JPS6013427A - Display line protecting relaying device - Google Patents

Display line protecting relaying device

Info

Publication number
JPS6013427A
JPS6013427A JP58118230A JP11823083A JPS6013427A JP S6013427 A JPS6013427 A JP S6013427A JP 58118230 A JP58118230 A JP 58118230A JP 11823083 A JP11823083 A JP 11823083A JP S6013427 A JPS6013427 A JP S6013427A
Authority
JP
Japan
Prior art keywords
line
display line
terminal
display
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58118230A
Other languages
Japanese (ja)
Other versions
JPH0150167B2 (en
Inventor
丸山 重文
笠原 利夫
宏 佐々木
岩谷 二三夫
敦浩 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP58118230A priority Critical patent/JPS6013427A/en
Publication of JPS6013427A publication Critical patent/JPS6013427A/en
Publication of JPH0150167B2 publication Critical patent/JPH0150167B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は表示線保護継電方式に係り、特に表示線に分布
して存在する線路定数の影響を補償した高感度の比率差
動特性を有し、且つ使用表示線の削減を図った表示線保
護継電装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a display line protection relay system, and in particular has a highly sensitive ratio differential characteristic that compensates for the influence of line constants that are distributed over the display line. The present invention also relates to a display line protection relay device that reduces the number of display lines used.

〔発明の背景〕[Background of the invention]

従来の表示線保護継電方式の基本構成は、第1図に示す
通り、保護対象送電線の両端に設置された変流器CTA
、CTBよシミ流を導入すると共に、表示線PWを通し
て、両端の電流情報を交換し、表示線継電器RYA、R
YBによシ総合的に内部事故検出を行なうものである。
As shown in Figure 1, the basic configuration of the conventional display line protection relay system is a current transformer CTA installed at both ends of the transmission line to be protected.
, CTB introduces a stain current, and exchanges current information at both ends through the display line PW, and displays the display line relays RYA and R.
This system comprehensively detects internal accidents using YB.

伺、A、Bは母線であシ、CBA、CBBはしゃ断器で
ある。
, A and B are busbars, and CBA and CBB are circuit breakers.

この表示線保護継電方式は従来よシ各種のものが提案さ
れているが、これら従来方式の問題点を説明するため、
そのうちの代表例の原理について説明する。
Various types of display line protection relay systems have been proposed in the past, but in order to explain the problems of these conventional systems,
The principles of representative examples will be explained below.

第2図は、その代表例の原理説明図である。この例で、
表示線継電器はベース抵抗Rhとバランス抵抗几、を内
蔵し、これを表示線(表示線の片。
FIG. 2 is a diagram explaining the principle of a typical example. In this example,
The display line relay has a built-in base resistor Rh and a balance resistor, which is connected to the display line (one piece of the display line).

道抵抗をR1とする)を通して第2図の構成のように接
続する。ここで、バランス抵抗R6は可変抵抗であり Rp+R,=Rb ・・・・・・・・−(1)になるよ
うに両端共整定すれば、各端CTの二次電流tA、iB
は、それぞれR8の回路とRbの回路に1:3の割合で
分流することになる。
(assuming road resistance is R1) and connect as in the configuration shown in Figure 2. Here, the balance resistor R6 is a variable resistor, and if both ends are set so that Rp+R,=Rb...-(1), the secondary currents tA and iB of each end CT
The currents are divided into the R8 circuit and the Rb circuit at a ratio of 1:3.

同図において、電流の矢印は電流方向を表わしており、
各CTは送電線保護区間の内部事故時の流入電流1.、
.1pBに対して、図示の方向のCT2次電流電流ずる
ように構成されている。したがって、A端のRh、R=
及びB端のRb、几。
In the same figure, the current arrow represents the current direction,
Each CT has an inflow current of 1. ,
.. The CT secondary current is configured to shift in the direction shown in the figure with respect to 1 pB. Therefore, Rh at the A end, R=
and Rb, 几 at the B end.

を流れる電流をそれぞれ、自端子の流入電流の方向を正
にとシ、f kb g l Am + ’ i+b 1
 f Bgとすると送電線内部事故電流lpム+’lB
に対して、3 、1 。
For each current flowing through, set the direction of the inflow current of its own terminal to be positive, f kb g l Am + ' i + b 1
If f Bg, then the transmission line internal fault current lpm+'lB
Against, 3,1.

1Ab=−s人+−tB ・・・・・・・・・(2)4
 4 1 、 1 。
1Ab=-s people+-tB ・・・・・・・・・(2)4
4 1, 1.

i、、=−tム−−tB ・・・・・・・・・(3)4
 4 となる。
i,,=-tmu--tB ・・・・・・・・・(3)4
It becomes 4.

とこで、表示線継電器の動作電流をIOとして、Rhと
R,を流れる電流の差、すなわち、(iムbIA−)及
び(1+b−1!ts)を導出し、また抑制電流をIR
として、Rsを流れる電流を導出するものとすれば、 A端継電器では B端継電器では となる。
Now, assuming that the operating current of the display line relay is IO, the difference between the currents flowing through Rh and R, that is, (imbIA-) and (1+b-1!ts), is derived, and the suppression current is IR.
Assuming that the current flowing through Rs is derived, for the A-terminal relay and the B-terminal relay, it becomes.

以上のような原理に於いて事故が保護区間内部にある場
合には両端または片端から事故電流が流入するので工◇
〉IRとなシ、動作量工0が抑制量IRにうちかつて確
実に動作する。一方、保護区間外部事故の場合には、事
故電流は単に通過するのみで1A=−4Bとなシ、両端
の変流器の誤差を考慮してもI o < I Rとなり
、抑制量がうちかつて正規に不動作となる。
Based on the above principle, if an accident occurs inside the protected area, the fault current will flow from both ends or one end, so no work can be done.
>With IR, the operation will operate reliably once the operation amount 0 is equal to the suppression amount IR. On the other hand, in the case of an accident outside the protected area, the fault current simply passes through and becomes 1A = -4B, and even if the error of the current transformers at both ends is taken into account, I o < I R, and the amount of suppression decreases. It once became officially inoperable.

以上の原理は3端子系についても適用でき、その例を第
3図に示す。との場合、保護区間A、B。
The above principle can also be applied to a three-terminal system, an example of which is shown in FIG. In this case, protected areas A and B.

Cから、表示線の分岐端までの往復抵抗をそれぞれ、J
i 、 R111B 、 RIIICとし、第2図で説
明したバランス抵抗几、をA、B、C端について下記に
なるよう整定する。
The reciprocating resistance from C to the branch end of the display line is J
i, R111B, and RIIIC, and the balance resistor explained in FIG. 2 is set as follows for terminals A, B, and C.

Rb=R−ム+Rp A =−・・・・・・α@R−b
=R−1+R1・・・・・・・・・(ロ)1%b =R
,c+R,c −”・・02以上のように整定した場合
、各端の動作量IO?抑制量IRは、通過電流に対して A端では 1 1o = (iA+fB+iC) −・・+・・−+a
1 。
Rb=R−mu+Rp A=−・・・・・・α@R−b
=R-1+R1...(B)1%b =R
, c+R, c -"...02 or more, the operation amount IO? Suppression amount IR at each end is 1 at the A end with respect to the passing current. 1o = (iA+fB+iC) -...+...- +a
1.

IR= (21a−iB ic) −−−(11)B端
では C端では 1 。
IR= (21a-iB ic)---(11) 1 at the B end and 1 at the C end.

IB = −(2IC−1^−1B) ・・・・・・・
・・(ハ)となり、2端子の場合と同様に適用できるこ
とがわかる。
IB = -(2IC-1^-1B) ・・・・・・・・・
...(c), and it can be seen that it can be applied in the same way as the case of two terminals.

しかし、3端子系に適用する場合、式Q3〜(ト)に示
す通シ動作量工0は各端共同じであるが、抑制量IRが
同一でないため、適用上次のような問題点があった。
However, when applied to a three-terminal system, although the throughput operation amount 0 shown in equations Q3 to (g) is the same at each end, the suppression amount IR is not the same, so the following problems arise in application. there were.

すなわち、第4図(a)のように、1端流入(A端)1
端流出(C端)、1端無電流(B端)の場合、無電流端
であるB端は抑制量が他端に対して少なイ(I RLD
式H,(IG)、 mニオイーc、A 、 C端テil
:jm=oであるに対し、B端では2t!1=0となる
。)ために、比率差動特性が余端一致せず、同図(b)
のようにB端に比較し、A、C端の比率差動特性上の動
作範囲が狭くなる。また、第5図(a)のように、2端
流入(AC端)、1端流出(B端)の例では、第4図の
例と逆に、第5図の)に示すようにB端の抑制量Ill
が他端よシ犬きくなシ、B端の比率差動特性上の動作範
囲が狭くなる。
That is, as shown in FIG. 4(a), one end inflow (A end) 1
In the case of one end flowing out (C end) and one end having no current (B end), the B end which is the no current end has a smaller amount of suppression than the other end (I RLD).
Formula H, (IG), m nioi c, A, C end tail
:jm=o, whereas at the B end it is 2t! 1=0. ), the ratio differential characteristics do not match at the end, as shown in the same figure (b).
Compared to the B end, the operating range of the ratio differential characteristics of the A and C ends is narrower. In addition, as shown in Fig. 5(a), in the case of two ends inflow (AC end) and one end outflow (B end), contrary to the example in Fig. 4, B Edge suppression amount Ill
However, the operating range due to the ratio differential characteristic of the B end becomes narrower than the other end.

以上説明のように、従来方式では、3端子系に適用する
場合、事故電流様相によって各端の比率差動特性が不揃
いであり、かつ、比率差動特性上の動作範囲が狭くカシ
、十分な保護性能が確保できない場合が多い。更に、第
6図のように3端子系で3回線構成、かつ一部端休止の
場合には、内部事故の途中分岐端(B端)からの流出電
流が増加し、条件は相乗的に厳しくな乃、内部事故に不
動作となるケースがでてくる。
As explained above, when the conventional method is applied to a three-terminal system, the ratio differential characteristics at each end are uneven depending on the fault current condition, and the operating range of the ratio differential characteristics is narrow, and there is insufficient In many cases, protection performance cannot be ensured. Furthermore, in the case of a 3-terminal system with 3 lines as shown in Figure 6, and some ends are out of service, the current flowing out from the branch end (B end) in the middle of an internal fault increases, and the conditions become synergistically severe. However, there will be cases where the system will not function due to an internal accident.

また、表示線に流す電流はベース抵抗Rhとバランス抵
抗孔、によシ調整しているが、表示線が長距離化して、
抵抗以外の線路定数が無視できない場合に検出性能が低
下する。線路定数の補償を考慮して、ペース抵抗のかわ
りに表示線と同じ特性インピーダンスを付加する方法(
例特開昭5O−151347)もあるが、表示線を含む
回路構成を扱うため、絶縁耐量、多端子系統用での実装
方法が複雑(例えば分岐点から表示線の定数がちがう場
合もある。)になる欠点がある。
In addition, the current flowing through the display line is adjusted by the base resistor Rh and the balance resistor hole, but as the display line becomes longer,
Detection performance deteriorates when line constants other than resistance cannot be ignored. A method of adding the same characteristic impedance as the display line instead of the pace resistor, considering the compensation of the line constant (
There is also an example (Japanese Unexamined Patent Publication No. 50-151347), but since it deals with a circuit configuration including display lines, the dielectric strength and the mounting method for a multi-terminal system are complicated (for example, the constant of the display line may differ from the branch point). ) has the disadvantage of becoming

〔発明の目的〕[Purpose of the invention]

以上のことから本発明においては、各端子で他端電流を
正しく導出でき、性能一致させることのできる表示保護
継電方式を提供することを目的とする。
In view of the above, it is an object of the present invention to provide a display protection relay system that can correctly derive the other end current at each terminal and match the performance.

〔発明の概要〕[Summary of the invention]

本発明は多端子分岐された送電線の保護も確実にできる
ように、表示線によって伝送する電流信号を相い対する
2端子間毎に1対の表示線を用いて伝送し合い、伝送さ
れた信号から相手端子の情報のみを取シ出す手段として
、伝送用表示線路の模擬線路定数を備えた補償回路を備
え、各端子毎(9) の通過電流信号を独立して忠実に導き出し、比率差動特
性をもつ電流差動リレーによる表示線保護継電方式を提
供するものである。
In order to ensure the protection of multi-terminal branched power transmission lines, the present invention transmits current signals transmitted by display wires using a pair of display wires between each two opposing terminals. As a means of extracting only the information of the other terminal from the signal, a compensation circuit with simulated line constants of the transmission display line is provided, and the passing current signal of each terminal (9) is independently and faithfully derived, and the ratio difference is This invention provides a display line protection relay system using a current differential relay with dynamic characteristics.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例について、第7図によシ説明する。同図
では2端子系統の送電線保護を対象にしているが、多端
子分岐送電線路を保護対象にしても、相い対する端子が
増加するのみで、基本的には第7図の応用となることか
ら、簡素化して2端子系統によシ説明する。
An embodiment of the present invention will be explained with reference to FIG. The figure targets transmission line protection for a two-terminal system, but even if a multi-terminal branch power transmission line is protected, the number of opposing terminals will only increase, and it will basically be an application of Figure 7. Therefore, we will simplify the explanation using a two-terminal system.

第7図における記号と動作内容について以下に述べる。The symbols and operation contents in FIG. 7 will be described below.

1は保護対象の送電線路、CBA、CBBはしゃ断器で
、A端子側をCBA、B端子側をCBBで示す。CTA
、CTBは各々変流器であり、CTAはA端子の送電線
通過電流波形を、CTBはB端子の送電線通過電流波形
を保護リレー装置RYA、及びRYBに入力するために
用いる。CTAの出力電流をiム、CTBの出力電流を
11+で示す。iム、1Bの極性はすでに述べたように
内部事故電流で同位相の電流’pk*ipB(10) が流入するときを基準として正にとる。CTIA。
1 is a power transmission line to be protected, CBA and CBB are circuit breakers, the A terminal side is shown as CBA, and the B terminal side is shown as CBB. CTAs
, CTB are current transformers, CTA is used to input the power transmission line passing current waveform of the A terminal, and CTB is used to input the power transmission line passing current waveform of the B terminal to the protective relay devices RYA and RYB. The output current of CTA is indicated by im, and the output current of CTB is indicated by 11+. As already mentioned, the polarity of IM and 1B is set to be positive based on when a current of the same phase 'pk*ipB (10) flows in due to an internal fault current. C.T.I.A.

CT2A、CTIB、CT2Bはそれぞれ補助変流器で
あわ、一種の絶縁トランスである。
CT2A, CTIB, and CT2B are each auxiliary current transformers and are a type of isolation transformer.

また、RYA、RYBの内容については、A端子につい
ての動作を代表例として説明するため、B端子RYBの
内容については適宜省略する。PWは表示線であシ、i
AとiBの信号を伝送し合うための伝送路である。PW
に示したγ、L、G。
Furthermore, since the contents of RYA and RYB will be explained using the operation of the A terminal as a representative example, the contents of the B terminal RYB will be omitted as appropriate. PW is a display line, i
This is a transmission line for mutually transmitting signals of A and iB. P.W.
γ, L, G shown in .

CはPWの分布定数で、それぞれ単位k m M 9の
抵抗、インダクタンス、コンダクタンス、静電容量を表
わす記号である。Rは終端抵抗である。
C is a distribution constant of PW, which is a symbol representing resistance, inductance, conductance, and capacitance, each having a unit of km M 9. R is a terminating resistor.

1、Tr は表示線PWと保護リレー装置BYを絶縁す
るだめの絶縁トランスである。両端子の変流器CTIA
、CTIBからそれぞれ相手端子をみたイシビーダンス
は両者対象になるように構成し、1対の表示線PWによ
ってiAとiBの信号に比例した値iA2 iB2をそ
れぞれの保護リレー装置RY端子から送信し合う。しか
し、表示線PWの分布定数γ、L、G、Cの影響によっ
て、それぞれ相手端子に届く信号はIA3 L iB3
 となって、(11) それぞれiA+ inに比例した信号が相手端子終端抵
抗几に通電される。同、全ての変流器は理想電流源と考
えて説明する。
1. Tr is an isolation transformer for insulating the display line PW and the protective relay device BY. Double terminal current transformer CTIA
, CTIB to the other terminal are configured so that both are symmetrical, and values iA2 and iB2 proportional to the signals of iA and iB are transmitted from the respective protective relay device RY terminals by a pair of display lines PW. However, due to the influence of the distribution constants γ, L, G, and C of the display line PW, the signals reaching each other terminal are IA3 L iB3
(11) A signal proportional to iA+in is energized to the other terminal terminal resistor. The following explanation assumes that all current transformers are ideal current sources.

ところで、保護リレー装置RYAおよびRYBにおいて
は、等測的にiAとiBの信号を独立した値で抽出し、
たとえば良く知られているスカラ和抑制による比率差動
特性 l i、+iBI KR(l iAl+ l iB l
)>K−・・・αOを満足する判定を行うのがねらいで
ある。ただし、KRは抑制係数%Kmはレベル判定整定
値である。
By the way, in the protective relay devices RYA and RYB, the signals of iA and iB are extracted isometrically as independent values,
For example, the ratio differential characteristic l i,+iBI KR(l iAl+ l iB l
)>K−...The aim is to make a determination that satisfies αO. However, KR is the suppression coefficient %Km is the level determination setting value.

しかし、A端の保護リレー装置R,YAについてみると
、終端抵抗Rを通過する電流はiAl とiB3で、i
Alは自端子入力信号iAに比例しだ値で’AI=iA
 tA、、である。RYBにおいても同様であってその
終端抵抗Rに流れる電流はiBlとIA3でありiB!
=iB−iB2である。このように、本来は1人とi、
あるいはiえ、とiBl又はIA3とiB3とを比較す
べきであるが、従来の表示線保護 □継電装置では異な
った組合せの信号によシαO式の判定をしている。ここ
で、それぞれの信号は下記(12) によシ定義できる。
However, when looking at the protective relay devices R and YA at the A end, the current passing through the terminating resistor R is iAl and iB3, and i
Al is a value proportional to own terminal input signal iA, 'AI=iA
tA, . The same is true for RYB, and the currents flowing through its terminal resistor R are iBl and IA3, and iB!
=iB−iB2. In this way, originally one person and i,
Alternatively, one should compare iBl or IA3 and iB3, but in the conventional display line protection relay device, the determination is made using the αO formula based on different combinations of signals. Here, each signal can be defined according to (12) below.

ただし、Kt 、に2 、Ksはそれぞれ比例定数で、
複素数の内容をもつものである。このことから明らかな
ように、A端子に得られる信号のうちB端電流iBに比
例した値はiB3であシ、これのみを抽出するためには
、A端子の終端抵抗Rを通過する電流iA1+fB3か
らIA1分を差引けばよい。そのためには%’AIの値
を知る必要がある。
However, Kt, 2, and Ks are proportional constants,
It has the content of a complex number. As is clear from this, among the signals obtained at the A terminal, the value proportional to the B terminal current iB is iB3, and in order to extract only this, the current passing through the terminal resistor R of the A terminal must be iA1 + fB3 Just subtract 1 minute of IA from. For this purpose, it is necessary to know the value of %'AI.

iAlは表示線PWの分布定数の影響によって変るため
終端抵抗Rと分布定数を含めてめる必要がある。本発明
では、表示線PWの分布定数を模擬し自端子電流の印加
される模擬回路を備える。
Since iAl changes depending on the influence of the distribution constant of the display line PW, it is necessary to include the terminal resistance R and the distribution constant in its calculation. The present invention includes a simulation circuit that simulates the distribution constant of the display line PW and applies a self-terminal current.

RYAにおいてCT2Aが模擬回路のために用いる補助
変流器であシ、ZJ、!IがPWの模擬線路定(13) 数で、Rが終端抵抗である。zAllはPWの亘長に従
って定めるもので、単純化する場合には抵抗。
In RYA, CT2A is the auxiliary current transformer used for the simulation circuit, ZJ,! I is the simulated line constant (13) of PW, and R is the terminating resistance. zAll is determined according to the length of PW, and for simplification, it is a resistance.

コンデンサから成るT形等価回路、あるいはπ形等価回
路とすることもできる。ZABには、CT2Aから自端
電流iAが印加され、この結果CT IAから印加した
信号t、11 IA2.IA3と等価な値iAl’+i
A2’ + ’ 13’をそれぞれ130項を含まずに
得られる。したがって、CTIAとCT2Aの2次側の
信号から、差回路り人によって、 ’B3=tAI+1B3−i人!/ 、、、、、、、、
、(2のに相当する値を得ることができる。また、CT
2Aのi A3’は、CTIAによって生じるiA3と
等価な値であるから、 (ハ)式で得た iB3とi A3’とによって、それ
ぞれiB、iAに比例した信号によるaO式相轟の比率
特性をもつ判定が可能である。
A T-type equivalent circuit or a π-type equivalent circuit consisting of a capacitor can also be used. Self-end current iA is applied from CT2A to ZAB, and as a result, the signals t, 11 IA2. Value iAl'+i equivalent to IA3
A2' + '13' can be obtained without including 130 terms, respectively. Therefore, from the secondary side signals of CTIA and CT2A, 'B3=tAI+1B3-i person!' is obtained by the difference circuit. / 、、、、、、、
, (2) can be obtained. Also, CT
Since iA3' of 2A is equivalent to iA3 generated by CTIA, iB3 and iA3' obtained by equation (c) provide the ratio characteristic of the aO type phase sound due to signals proportional to iB and iA, respectively. It is possible to make a judgment with

すなわち、 において、保護リレー装置RYAの動作栄件は(14) IA3’+1B31 Kn(lL3’l+In31)>
K・・・・・・・・・(23) で のどとく、K、をKs’lる定数で除算補正することに
よって、C1’)式と等価な判定式が得られる。第7図
DTAは(ハ)式相尚の演算部である。DTムの演算部
は、iA、iBの瞬時値を対象に演算した結果で動作出
力の有無を決めもてよいが、iL +i1を実効値に相
当する量と位相角を加味したベクトル量で判定すること
でもよい。また、R,YBについてもRYAと同様であ
って、それぞれDえ。
That is, in , the operating condition of the protective relay device RYA is (14) IA3'+1B31 Kn(lL3'l+In31)>
K (23) By dividing and correcting the throat, K, by a constant Ks', a determination formula equivalent to the formula C1' can be obtained. DTA in FIG. 7 is an arithmetic unit corresponding to equation (C). The arithmetic unit of the DT system may determine whether or not there is an operational output based on the results of calculations performed on the instantaneous values of iA and iB, but it is also possible to determine the presence or absence of an operational output based on the vector quantity that takes into account the amount corresponding to the effective value of iL + i1 and the phase angle. You can also do that. Also, R and YB are the same as RYA, and each is D.

D T aに相当する演算部DB、DTi+をもつ。伺
、本発明の実施例として、2端子系統を例に各端子でそ
れぞれ内部事故の判定を行ったものを示したが、少なく
ともいずれか1端子で判定し、その結果によって、相手
端子に転送しゃ断指令を送る保護方式であっても応用で
きる。
It has arithmetic units DB and DTi+ corresponding to DTa. As an example of the present invention, we have shown a two-terminal system in which an internal accident is determined at each terminal. It can also be applied to protection methods that send commands.

また、2端子系統に限らず、3端子以上の多端子分岐送
電線の保護においても、相対する対向端(15) 間において、第7図で説明した内容によって、それぞれ
の対向端の電流情報を得ることができるだめ、多端子系
統の比率差動リレーが実現できる。
In addition, in the protection of not only two-terminal systems but also multi-terminal branch power lines with three or more terminals, the current information of each opposing end should be transmitted between the opposing ends (15) according to the content explained in Figure 7. If we can obtain this, we can realize a ratio differential relay for a multi-terminal system.

ただし、多端子系統においては、相対する対向端が複数
になり、各々の対向端までの表示線PWの亘長が異なる
ことがあるため、第7図に示したFWの定数をそれぞれ
最長対向端の亘長に合せるように、FWに線路定数を追
加接続するとともに、模擬線路定数Z&Bに相当する回
路を最長のPWに合うように各々の対向線路定数を付加
すればよい。
However, in a multi-terminal system, there are multiple opposing ends, and the length of the display line PW to each opposing end may be different. A line constant may be additionally connected to the FW so as to match the length of PW, and a circuit corresponding to the simulated line constant Z&B may be added with each opposing line constant so as to match the longest PW.

第8図は3端子構成における実施例を示す。同図の記号
は第7図と同一のものはそれぞれ同等物を示す。同図に
おいて、Z p ABI Z pACI Z p Bc
はそれぞれA−B端子間、A−C端子間及びB−C端子
間の表示線FWの線路定数であシ、Z p Aイ。
FIG. 8 shows an embodiment in a three-terminal configuration. The symbols in this figure that are the same as those in FIG. 7 indicate equivalents. In the same figure, Z p ABI Z pACI Z p Bc
are the line constants of the display line FW between the A and B terminals, between the A and C terminals, and between the B and C terminals, respectively, and Z p Ai.

ZIIAC’ 、 ZpBC’はそれぞれ、上記区間に
ついての線路定数補償回路でPWの線路定数が Z)ci+ZBs’=Zp入c−1−Zpac’=Zp
nc+Zpn+c’=Zp・・・・・・・・・@ となるように調整するためのものである。ただし、(1
6) Z、は第7図のZhvと同様の線路定数模擬回路である
ZIIAC' and ZpBC' are respectively line constant compensation circuits for the above sections, and the line constant of PW is Z)ci+ZBs'=Zp input c-1-Zpac'=Zp
This is for adjusting so that nc+Zpn+c'=Zp...@. However, (1
6) Z is a line constant simulation circuit similar to Zhv in FIG.

この第8図回路の動作を、A端の保護リレー装置RYA
を例にとシ説明すると、B端から絶縁トランス■・T、
を介してRYA内に取シ込まれた電流iB3と、変流器
C,T、IAからのA端電流i^!とが合成されて、電
流iAt + 183を得る。またC端から絶縁トラン
スI−T、を介してRYA内に取り込まれた電流ic3
と、変流器CT2Aからの電流が合成されて、電流iA
1+1c3を得る。一方、線路定数模擬回路Z、と終端
抵抗Rとの並列回路には変流器CT3Aを介してA端電
流iAが印加されている。ことで、線路定数Z、ムB+
ZpACと、補償用定数Z’pin 、 Z’PA(!
と模擬定数Z、との間には(ハ)式の関係が成立するよ
うに選択されているから、終端抵抗R1に流れる電流i
′A!は前記合成電流中のi^!に等しい。終端抵抗R
2に流れる電流11.は、自端電流i1が表示線PWを
介して相手端に受信されたときの電流値i^3に等しい
。差回路DA1.DA2ではiム!十iB3とi′ムl
の差、fit +”c3とi′、!の差を夫々(17) 導出して、iI+3+ic3を得る。演算部DT人に入
力される3組の電流”&3+ 1113+ ’C3は全
て、「表示aPWを介して相手端に受信された信号と等
価な信号」である。B端及びC端の保護リレー装置R,
YB及びRYCにおいても、上記したA端での処理と同
様の処理を行ない各端電流について「相手端に受信され
た信号と等側力信号」を夫々導出する。従って各端の演
算部DTにおいて比率差動演算を実施することによシ、
各端の動作特性を一致させることができ3端子系以上の
多端子に適用するに好適な表示線保護継電方式とできる
The operation of this circuit in Figure 8 is explained by the protection relay device RYA at the A terminal.
To explain this using an example, from the B end to the isolation transformer ■・T,
The current iB3 taken into RYA through RYA and the A-terminal current i^ from current transformers C, T, and IA! are combined to obtain a current iAt + 183. Also, the current ic3 taken into RYA from the C terminal via the isolation transformer I-T.
and the current from current transformer CT2A are combined to produce current iA
Get 1+1c3. On the other hand, an A-end current iA is applied to the parallel circuit of the line constant simulation circuit Z and the terminating resistor R via the current transformer CT3A. Therefore, the line constant Z, B+
ZpAC, compensation constant Z'pin, Z'PA (!
and the simulated constant Z are selected so that the relationship of equation (c) holds, so the current i flowing through the terminating resistor R1
'A! is i^! in the composite current. be equivalent to. Terminal resistor R
Current flowing through 2 11. is equal to the current value i^3 when the own end current i1 is received by the other end via the display line PW. Difference circuit DA1. In DA2, I am! 10iB3 and i'mul
The difference between fit+"c3 and i', ! is derived (17) to obtain iI+3+ic3. The three sets of currents "&3+1113+'C3 input to the calculation unit DT are all expressed as "display aPW is a signal equivalent to the signal received by the other end via the Protection relay device R at B end and C end,
In YB and RYC, the same processing as the above-mentioned processing at the A end is performed to derive "the signal received at the other end and the isolateral force signal" for each end current. Therefore, by performing ratio differential calculation in the calculation unit DT at each end,
The operating characteristics of each end can be made to match, and the display line protection relay system can be made suitable for application to a multi-terminal system of three or more terminals.

本発明は、さらに次のようにしても実現することができ
る。第8図の実施例では各端の保護継電装置RY内に、
線路の定数を模擬する回路を備えているが、これは第9
図のように1端子(図例ではA端)にのみ第8図と同一
構成の保護継電装置BYを備え他端に対してしゃ断器列
外しについての最終判定信号を送出する方式(転送トリ
ップ方式)としてもよい。
The present invention can also be realized in the following manner. In the embodiment shown in FIG. 8, in the protective relay device RY at each end,
It is equipped with a circuit that simulates the line constants, but this is the 9th
As shown in the figure, a protective relay device BY having the same configuration as in Figure 8 is provided only at one terminal (terminal A in the figure), and a final judgment signal regarding disconnection of the breaker is sent to the other terminal (transfer trip method).

また、本実施例では、終端抵抗を通過する電流(18) 信号に注目した検出方式を示したが、第10図において
、各端子のPWへ送シ出す信号、IAI!。
Furthermore, in this embodiment, a detection method focusing on the current (18) signal passing through the terminating resistor was shown, but in FIG. 10, the signal sent to PW of each terminal, IAI! .

’B3+および模擬回路のi′A2を用いて1B3==
tえ2 + I B3 1’A□ 10010991.
(ハ)をめて、i!+3とi′A3でα9式に相邑する
比率演算を行ってもよい。
1B3== using 'B3+ and i'A2 of the simulated circuit
te2 + I B3 1'A□ 10010991.
(c), i! +3 and i'A3 may be used to perform a ratio calculation that is compatible with the α9 formula.

また、単にスカラ和抑制にかぎらず、各端子の電流が独
立した情報で得られているから、各端子電流の位相比較
、あるいは、最大値電流による抑制方式、非電源端子の
判別など、事故電流の分布についての識別も可能でアシ
、事故検出の応用範囲が広くなる。
In addition to simply scalar sum suppression, since the current at each terminal is obtained as independent information, it is also possible to compare the phase of each terminal current, use a maximum current suppression method, and identify non-power terminals, etc. It is also possible to identify the distribution of data, which widens the range of applications for accident detection.

また、(ハ)式に示した、2/、ムi+IZ’pムc、
Z)の線路定数模擬回路は必ずしも分布定数を正確に模
擬しなくとも、線路抵抗のみでの近似、あるいは線路抵
抗と線間静電容量等によるT形回路、あるいはπ形回路
等の近似定数回路で実施してもよい。
In addition, 2/, mui+IZ'pmc, shown in equation (c),
The line constant simulation circuit of Z) does not necessarily simulate the distributed constant accurately, but it can be approximated by line resistance only, or an approximate constant circuit such as a T-type circuit or π-type circuit using line resistance and line capacitance, etc. It may also be carried out.

〔発明の効果〕〔Effect of the invention〕

以上の発明により、対向端子1端子当り1対の表示線を
用いて、多端子分岐送電線の保護を、比(19) 率特性をもつ装置によって実施できる。
According to the above invention, a multi-terminal branch power transmission line can be protected by a device having a ratio (19) ratio characteristic using one pair of indicator lines per opposing terminal.

また、装置の調整は信号を伝送し合う相い対する2端子
間毎に行えばよく、調整作業が容易なうえ、調整精度も
高められる。
Further, the adjustment of the device can be performed for each pair of opposing terminals that transmit signals, which simplifies the adjustment work and improves the accuracy of adjustment.

まだ、表示線の数も小力くてす不経済的効果があシ、特
性的にも各端子電流情報を個別に検出しているので高感
度の整定か可能に外る効果がある。
However, since the number of display lines is small, there is an uneconomical effect, and since the current information of each terminal is detected individually, it has the effect of making it possible to set high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表示線継電装置の基本構成図、第2図は従来方
式2端子構成の説明図、第3図は従来方式3端子構成の
説明図、第4図、第5図は従来方式の特性例を示す図、
第6図は3端子系統内部事故電流の分流例を示す図、第
7図は本発明の実施例、第8図、第9図は本発明を3端
子系統に適用する実施例であシ、第10図は他の一実施
例図である。 CT・・・変流器、PW・・・表示線、BY・・・保護
継電装置、R・・・終端抵抗、DA・・・差回路、Z、
・・・線路定(20) 第 1 回 第20 八γII K7B 第32
Figure 1 is a basic configuration diagram of the display line relay device, Figure 2 is an explanatory diagram of a conventional 2-terminal configuration, Figure 3 is an explanatory diagram of a conventional 3-terminal configuration, and Figures 4 and 5 are conventional diagrams. A diagram showing an example of the characteristics of
FIG. 6 is a diagram showing an example of dividing fault current inside a 3-terminal system, FIG. 7 is an embodiment of the present invention, and FIGS. 8 and 9 are embodiments in which the present invention is applied to a 3-terminal system. FIG. 10 is a diagram of another embodiment. CT...Current transformer, PW...Display line, BY...Protective relay device, R...Terminal resistor, DA...Difference circuit, Z,
...Line setting (20) 1st 20th 8γII K7B 32nd

Claims (1)

【特許請求の範囲】 1、送電線、該送電線の各端に設けられた変流器、該変
流器間に設置された表示線、自己端子に流れる表示線電
流を入力として差動演算によシ前記送電線の保護出力を
与える継電装置とよシ成る表示線保護継電装量において
、前記表示線の線路定数を模擬した表示線模擬部であっ
て、その入力部に前記自端変流器出力が印加され、この
入力のときに自端と相手端に流れる表示線電流の模擬出
力を与える表示線模擬部、該表示線模擬部の自端に流れ
る表示線電流の模擬出力と前記表示線の自己端子に流れ
る表示線電流の差をめる差導出部を付加し、差導出部の
出力と前記表示線模擬部の相手端に流れる表示線電流の
模擬出力とを前記継電装置の入力としたことを特徴とす
る表示線保護継電装置。 2.0端子の送電線、該送電線の各端に設けられた変流
器、2つの端子の変流器間に夫々設けられたn組の表示
線、自端子に流れる各表示線電流を入力として差動演算
により前記送電線の保護出力を与える継電装置とより成
る表示線保護継電装置において、前記n組の表示線の線
路定数を一致させるために表示線に設けた線路定数補償
回路、前記表示線の線路定数を模擬した表示線模擬部で
あって、その入力部に前記自端変流器出力が印加されこ
の入力のときに自端と相手端に流れる表示線電流の模擬
出力を与える表示線模擬部、該表示線模擬部の自端に流
れる表示線電流の模擬出力と前記表示線の自己端子に流
れる(n−1)組の表示線電流の差を夫々求める差導出
部を付加し、該差導出部の(n−1)個の差出力と前記
表示線模擬部の相手端に流れる表示線電流の模擬出力と
を前記継電装置の入力としたことを特徴とする表示線保
護継電装置。 3、特許請求の範囲第2項記載の表示線保護継電装置に
おいて、表示線模擬部と差導出部と継電装置とを1つの
端子にのみ設け、該1つの端子の継電装置の出力を他端
に転送してそのしゃ断器を開放することを特徴とする表
示線保護継電装置。
[Claims] 1. Differential calculation using as input a power transmission line, a current transformer provided at each end of the power transmission line, an indicator line installed between the current transformers, and an indicator line current flowing through its own terminal. In an indicator wire protection relay system consisting of a relay device that provides a protective output for the power transmission line, an indicator wire simulating part that simulates the line constant of the indicator line, and an indicator wire simulator that simulates the line constant of the indicator line, the A display line simulating section that provides a simulated output of the display line current flowing to the own end and the opposite end when the current transformer output is applied, and a simulated output of the display line current flowing to the own end of the display line simulating section. A difference deriving section that calculates the difference in the display line current flowing to the self-terminal of the display line is added, and the output of the difference deriving section and the simulated output of the display line current flowing to the opposite end of the display line simulating section are connected to the relay. A display line protection relay device characterized in that it is used as an input of the device. 2.0 terminal power transmission line, a current transformer provided at each end of the power transmission line, n sets of display wires each provided between the two terminal current transformers, and each display line current flowing to its own terminal. In a display line protection relay device comprising a relay device that provides a protection output for the power transmission line by differential calculation as an input, a line constant compensation provided on the display line in order to match the line constants of the n sets of display lines. circuit, a display line simulating part that simulates the line constant of the display line, wherein the output of the self-end current transformer is applied to the input section, and when this input is applied, the display line current flowing between the self-end and the opposite end is simulated. A display line simulating section that provides an output, a difference derivation that calculates the difference between the simulated output of the display line current flowing through its own end of the display line simulating section and the (n-1) set of display line currents flowing through its own terminal of the display line. The (n-1) difference outputs of the difference deriving section and the simulated output of the display line current flowing to the opposite end of the display line simulation section are input to the relay device. Display line protection relay device. 3. In the display line protection relay device according to claim 2, the display line simulating section, the difference deriving section, and the relay device are provided only in one terminal, and the output of the relay device of the one terminal is A display line protection relay device that transfers the signal to the other end and opens the breaker.
JP58118230A 1983-07-01 1983-07-01 Display line protecting relaying device Granted JPS6013427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118230A JPS6013427A (en) 1983-07-01 1983-07-01 Display line protecting relaying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118230A JPS6013427A (en) 1983-07-01 1983-07-01 Display line protecting relaying device

Publications (2)

Publication Number Publication Date
JPS6013427A true JPS6013427A (en) 1985-01-23
JPH0150167B2 JPH0150167B2 (en) 1989-10-27

Family

ID=14731442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118230A Granted JPS6013427A (en) 1983-07-01 1983-07-01 Display line protecting relaying device

Country Status (1)

Country Link
JP (1) JPS6013427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296052A (en) * 1989-08-01 1994-03-22 Nippon Paint Co., Ltd. Surface treatment chemicals and bath for aluminum or its alloy and surface treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296052A (en) * 1989-08-01 1994-03-22 Nippon Paint Co., Ltd. Surface treatment chemicals and bath for aluminum or its alloy and surface treatment method
US5421913A (en) * 1989-08-01 1995-06-06 Nippon Paint Co., Ltd. Surface treatment chemicals and bath for aluminum or its alloy and surface treatment method

Also Published As

Publication number Publication date
JPH0150167B2 (en) 1989-10-27

Similar Documents

Publication Publication Date Title
Aggarwal et al. A practical approach to accurate fault location on extra high voltage teed feeders
US4398232A (en) Protective relaying methods and apparatus
US4329727A (en) Directional power distance relay
Calero Mutual impedance in parallel lines–protective relaying and fault location considerations
AU2002222873A1 (en) Fault location method and device
JPS6013427A (en) Display line protecting relaying device
Conde et al. Operation logic proposed for time overcurrent relays
CN112578310B (en) Detection method for single-phase grounding line selection tripping function
EP0020073B1 (en) Common suspension multi-line grounding protective relay
GB1572453A (en) Ground fault circuit interrupter with trip level adjustment
De Oliveira et al. Evaluation of distance protection performance applied on series compensated transmission lines using real time digital simulation
JP2001103656A (en) Bus protective relay
JPS607886B2 (en) Ground fault distance determination method
JP2000184578A (en) Method of locating a fault point of power transmission line and protection relaying system
JPS6364135B2 (en)
Rushton et al. Fault-performance analyses of transmission-line differential protection systems related to their polar-characteristic requirements
Bollen et al. Extensive testing of an algorithm for travelling-wave-based directional detection and phase-selection by using TWONFIL and EMTP
Villamizar et al. From Virtual Relays to Hybrid Twin Using Low Cost Hardware-Software Platform
EP0036752B1 (en) Protection apparatus for electric power transmission systems
CN100367609C (en) Transformer longitudinal error protecting element with multiple side zero sequence ratio brake
Alverson Relay coordination with multiple breaker-in/breaker-out stations on the transmission line
GB383914A (en) Improvements in and relating to protective devices for electric transmission systems
JPS61191229A (en) Current differential relay
Dolloff An improved bus protection technique with dissimilar current transformers
US2085364A (en) Protective system for electrical distributing systems