4j
を相殺した例を第6図、第7図により説明する。
Next, as an example, we will take the case of ore shown in Fig. 3 as an example.
An example of canceling out will be explained with reference to FIGS. 6 and 7.

平均旋回速度N0本=8rpm 無次元最大装入1Vmax = 1.07無次元最小装
入量Vmin = 0.93よりAst=O,07Nω
本となる。
Average turning speed N0 = 8 rpm Dimensionless maximum charging 1Vmax = 1.07 Dimensionless minimum charging amount Vmin = 0.93 Ast = O, 07Nω
It becomes a book.

A=Astとして、 (πNω本/30)XΔτ をOから2πまで増加してゆくと、第6図に示すように
ほぼ5π/6すなわちΔτ=25/Nω本で無次元装入
量Vは最も均一となり、 Vmax −Vmin = 0.05 となり不変速度旋回の場合の約1/3に低減する。
Assuming that A=Ast, when increasing (πNω pieces/30) It becomes uniform, and Vmax - Vmin = 0.05, which is reduced to about 1/3 of the case of constant speed turning.

ざらにΔτ=25/Nω本としてAを Ast±O,4A、st の範囲で変更すると、無次元装入量Vの変化は第7図の
ようになり、A=O,8Astで、Vmax −Vmi
n = 0.02 という最も均一な炉周方向装入量分布を得ることができ
た。
Roughly setting Δτ = 25/Nω and changing A within the range Ast±O, 4A, st, the change in the dimensionless charging amount V becomes as shown in Fig. 7, where A = O, 8 Ast, and Vmax - Vmi
The most uniform charge distribution in the circumferential direction of n = 0.02 could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はベルレス装入装置と原料の流れを示す高炉の部
分断面図、第2図は原料が旋回シュート4に乗る点から
シュート出口までの距離の変化を示すグラフ、第3図は
無次元装入量の炉周方向分布を示すグラフ、第4図はバ
ンカー振替により高炉内の層厚比が逆転する状況を示す
グラフ、第5図は不変速度旋回時における旋回速度と無
次元装入量の炉周方向分布との関係を示すグラフ、第6
図は変速旋回時における旋回速度の位相ずれと無次元装
入量の炉周方向分布との関係を示すグラフ、第7図は変
速旋回時における旋回速度振幅と無次元装入量の炉周方
向分布との関係を示すグラフである。 la、lb・・・炉頂ホッパ 2a、2b・・・流星調節弁 3・・・垂直シュート 4・・・旋回シューI・ 5 5・・・原料の落下流 6・・・旋回シュートの回転軸 7・・・旋回シュートの回転軸と旋回シュートの底面と
の交点 7a・・・原料落下流の中心線と旋回シュートの底面と
の交点 8a 、8b・・・サウンジング装置 出願人 川崎製鉄株式会社 代 理 人 弁理士 小 杉 佳 男 弁理士 齋 藤 和 則  6 第2図 0 90 180 270 360 ζ濤) 第3図 工 0 90 180 270 360 で(劃 第4図 月/日→ 11/1 2 3 4 5 6 7 8 9 10 1
1 120−弧石 C:コークス
Figure 1 is a partial cross-sectional view of the blast furnace showing the flow of the bellless charging device and raw materials, Figure 2 is a graph showing changes in the distance from the point where the raw material rides on the rotating chute 4 to the chute outlet, and Figure 3 is a dimensionless diagram. A graph showing the distribution of charging amount in the circumferential direction of the furnace. Figure 4 is a graph showing the situation where the layer thickness ratio in the blast furnace is reversed due to bunker transfer. Figure 5 is the rotation speed and dimensionless charging amount when rotating at a constant speed. Graph showing the relationship between the distribution of
The figure is a graph showing the relationship between the phase shift of the rotation speed during variable speed rotation and the distribution of non-dimensional charging amount in the circumferential direction of the furnace. It is a graph showing the relationship with distribution. la, lb...Furnace top hopper 2a, 2b...Meteor control valve 3...Vertical chute 4...Swivel shoe I/5 5...Falling flow of raw material 6...Rotation axis of the swing chute 7... Intersection point 7a between the rotating axis of the rotating chute and the bottom surface of the rotating chute... Intersection points 8a and 8b between the center line of the falling material flow and the bottom surface of the rotating chute... Sounding device applicant Kawasaki Steel Corporation representative Patent attorney Yoshi Kosugi Male patent attorney Kazunori Saito 6 Fig. 2 0 90 180 270 360 5 6 7 8 9 10 1
1 120-Arcstone C: Coke

Claims (1)

【特許請求の範囲】[Claims] ■ 旋回シュートを用いるベルレス高炉の原料装入方法
において、一定の位相差および一定の振幅を有する周期
関数をなす変化速度と基準平均旋回速度とを重畳した速
度で、旋回シュートを一旋回ごとに最大値と最小値の間
を連続的に繰り返し変化させて旋回することを特徴とす
る高炉への原料装入方法。
■ In a material charging method for a bell-less blast furnace using a rotating chute, the rotating chute is rotated at a maximum speed for each rotation at a speed that is the superposition of the standard average rotating speed and the rate of change that forms a periodic function with a constant phase difference and constant amplitude. A method for charging raw materials into a blast furnace, characterized by rotating the material while continuously changing the value between the value and the minimum value.
JP24267083A 1983-12-22 1983-12-22 Method for charging raw material to blast furnace Pending JPS60135507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24267083A JPS60135507A (en) 1983-12-22 1983-12-22 Method for charging raw material to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24267083A JPS60135507A (en) 1983-12-22 1983-12-22 Method for charging raw material to blast furnace

Publications (1)

Publication Number Publication Date
JPS60135507A true JPS60135507A (en) 1985-07-18

Family

ID=17092488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24267083A Pending JPS60135507A (en) 1983-12-22 1983-12-22 Method for charging raw material to blast furnace

Country Status (1)

Country Link
JP (1) JPS60135507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195028A (en) * 1992-01-16 1993-08-03 Kawasaki Steel Corp Device for controlling charging material distribution
US5814794A (en) * 1995-02-28 1998-09-29 Samsung Electronics Co., Ltd. Temperature control apparatus of microwave oven and method thereof
JP2017020077A (en) * 2015-07-10 2017-01-26 新日鐵住金株式会社 Method for charging raw material of blast furnace
CN110042183A (en) * 2019-03-21 2019-07-23 首钢京唐钢铁联合有限责任公司 A kind of method of blast furnace material distribution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195028A (en) * 1992-01-16 1993-08-03 Kawasaki Steel Corp Device for controlling charging material distribution
US5814794A (en) * 1995-02-28 1998-09-29 Samsung Electronics Co., Ltd. Temperature control apparatus of microwave oven and method thereof
JP2017020077A (en) * 2015-07-10 2017-01-26 新日鐵住金株式会社 Method for charging raw material of blast furnace
CN110042183A (en) * 2019-03-21 2019-07-23 首钢京唐钢铁联合有限责任公司 A kind of method of blast furnace material distribution

Similar Documents

Publication Publication Date Title
Radhakrishnan et al. Mathematical model for predictive control of the bell-less top charging system of a blast furnace
JPS6120606B2 (en)
JPS60135507A (en) Method for charging raw material to blast furnace
RU2136762C1 (en) Device for charging of shaft furnace
JPS60224708A (en) Method for charging starting material into blast furnace
JPS59211515A (en) Charging device for charge
JPS62290809A (en) Raw material charging method for blast furnace
JPS62260010A (en) Charging method of mixed raw material for bell-less type blast furnace
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
CN116042948B (en) Material distribution method of European smelting furnace melting gas making furnace
JPH0128090B2 (en)
JP2000178615A (en) Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace
CN109231857B (en) Self-adaptive adjustment method and system for lime kiln fuel coal
JPH01290707A (en) Method of charging raw material to blast furnace
JP2000204407A (en) Charging of charging material into center part of blast furnace
JPS58204107A (en) Operating method of bell-less blast furnace
RU2055904C1 (en) Method for charging blast furnace
JPH0129849B2 (en)
JPS61227108A (en) Method for charging raw material to blast furnace
JPH04304305A (en) Method for charging raw material in blase furnace
JPH11269513A (en) Charging of charging material into center part of blast furnace
JPH01306511A (en) Method for charging raw material in blast furnace
JP2000160214A (en) Method for charging material to be charged into center part of blast furnace
JP2000282110A (en) Operation of blast furnace
JPH11209806A (en) Method for charging material to be charged into center of blast furnace