JPS6013419B2 - Structural steel with improved cracking resistance in the Z direction - Google Patents

Structural steel with improved cracking resistance in the Z direction

Info

Publication number
JPS6013419B2
JPS6013419B2 JP54131767A JP13176779A JPS6013419B2 JP S6013419 B2 JPS6013419 B2 JP S6013419B2 JP 54131767 A JP54131767 A JP 54131767A JP 13176779 A JP13176779 A JP 13176779A JP S6013419 B2 JPS6013419 B2 JP S6013419B2
Authority
JP
Japan
Prior art keywords
less
hydrogen
steel
cracking resistance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54131767A
Other languages
Japanese (ja)
Other versions
JPS5658948A (en
Inventor
永 権藤
明 中島
牧夫 飯野
清之助 矢野
恭秀 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP54131767A priority Critical patent/JPS6013419B2/en
Publication of JPS5658948A publication Critical patent/JPS5658948A/en
Publication of JPS6013419B2 publication Critical patent/JPS6013419B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、耐ラメラーテア性又は耐水素誘起割れ性など
、Z方向の耐割れ性を向上させた構造用鋼を提供するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a structural steel with improved cracking resistance in the Z direction, such as lamellar tear resistance or hydrogen-induced cracking resistance.

海洋構造物のノード部では、Z方向(板偉方向を意味す
、以下Z方向と云う)に荷重が働き、ラメラーテアが発
生しやすい。
At the node portion of an offshore structure, a load acts in the Z direction (meaning the plate direction, hereinafter referred to as the Z direction), and lamellar tear is likely to occur.

また、日2Sを含むサワーガス環境では、板厚に平行な
水素誘起割れが発生しやすい。これらの割れをなくすた
めに、従釆、S%を0.006〜0.010%程度まで
下げ、REMO.005〜0.10%又はCao.00
07〜0.005%を添加することが、公知の技術とし
ておこなわれていた。しかるに、従来公知の技術では、
REMやCaを多量に添加するために、MnSなどのA
系介在物は減少するが、他方、大型のB系介在物が増加
し、特に鋼塊底部や、蓮銭片の表層近くに、これらの介
在物が局所的に集まり、超音波欠陥の原因となり、かえ
ってラメラーテアや水素譲起割れを助長し、これらのZ
方向の割れの解決策にならないことが多い。
Furthermore, in a sour gas environment including 2S, hydrogen-induced cracking parallel to the plate thickness is likely to occur. In order to eliminate these cracks, the S% was lowered to about 0.006 to 0.010% and REMO. 005-0.10% or Cao. 00
Adding 0.07% to 0.005% was a known technique. However, with conventionally known technology,
In order to add a large amount of REM and Ca, A such as MnS
On the other hand, the number of B-based inclusions decreases, but on the other hand, large B-based inclusions increase, and these inclusions gather locally, especially at the bottom of the steel ingot and near the surface of the lotus coin, causing ultrasonic defects. , rather promotes lamellar tear and hydrogen induced cracking, and these Z
It is often not a solution to directional cracks.

就中、水素割れの場合、近年特に問題になり工業的解決
の急がれている低PH酸性環境下のラインパイプの水素
割れはA系のみかB系介在物から起ることが研究の結果
明らかにされたのでこの問題の解決のためにA系介在物
のみならずB系介在物をC系に変える技術が要求されて
きた。本発明は、これらの従来技術の欠点を根本的に改
善しようとするもので、第1表にその骨子を示すごとく
基本的には、先づSを0.0020%以下と、従来考え
られない程下げ、極低S鋼とし、また、酸素量も、従来
になく極度に下げ、0.0035%以下とし、これに極
微量のREM(0.0003〜0.002%)と、複合
的にCaを0.0010〜0.0070%添加すること
により、従来より、Z方向の耐割れ性が著しくすぐれた
鋼材を提供しようとするものである。
In particular, in the case of hydrogen cracking, research has shown that hydrogen cracking in line pipes under low pH acidic environments, which has become a particular problem in recent years and an industrial solution is urgently needed, occurs only from A-based or B-based inclusions. Since this has been clarified, in order to solve this problem, a technology has been required to change not only A-based inclusions but also B-based inclusions to C-based inclusions. The present invention is an attempt to fundamentally improve these drawbacks of the prior art, and as shown in Table 1, basically, the present invention first reduces S to 0.0020% or less, which was previously unthinkable. In addition, the amount of oxygen has been lowered to an unprecedented level to be less than 0.0035%, and this is combined with an extremely small amount of REM (0.0003 to 0.002%). By adding 0.0010 to 0.0070% of Ca, it is intended to provide a steel material with significantly better cracking resistance in the Z direction than in the past.

第1表次に、本発明の成分組成を限定した理由を説明す
る。
Table 1 Next, the reason for limiting the component composition of the present invention will be explained.

Cは構造用鋼として必要な強度を安価に付与できる成分
として含有させるが、CO.02%未満では強度不足と
なり、他方CO.20%超では、級性・溶接性が劣化す
るため、C%を0.02〜0.20%に限定した。
C is included as a component that can provide the strength necessary for structural steel at low cost, but CO. If it is less than 0.02%, the strength will be insufficient, while CO. If it exceeds 20%, the quality and weldability deteriorate, so C% was limited to 0.02 to 0.20%.

Si、Mnは、脱酸用元素として重要なものであり、ま
た、強度・級性を確保するためにも必要な成分であるが
、Sio.01%禾満では脱酸不充分でかつ籾性不良の
ため、Sio.01%以上が必要であり、他方Sil.
0%超では、靭性劣化を招くほか、有害な介在物が増す
ため、Sil.0%以下と限定した。
Si and Mn are important as deoxidizing elements and are also necessary components to ensure strength and quality. Sio. 01% or more is required, while Sil.
If the Sil. It was limited to 0% or less.

Mnは、SをMnSとして固定するため重要な元素であ
るが、Mn%についても、0.3%未満及び2.0%超
では、轍性不足等特性劣化を招くので、Nh%を0.3
〜2.0%と限定した。Sの含有量は、本発明では0.
0020%以下と特に低く限定しているが、ラメラ−テ
アや水素誘起割れの起点の一つとなるA系介在物の硫化
物を出来るだけ減らすため、S%を、特に極低S量に限
定した。
Mn is an important element for fixing S as MnS, but if Mn% is less than 0.3% or more than 2.0%, it will cause property deterioration such as insufficient rutting, so Nh% should be reduced to 0.3% or more than 2.0%. 3
It was limited to ~2.0%. In the present invention, the S content is 0.
0020% or less, but in order to reduce as much as possible the sulfides of A-based inclusions, which are one of the starting points of lamellar tear and hydrogen-induced cracking, the S% was particularly limited to an extremely low S content. .

(特に望ましくはSO.0015%以下が良い。)Pの
含有量を、0.020%以下と、低含有域に限定した理
由は次の通りである。ラメラーテアや水素誘起割れは、
硫化物の所から−旦発生した後、伝播する過程でPの含
有量の高い組織の所を伝播してゆくことが発見され、し
かもこのようなPの偏析部分は、Pの含有量を0.02
0%以下に限定すると著しく減少することが判ったので
鋼中P%を0.020%以下とした。酸素については、
ラメラーテアや水素誘起割れの発生点が、酸化物系介在
物に起因することがあり、したがってこれらの割れの発
生をなくするには酸素を0.0035%以下にすること
が効果的である。
(Particularly desirable is SO.0015% or less.) The reason why the P content is limited to a low content range of 0.020% or less is as follows. Lamellar tear and hydrogen-induced cracking
It was discovered that once generated from a sulfide, it propagates through a structure with a high P content during the propagation process, and furthermore, such a segregated part of P can reduce the P content to 0. .02
It was found that if the content was limited to 0% or less, the content decreased significantly, so the P% in steel was set to 0.020% or less. Regarding oxygen,
The occurrence points of lamellar tear and hydrogen-induced cracking may be caused by oxide inclusions, and therefore, it is effective to reduce the oxygen content to 0.0035% or less in order to eliminate the occurrence of these cracks.

さらに他の理由は、REM及びCaの添加に当り、真空
脱ガス等により溶鋼中の酸素を下げておくことにより、
REMやCaの酸化物を含む介在物の形成を防ぎ、これ
により鋼塊底部や蓮銭片表層部に発生しやすいB系介在
物をなくし、またREM、Caの作用を特に著しく効果
あらしめるためであり、そのため酸素含有量を特に低く
0.0035%以下と限定した。Alsolo.15%
以下含有させるのは、脱酸のほか所要の靭性を確保する
ためである。次に、Cao.0010〜0.0070%
、REMO.0003〜0.002%の複合的添加は、
本発明にとって重要な点である。
Another reason is that when adding REM and Ca, by lowering the oxygen in the molten steel by vacuum degassing etc.
To prevent the formation of inclusions containing REM and Ca oxides, thereby eliminating B-based inclusions that tend to occur at the bottom of steel ingots and the surface layer of lotus coins, and to make the effects of REM and Ca particularly effective. Therefore, the oxygen content is particularly low and limited to 0.0035% or less. Alsolo. 15%
The following elements are included for the purpose of deoxidizing and ensuring the required toughness. Next, Cao. 0010~0.0070%
, REMO. The combined addition of 0003-0.002% is
This is an important point for the present invention.

比較的多量と考えられる0.0010〜0.0070%
のCaを徴量のREMと共に添加するのは、耐ラメラー
テア性や耐水素誘起割れ性を向上させるためであり、C
ao.0010%未満では、このような特性を向上させ
る効果が不充分であり、逆にCaが0.0070%を超
えると、かえってクラスター状介在物の増加を招くため
、上記のようなZ方向の耐割れ性が劣化するので、Ca
%を0.0010〜0.0070%に限定した。特に好
ましくは、Ca%は0.0020〜0.0060%であ
る。次に、REMO.0003〜0.002%を上記C
aと共に複合的に添加する理由は、上記のように比較的
多量のCaを単独に添加する時に発生しやすいクラスタ
ー状のB系介在物をなくすためである。これにより、耐
ラメラーテア性や耐水素議起割れ性が、鋼魂や蓮銭片の
し、かなる部分においても、著しく向上した構造用鋼が
得られる。REMが0.0003%未満であると、上記
のような、多量のCaを添加するとき鋼塊底部や蓮銭片
表面部において、耐ラメラーテァ性や耐水素誘起割れ性
がかえって劣化することがあるが、REMを0.000
3〜0.002%添加することにより、このような劣化
が解消し、著しくすぐれた特性が得られる。ただしRE
M含有量が0.002%を超えると、かえって上記のよ
うなCaとREMの複合効果がなくなり、鋼塊底部や蓮
銭片表層部で、耐ラメラーテア性や耐水素誘起割れ性が
、再び劣化する傾向が現れる。このことが、REM含有
量の上限を限定した理由である。以上のような範囲のC
aとREMの複合添加により、従釆のサワー環境(pH
5.2)よりも、さらに厳しい環境である舟3.5〜4
においても、全く水素誘起割れを生じない鋼が鋼塊内の
位直によらず得られるのである。
0.0010-0.0070%, which is considered to be a relatively large amount
The purpose of adding Ca along with REM is to improve lamellar tear resistance and hydrogen-induced cracking resistance.
ao. If the Ca content is less than 0.0010%, the effect of improving such properties is insufficient, and if the Ca content exceeds 0.0070%, it will cause an increase in cluster-like inclusions. Since crackability deteriorates, Ca
% was limited to 0.0010 to 0.0070%. Particularly preferably, Ca% is 0.0020 to 0.0060%. Next, REMO. 0003 to 0.002% of the above C
The reason for adding Ca in combination with a is to eliminate cluster-like B-based inclusions that tend to occur when a relatively large amount of Ca is added alone as described above. As a result, a structural steel can be obtained in which the lamellar tear resistance and hydrogen induced cracking resistance are significantly improved in all parts including the steel core and the lotus coin piece. If REM is less than 0.0003%, the lamellar tear resistance and hydrogen-induced cracking resistance may deteriorate at the bottom of the steel ingot or the surface of the lotus coin when a large amount of Ca is added as described above. But REM is 0.000
By adding 3 to 0.002%, such deterioration is eliminated and significantly superior properties can be obtained. However, RE
If the M content exceeds 0.002%, the above-mentioned combined effect of Ca and REM will disappear, and the lamellar tear resistance and hydrogen-induced cracking resistance will deteriorate again at the bottom of the steel ingot and the surface layer of the lotus coin. There is a tendency to This is the reason why the upper limit of the REM content is limited. C in the above range
The combined addition of a and REM improves the sour environment (pH
5.2) Boats 3.5 to 4 are in a more severe environment than 2).
Even in this case, steel without hydrogen-induced cracking can be obtained regardless of the orientation within the steel ingot.

Ca及びREMの適正な含有範囲を、より明確に示すた
め、実験のデータ一を第1図に示した。第1図の実験で
は、第2表に示すNO.1〜15の各成分の鋼に対し、
図示の含有量のCa及びREMを含有させ、鋼魂のボト
ム片を2仇剛‘こ圧延した鋼板を試料として、人工海水
+舷S75%十C0225%、PH4.0の環境で96
時間浸濃試験をおこなった。本発明の範囲では、水素誘
起割れが生じないことが第1図から明らかである。第
2 表 (化学成分 wt %) 特許請求の範囲第2項においては、特許請求の範第1項
の成分の外にさらにTio.15%以下、Nbo.1%
以下、VO.1%以下、Cuo.7%以下、Nio.3
%以下、Crlo%以下、Mol.0%以下、BO.0
05%以下の群より選ばれた元素を1種又は2種以上を
含有させる必要がある。
In order to more clearly show the appropriate content ranges of Ca and REM, experimental data are shown in FIG. In the experiment shown in FIG. 1, NO. For steel with each component of 1 to 15,
A steel plate containing the contents of Ca and REM as shown in the figure and rolled from a bottom piece of steel soul 2 times was used as a sample.
A time immersion test was conducted. It is clear from FIG. 1 that hydrogen-induced cracking does not occur within the scope of the present invention. No.
Table 2 (Chemical components wt %) In claim 2, in addition to the components in claim 1, Tio. 15% or less, Nbo. 1%
Below, VO. 1% or less, Cuo. 7% or less, Nio. 3
% or less, Crlo% or less, Mol. 0% or less, BO. 0
It is necessary to contain one or more elements selected from the group 0.05% or less.

これらの元素は何れも構造用鋼として、強度、靭性、溶
接性を確保する他、Z方向の耐水素割れ性をさらに向上
するために添加されるものである。以下に各元素ごとに
その添加理由及び成分限定理由を述べる。
All of these elements are added to structural steel to ensure strength, toughness, and weldability, as well as to further improve hydrogen cracking resistance in the Z direction. The reasons for adding each element and the reasons for restricting the components will be described below.

まずTi添加の目的は鋼を細粒化することによって耐ラ
メラーテア性と耐水素割れ抵抗及び強度・鋤性、溶接性
を向上させることにある。
First, the purpose of adding Ti is to improve lamellar tear resistance, hydrogen cracking resistance, strength, plowability, and weldability by making the steel grain finer.

0.15%超の添加ではTICの粗大な析出を起し、か
えって水素誘起割れ抵抗を低下させるのでその上限を0
.15%とした。
Addition of more than 0.15% causes coarse precipitation of TIC and reduces hydrogen-induced cracking resistance, so the upper limit should be set at 0.
.. It was set at 15%.

次にNb添加の目的もTiと同様鋼を細粒化することに
よって耐ラメラーテア性と耐水素割れ抵抗及び強度・靭
性、溶接性を向上させることにある。
Similarly to Ti, the purpose of adding Nb is to improve lamellar tear resistance, hydrogen cracking resistance, strength, toughness, and weldability by making the steel grain finer.

0.1%超の添加ではNKの粗大な析出を起しかえって
水素誘起割れ抵抗を低下させるのでその上限を0.1%
とした。
Addition of more than 0.1% will cause coarse NK precipitation and reduce hydrogen-induced cracking resistance, so the upper limit should be set at 0.1%.
And so.

又Vも先に述べたTi、Nbと同様に鋼を紬粒化するこ
とによって耐ラメラーテア性と耐水素割れ抵抗及び強度
・級I性、溶接性を向上させるために添加する元素であ
る。
Similarly to Ti and Nb, V is an element added to improve lamellar tear resistance, hydrogen cracking resistance, strength, class I properties, and weldability by granulating steel.

0.1%超の添加ではV4C3の粗大な析出を起し、か
えって水素議起割れ抵抗を低下させるのでその上限を0
.1%とした。
Addition of more than 0.1% will cause coarse precipitation of V4C3, which will actually reduce hydrogen-induced cracking resistance, so the upper limit should be set at 0.
.. It was set at 1%.

さらにCu‘ま耐ラメラーテア性と耐水素割れ抵抗を高
めるため添加する。その機構は鋼中に侵入し、耐ラメラ
ーテア性、耐水素割れ抵抗を下げる拡散性水素量を腐食
皮膜の形成によって低下させることになる。形成される
皮膜にはCuが濃縮された皮膜が形成されることが解っ
ている。上限を0.7%にした理由は、0.7%超では
通常の製造工程において、赤熱脆性を起すからである。
又Niは耐ラメラーテア性と耐水素割れ抵抗をCuと同
様の機構によって高め、強度・鞭性も高めるために添加
する。
Further, Cu' is added to improve lamellar tear resistance and hydrogen cracking resistance. The mechanism is that it penetrates into the steel and reduces the amount of diffusible hydrogen, which lowers lamellar tear resistance and hydrogen cracking resistance, by forming a corrosion film. It is known that the film that is formed is one in which Cu is concentrated. The reason why the upper limit is set to 0.7% is that if it exceeds 0.7%, red heat embrittlement will occur in the normal manufacturing process.
Further, Ni is added to increase lamellar tear resistance and hydrogen cracking resistance through the same mechanism as Cu, and also to increase strength and whipping properties.

Ni添加量は多いほど耐ラメラーテア性を向上させるこ
とが出来るが「構造用鋼としてコストを考えて添加量と
しては3%以下の添加が妥当である。又Crについても
耐ラメラーテア性と耐水素割れ抵抗及び強度4靭性をN
iと同様の機構により向上させるために添加する。
The higher the amount of Ni added, the more the lamellar tear resistance can be improved, but considering the cost as a structural steel, it is appropriate to add 3% or less.Also, for Cr, the lamellar tear resistance and hydrogen cracking resistance Resistance and Strength 4 Toughness N
It is added to improve by the same mechanism as i.

Cr添加量は多いほど耐ラメラーテア性を向上させるこ
とが出来るが、構造用鋼としてコスト的には10%以下
の添加が妥当である。Moについては組織の均一化によ
って耐ラメラーテア性と耐水素割れ性を向上させるため
に添加する。
The larger the amount of Cr added, the more the lamellar tear resistance can be improved, but as a structural steel, it is appropriate to add 10% or less in terms of cost. Mo is added to improve lamellar tear resistance and hydrogen cracking resistance by making the structure uniform.

即ちMo添加によって変態時のオーステナィトからフェ
ライトの析出が粒界から粒内に針状に進むために組織の
単位が小さくなり、未変態オーステナイトが小さく分断
されるため、バンド組織の形成がなく組織の均一化が図
れる。ところがMoを1.0%超添加すると前記禾変態
部がマルテンサィトとなるため、侵入水素により割れを
容易に起す。したがってMoの上限を1%とした。最後
にBは、組織の織粒化により耐ラメラーテア性と耐水素
割れ抵抗の向上及び強度・轍性の向上を図るものである
。即ち冷却過程におけるBNの粒内析出は変態時のオー
ステナィトからフェライトの析出、成長を防ぎ、粒の細
粒化にとって有益である。B添加量が0.005%超に
なると〜 BNの粒内析出が起らずオーステナイト粒界
析出が起こり「フェライト粒の析出「成長を妨げる効果
がなくなる。したがってBの上限0.005%とした。
以上各元素ごとにその添加理由及び限定理由について述
べたが、要はTi〜Nb「 V「 Cu、NLCr、M
o、Bの各元素は、耐ラメラーテア性と耐水素割れ抵抗
及び強度・級性を、紐緒筋紬粒化、侵入水素制御、組織
の均一化等の機構により向上させる目的で添加する元素
である。なお本発明の鋼は通常の製鋼、普通造塊或いは
連続鋳造等の手段により銭塊としたのち通常の圧延工程
を経て、所望の寸法、形状の鋼材とすることができる。
本発明の効果を、さらに詳細に説明するため、以下に実
施例を示す。
That is, with the addition of Mo, the precipitation of ferrite from austenite during transformation progresses from the grain boundary to the grain in a needle-like manner, resulting in smaller microstructure units, and untransformed austenite is divided into small pieces, so that no band structure is formed and the microstructure becomes smaller. Uniformity can be achieved. However, when more than 1.0% of Mo is added, the above-mentioned ferrite-transformed portion becomes martensite, which easily causes cracks due to penetrating hydrogen. Therefore, the upper limit of Mo was set at 1%. Finally, B aims to improve lamellar tear resistance and hydrogen cracking resistance, as well as strength and rutting resistance, by making the structure granular. That is, intragranular precipitation of BN during the cooling process prevents the precipitation and growth of ferrite from austenite during transformation, and is beneficial for grain refinement. When the amount of B added exceeds 0.005%, intragranular precipitation of BN does not occur, but austenite grain boundary precipitation occurs, and the effect of inhibiting the growth of ferrite grains disappears.Therefore, the upper limit of B was set at 0.005%. .
The reasons for addition and limitations for each element have been described above, but the point is that Ti~Nb"V"Cu, NLCr, M
Each of the elements o and B is an element added for the purpose of improving lamellar tear resistance, hydrogen cracking resistance, and strength/grade properties through mechanisms such as string-stripe granulation, control of hydrogen penetration, and uniformity of structure. be. The steel of the present invention can be made into a coin ingot by conventional steel manufacturing, ordinary ingot making, continuous casting, or the like, and then subjected to a conventional rolling process to obtain a steel material with desired dimensions and shape.
Examples are shown below to explain the effects of the present invention in more detail.

実施例 1 第3表の成分の鋼について、鋼塊ボトムより採取した鋼
板について、第5表の環境で、水素誘起割れ試験をおこ
ない、第4表に示す結果を得た。
Example 1 For steel having the components shown in Table 3, a hydrogen-induced cracking test was conducted on a steel plate taken from the bottom of the steel ingot under the environment shown in Table 5, and the results shown in Table 4 were obtained.

第3表(化学成分 wt多 ) 第 4 表 註:上記数字は割れ長さ総長(3断面の平均値:物/2
1.5×20のぞ)を示す。
Table 3 (Chemical composition wt) Table 4 Note: The above numbers are the total crack length (average value of 3 cross sections: material/2
1.5×20).

第 5表 実施例 2 第6表の成分の鋼板(板厚32側)について、耐ラメラ
ーテア性の試験としてZ方向(板厚方向)の引張試験を
おこない、Z方向の絞り値(RAZ値)を求め、それを
第7表に示した。
Table 5 Example 2 A tensile test in the Z direction (thickness direction) was conducted on the steel plate (thickness 32 side) having the composition shown in Table 6 as a lamellar tear resistance test, and the aperture value (RAZ value) in the Z direction was determined. The results are shown in Table 7.

本発明鋼では、すぐれた結果が得られている。第 6表 (化学成分 wt % ) 第7表Excellent results have been obtained with the steel of the invention. Table 6 (Chemical components wt%) Table 7

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、水素誘起割れとCa、REMの含有量の関係
を示す図である。 第1図
FIG. 1 is a diagram showing the relationship between hydrogen-induced cracking and the contents of Ca and REM. Figure 1

Claims (1)

【特許請求の範囲】 1 C0.02〜0.20%、Si0.01〜1.0%
、Mn0.3〜2.0%、S0.0020%以下、P0
.020%以下、酸素0.0035%以下、Alsol
0.15%以下、Ca0.0010〜0.0070%、
REM0.0003〜0.002%を含有し、残部が鉄
及び不可避的不純物より成るZ方向の耐割れ性を向上さ
せた構造用鋼。 2 C0.02〜0.20%、Si0.01〜1.0%
、Mn0.3〜2.0%、S0.0020%以下、P0
.020%以下、酸素0.0035%以下、Alsol
0.15%以下、Ca0.0010〜0.0070%、
REM0.0003〜0.002%を含有し、これに加
えて、Ti0.15%以下、Nb0.1%以下、V0.
1%以下、Cu0.7%以下、Ni3.0%以下、Cr
10%以下、Mo1.0%以下、B0.005%以下の
群より選ばれた元素を1種又は2種以上含有させ、残部
鉄及び不可避的不純物より成るZ方向の耐割れ性を向上
させた構造用鋼。
[Claims] 1 C0.02-0.20%, Si0.01-1.0%
, Mn0.3-2.0%, S0.0020% or less, P0
.. 020% or less, oxygen 0.0035% or less, Alsol
0.15% or less, Ca0.0010-0.0070%,
Structural steel with improved cracking resistance in the Z direction, containing 0.0003 to 0.002% REM, with the remainder consisting of iron and unavoidable impurities. 2 C0.02-0.20%, Si0.01-1.0%
, Mn0.3-2.0%, S0.0020% or less, P0
.. 020% or less, oxygen 0.0035% or less, Alsol
0.15% or less, Ca0.0010-0.0070%,
Contains REM 0.0003 to 0.002%, and in addition, Ti 0.15% or less, Nb 0.1% or less, V0.
1% or less, Cu 0.7% or less, Ni 3.0% or less, Cr
It contains one or more elements selected from the group of 10% or less, Mo 1.0% or less, B 0.005% or less, and the cracking resistance in the Z direction is improved, with the balance being iron and unavoidable impurities. Structural steel.
JP54131767A 1979-10-15 1979-10-15 Structural steel with improved cracking resistance in the Z direction Expired JPS6013419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54131767A JPS6013419B2 (en) 1979-10-15 1979-10-15 Structural steel with improved cracking resistance in the Z direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54131767A JPS6013419B2 (en) 1979-10-15 1979-10-15 Structural steel with improved cracking resistance in the Z direction

Publications (2)

Publication Number Publication Date
JPS5658948A JPS5658948A (en) 1981-05-22
JPS6013419B2 true JPS6013419B2 (en) 1985-04-06

Family

ID=15065681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54131767A Expired JPS6013419B2 (en) 1979-10-15 1979-10-15 Structural steel with improved cracking resistance in the Z direction

Country Status (1)

Country Link
JP (1) JPS6013419B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215744A (en) * 1984-04-10 1985-10-29 Nippon Steel Corp Hydrogen-resistant low alloy steel for high temperature and high pressure service
JPS61124555A (en) * 1984-11-20 1986-06-12 Nippon Steel Corp Steel superior in sour resistance
JPS6289809A (en) * 1985-04-25 1987-04-24 Kawasaki Steel Corp Manufacture of steel for pressure vessel having superior resistance to hydrogen induced cracking
CN102418037B (en) * 2011-12-02 2013-04-24 莱芜钢铁集团有限公司 Hot-rolled H-section steel with lamellar tearing resistance and manufacturing method thereof
CN112921248A (en) * 2021-02-08 2021-06-08 新疆八一钢铁股份有限公司 Production method of high-toughness anti-layer-tearing Z-direction steel with thickness of 50mm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492511A (en) * 1977-12-29 1979-07-21 Kawasaki Steel Co Steel having good hydrogenninduced crack resistivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492511A (en) * 1977-12-29 1979-07-21 Kawasaki Steel Co Steel having good hydrogenninduced crack resistivity

Also Published As

Publication number Publication date
JPS5658948A (en) 1981-05-22

Similar Documents

Publication Publication Date Title
US4153454A (en) Steel materials having an excellent hydrogen induced cracking resistance
JP7219882B6 (en) Steel material for pressure vessel and its manufacturing method
EP1081244B1 (en) High strength, low alloy, heat resistant steel
CA1184402A (en) Ferritic stainless steel having good corrosion resistance
US4675156A (en) Structural austenitic stainless steel with superior proof stress and toughness at cryogenic temperatures
US4802918A (en) Case hardened steel and method of manufacturing the same
JP3732424B2 (en) Manufacturing method of hot-rolled steel sheet with high weather resistance and high workability
JPS6013419B2 (en) Structural steel with improved cracking resistance in the Z direction
JPS6145697B2 (en)
KR20210080698A (en) Fitting part having excellent resistance to hydrogen induced cracking and manufacturing method for the same
TWI768941B (en) Precipitation hardening type Matian iron-based stainless steel sheet with excellent fatigue resistance
JPH07136748A (en) Production of high corrosion resistance steel for resistance welded steel tube
JPH11279684A (en) High tensile strength steel for welding, excellent in toughness in extra large heat input weld heat-affected zone
JPH09176730A (en) Production of thick steel plate excellent in toughness
JPS5919179B2 (en) Steel for line pipes with excellent wet carbon dioxide corrosion resistance
JPH0218379B2 (en)
JPH08232042A (en) Corrosion resisting steel for resistance welded tube
JPS6289809A (en) Manufacture of steel for pressure vessel having superior resistance to hydrogen induced cracking
JPH0465141B2 (en)
JP3141646B2 (en) Austenitic stainless steel for nitric acid containing environment
JP3513001B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
KR100470050B1 (en) High strength steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same
JPS5835255B2 (en) Structural low alloy steel
JPS62243737A (en) Steel sheet having superior resistance to hydrogen induced cracking
KR20040058582A (en) High strength steel plate with superior HAZ toughness for high heat input welding and method for manufacturing the same