JPS6013407B2 - Method for manufacturing steel materials with excellent pickling properties - Google Patents

Method for manufacturing steel materials with excellent pickling properties

Info

Publication number
JPS6013407B2
JPS6013407B2 JP7717180A JP7717180A JPS6013407B2 JP S6013407 B2 JPS6013407 B2 JP S6013407B2 JP 7717180 A JP7717180 A JP 7717180A JP 7717180 A JP7717180 A JP 7717180A JP S6013407 B2 JPS6013407 B2 JP S6013407B2
Authority
JP
Japan
Prior art keywords
scale
powder
amount
sic
secondary scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7717180A
Other languages
Japanese (ja)
Other versions
JPS572829A (en
Inventor
元治 中村
壽男 小田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7717180A priority Critical patent/JPS6013407B2/en
Publication of JPS572829A publication Critical patent/JPS572829A/en
Publication of JPS6013407B2 publication Critical patent/JPS6013407B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】 本発明は酸洗性の優れた鋼材の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing steel materials with excellent pickling properties.

一般に鋼材の製造はスラブ、ビームブランク、ビレット
、ブルーム、の如く被加熱鋼材を加熱炉に装入し、90
0〜140000で数時間加熱し、その後圧延して製造
する。
In general, steel products are produced by charging steel materials to be heated, such as slabs, beam blanks, billets, and blooms, into a heating furnace.
It is manufactured by heating at 0 to 140,000 for several hours and then rolling.

上記加熱炉での加熱によって通常材は0.5〜1.5%
、高温加熱材では3〜5%ほどスケールが発生するが、
これら加熱炉で生じるスケールを1薄皮に1次スケール
と呼んでおり、この1次スケールは、熱間圧延時スケー
ルブレーカー通過時点で大部分は除去される。一方その
後引続く圧延中及び圧延後、新たにスケールが形成され
るが、これを一般に2次スケールとよんでいる。熱延材
の多くはその後酸洗ラインを通り、2次スケール溶解し
て除去し、さらに冷間圧延して磨材あるいはメッキ原板
として使用する。一般に酸洗にはHCI液が使用されて
いるが、塩酸のコストの高い事もさる事ながら、公害防
止面から簾酸処理にかける費用も大きく、トータル処理
費用はきわめて膨大で、鋼材製造コストにしめる割合は
実に大きい。
By heating in the above heating furnace, the normal material becomes 0.5 to 1.5%.
, scale occurs by about 3 to 5% in high-temperature heating materials,
The scale generated in these heating furnaces is called primary scale, and most of this primary scale is removed when the sheet passes through a scale breaker during hot rolling. On the other hand, new scale is formed during and after subsequent rolling, and this is generally called secondary scale. Most of the hot-rolled materials are then passed through a pickling line to dissolve and remove secondary scale, and are then cold-rolled and used as polishing materials or plated plates. Generally, HCI liquid is used for pickling, but in addition to the high cost of hydrochloric acid, the cost of sulfuric acid treatment is also large from the perspective of pollution prevention, and the total treatment cost is extremely large, which adds up to the steel manufacturing cost. The proportion is really large.

したがって、酸洗工程を省略あるいは簡略化することは
極めて有益なことであるが、従来からの努力にもかかわ
らず、満足すべき結果は得られていない。即ち、例えば
ホットコイルを巻取後水にディップし急冷したり、ある
いは熱延時にCa、M乳ヒ合物を塗布しスケール内にC
a、Mgなどを徴量混在せしめ、Fe0→QFe+Fe
304の変態を押え、2次スケールの溶解速度を向上さ
せる、などの検討が行なわれてきたが、1部効果の向上
は認められるものの充分とは言えず、また、2次スケー
ルの量はかわらないため、塩酸原単位は低減しない。
Therefore, it would be extremely beneficial to omit or simplify the pickling step, but despite past efforts, satisfactory results have not been achieved. That is, for example, after winding a hot coil, it is dipped in water to rapidly cool it, or during hot rolling, a mixture of Ca and M milk is applied to form a C in the scale.
a, Mg, etc. are mixed, Fe0→QFe+Fe
Studies have been carried out on suppressing the transformation of 304 and improving the dissolution rate of secondary scale, but although some improvement has been recognized, it is not sufficient, and the amount of secondary scale is still low. Therefore, the basic unit of hydrochloric acid will not be reduced.

上記の実情にかんがみ、本発明者等は種々検討した結果
、2次スケール量を1′a〆下に押え、かつ、2次スケ
ールの溶解速度を5倍以上にする事に成功したものであ
る。以下本発明についてくわしく説明する。
In view of the above circumstances, the present inventors conducted various studies and succeeded in suppressing the amount of secondary scale to less than 1'a and increasing the dissolution rate of secondary scale by more than 5 times. . The present invention will be explained in detail below.

本発明の要旨は加熱炉挿入前の被加熱鋼材、例えばスラ
ブ表面に前処理剤(2次スケール酸洗性向上剤)を塗布
し、その上に酸化防止剤を塗布して加熱・圧延する点に
ある。
The gist of the present invention is to apply a pretreatment agent (secondary scale pickling property improver) to the surface of the steel material to be heated, for example, a slab, before inserting it into a heating furnace, and to apply an antioxidant thereon, followed by heating and rolling. It is in.

本発明者等は多くの検討を重ねた結果、SICの粉末と
AI203の微粉末を混合し、スラブ表面に特定量塗布
し、さらに酸化防止剤を塗布して加熱・圧延すると2次
スケールの酸洗性が大中に向上する事をみし、だした。
As a result of many studies, the inventors of the present invention found that by mixing SIC powder and fine powder of AI203, applying a specific amount to the surface of the slab, and then applying an antioxidant and heating and rolling, secondary scale acid We created this product because we thought it would greatly improve washability.

第1図及び第2図は下記条件で得た鋼材におけるSIC
及び山203の粉末の混合割合と、2次スケール酸洗性
に与える影響及び2次スケール生成量に与える影響を示
したものである。第1図及び第2図から明らかなように
SICと山203の混合割合がSic等2辛軍。
Figures 1 and 2 show the SIC of steel materials obtained under the following conditions.
2 shows the mixing ratio of the powders in the piles 203 and 203, and the effects on the pickling properties of secondary scales and the effects on the amount of secondary scales produced. As is clear from Figures 1 and 2, the mixing ratio of SIC and Yama 203 is 2 spicy such as SIC.

3×・oo=20〜80(%)の場合に効果が顕著で無
処理の場合の2次スケール生成量80夕/め以上に対し
て2次スケール量は1/2〆下になり、又SIC単独の
場合に比較しても大中な2次スケール減となっている。
The effect is remarkable when 3×・oo=20 to 80 (%), and the amount of secondary scale is 1/2 lower than the amount of secondary scale generated of 80 evenings/day or more in the case of no treatment, and Even compared to the case of SIC alone, there is a large to medium reduction in secondary scale.

一方スケールの熔解速度は無処理の場合の5町砂以上に
比較して5倍以上になると共にSIC単独の場合に比較
しても大中な効果の向上が認められる。第3図、第4図
及び第5図、第6図は使用するSIC粉と、AI203
粉の粒度の及ぼす影響を調べたものである。
On the other hand, the scale melting rate is more than 5 times that of 5-machi sand or more without treatment, and even compared to the case of SIC alone, it is recognized that the effect is significantly improved. Figures 3, 4, 5, and 6 show the SIC powder used and AI203.
This study investigated the influence of powder particle size.

加熱条件:圧下比;巻取温度:酸化防止剤の諸条件は第
1図の場合と同じである。先ず、第3図及び第4図はS
IC粉末とN203(粒度2仏)の粉末を1:1(重量
比)の割合で混合し、混合粉塗布量200タ′〆塗布し
た場合についてSIC粉末の粒度の2次スケール酸洗性
及び2次スケール生成量に与える影響について示した。
第3図及び第4図から明らかなようにSICの粒の大き
さが7.呼以下になると優れた酸洗性及び2次スケール
生成量減少効果を示す事が判る。次に第5図及び第6図
は平均2仏のSICの微粉末にAI203の粉末を1:
1(重量比)の割合で混合し、200夕/淋塗布した場
合についてAI203粉末の粒度の2次スケール酸洗性
及び2次スケール生成量に与える影響について示した。
第5図及び第6図から明らかなように山203の粒の大
きさは5〆以下になると優れた効果を示す事が判る。次
にSICとM203を混合した粉末の塗布量の2次スケ
ール酸洗性及び2次スケール生成量に与える影響を第7
図、第8図に示す。塗布量が20夕/め以上600夕/
約以下がもっとも効果的である。鋼材の加熱条件;圧下
比、巻取温度、酸化防止剤の諸条件は第1図の場合と同
じである。SIC:山2031:1(重量比)SIC、
AI203=2舷である。上記混合粉末のスラブ表面へ
の塗布にあたってt混合粉末をそのまま水でとし、て必
要量塗布してもよく、また、水ガラス、ポリリン酸、テ
トラポリリン酸、テトラポリリン酸ソーダ、コロィダル
シリカ、アルミナゾルなどの無機系粘結剤あるいは各種
水溶性樹脂、造膜剤、増粘剤などの有機物を適当量混合
し、塗布すればよい。
Heating conditions: rolling ratio; winding temperature: conditions for antioxidant are the same as in the case of FIG. First, Figures 3 and 4 are S
When IC powder and N203 (particle size 2 French) powder are mixed at a ratio of 1:1 (weight ratio) and the mixed powder is coated with a coating amount of 200 ta', the secondary scale pickling property of the particle size of SIC powder and 2 The effect on the amount of next scale production is shown.
As is clear from FIGS. 3 and 4, the grain size of the SIC is 7. It can be seen that when the temperature is below 100 mL, excellent pickling properties and the effect of reducing the amount of secondary scale formation are exhibited. Next, in Figures 5 and 6, 1:1 of AI203 powder is added to SIC fine powder with an average weight of 2:
The influence of the particle size of AI203 powder on the secondary scale pickling property and the amount of secondary scale produced is shown in the case where the powders were mixed at a ratio of 1 (weight ratio) and applied 200 times/day.
As is clear from FIGS. 5 and 6, excellent effects are exhibited when the grain size of the peaks 203 is 5 mm or less. Next, we investigated the influence of the amount of powder mixed with SIC and M203 on the secondary scale pickling property and the amount of secondary scale formed.
As shown in FIG. Application amount is 20 evenings/me or more and 600 evenings/
Approximately below is most effective. The heating conditions for the steel material; rolling ratio, coiling temperature, and antioxidant conditions are the same as in the case of FIG. 1. SIC: Mountain 2031:1 (weight ratio) SIC,
AI203=2 sides. When applying the above mixed powder to the slab surface, the mixed powder may be diluted with water and applied in the required amount, or water glass, polyphosphoric acid, tetrapolyphosphoric acid, sodium tetrapolyphosphate, colloidal silica, alumina sol, etc. Appropriate amounts of inorganic binders or organic substances such as various water-soluble resins, film-forming agents, and thickeners may be mixed and applied.

また、本発明は上記混合粉をスラブ表面に塗布し、その
上にさらに酸化防止剤を塗布して加熱する。
Further, in the present invention, the above-mentioned mixed powder is applied to the surface of the slab, and an antioxidant is further applied thereon and heated.

酸化防止剤を塗布せず上記混合粉のみ塗布して加熱した
場合、混合粉による層のみでは酸化防止能をそれぞれ有
さないため、加熱時に多量の1次スケールが生成し、ス
ケールブレーカー通過時点で1次スケール共に除去され
て混合粉の2次スケール酸洗性向上に与える効果は薄れ
る。従って酸化防止剤を塗布する事により、加熱時の1
次スケールを防止するものである。
If only the above mixed powder is applied and heated without applying an antioxidant, the layer of the mixed powder alone does not have antioxidant ability, so a large amount of primary scale is generated during heating, and when it passes through the scale breaker, Since both the primary scale and the primary scale are removed, the effect on improving the secondary scale pickling properties of the mixed powder is diminished. Therefore, by applying an antioxidant, it is possible to
This is to prevent the next scale.

尚、酸化防止剤はスケールブレーカー通過時点で除去さ
れる。使用する酸化防止剤は大気遮断特性の優れている
ものであればいずれを使用してもよい。以上説明したよ
うに本発明により、2次スケール酸洗性をいちじるしく
向上する事が出釆、2次スケールの溶解速度は5倍以上
に向上するため、高速で酸洗ラインを通板出来〜多量の
増産が可能となり、また、2次スケール量が1/2以下
に減るため、酸(塩酸or硫酸)の使用量が1′2以下
になるため、酸原単位はそのまま1′雄〆下となり、そ
の経済的効果はきわめて大きい。実施例 1 磨原板ホットコイル用スラブの表面に平均5〆の粒度の
SIC粉と平均粒度1仏の山203粉を1:1(重量比
)に混合し、微量の水溶性樹脂と混合してSIC粉とN
203粉の混合物の塗布量が200タ′あとなる様に塗
布し、その上に酸化防止剤を0.6k9/の塗布し、1
215oo×5.軌功ロ熱後・圧延して710℃でまき
とりホットコイルを製造した。
Note that the antioxidant is removed when passing through the scale breaker. Any antioxidant may be used as long as it has excellent atmospheric barrier properties. As explained above, the present invention significantly improves the secondary scale pickling performance, and the dissolution rate of secondary scale is improved by more than 5 times, so it is possible to pass through the pickling line at high speed. In addition, since the amount of secondary scale is reduced to less than 1/2, the amount of acid (hydrochloric acid or sulfuric acid) used is less than 1'2, so the acid consumption rate remains 1' less. , its economic effects are extremely large. Example 1 SIC powder with an average particle size of 5〆 and average particle size 1 Butsunoyama 203 powder were mixed in a 1:1 (weight ratio) on the surface of a slab for polishing plate hot coil, and mixed with a small amount of water-soluble resin. SIC powder and N
Apply the mixture of 203 powder so that the coating amount is 200 ta', then apply 0.6k9/ of antioxidant on top of it, and
215oo x 5. After heating and rolling, it was rolled at 710°C to produce a hot coil.

2次スケールの量を測定した結果19夕/めであった。The amount of secondary scale was measured and the result was 19 evenings/day.

また、90午○、10%HCI液で2次スケールの溶解
時間を測定した結果、スケールがすべてとげ終るのに要
する時間はほぼ8秒であった。これに対し、同一スラブ
で無処理材(裸材)を同条件で加熱・圧延したところ、
2次スケール量はほぼ86夕/めであった。また、同条
件で酸洗した結果、スケールがすべてとげ終るのにほぼ
51秒要した。実施例 2メッキ原板ホットコイル用ス
ラブの表面に平均4山の粒度のSIC粉と平均粒度1.
秋のAI203粉を1:3(重量比)に混合し、徴量の
水溶性樹脂を混合してSIC粉とAI203の混合物の
塗布量が100タ′あとなる様に塗布し、その上に酸化
防止剤を0.7X9′で塗布し、1200oo×5.皿
功ロ熱後:圧延して560qoでまきとりホットコイル
を製造した。
Further, as a result of measuring the dissolution time of the secondary scale with a 10% HCI solution at 90:00, it was found that the time required for all the scale to thorn off was approximately 8 seconds. In contrast, when untreated material (bare material) was heated and rolled under the same conditions in the same slab,
The secondary scale amount was approximately 86 evenings/day. Furthermore, as a result of pickling under the same conditions, it took approximately 51 seconds for all the scale to be removed. Example 2 SIC powder with an average particle size of 4 peaks and an average particle size of 1.
Mix the autumn AI203 powder at a ratio of 1:3 (weight ratio), mix it with a certain amount of water-soluble resin, and apply it so that the amount of the mixture of SIC powder and AI203 is 100 tons, and then apply oxidation on top. Apply inhibitor at 0.7 x 9', 1200oo x 5. After heating the plate: It was rolled and rolled at 560 qo to produce a hot coil.

2次スケールの量を測定した結果、7.5夕/めであっ
た。
As a result of measuring the amount of secondary scale, it was 7.5 evenings/day.

また、90qC、10%HCI液で2次スケールの溶解
時間を測定した結果、スケールがすべて溶け終るのに要
する時間はほぼ4秒であった。これに対し、同一スラブ
で無処理材(裸村)を同条件で加熱・圧延したところ、
2次スケール量はほぼ4M/めであった。また、同条件
で酸洗した結果、スケールがすべてとげ終るのにほぼ2
4秒要した。
Further, as a result of measuring the dissolution time of the secondary scale with a 90qC, 10% HCI solution, the time required for all the scale to completely dissolve was approximately 4 seconds. On the other hand, when untreated material (Namura) was heated and rolled under the same conditions using the same slab,
The amount of secondary scale was approximately 4M/m. In addition, as a result of pickling under the same conditions, it took about 2 hours to remove all the scales.
It took 4 seconds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はSIC粉とAI203粉の混合割合
と2次スケール酸洗時間及び2次スケール生成量との関
係を示す図表。 第3図、第4図及び第5図、第6図はSIC粉、AI2
Q粉の粒度と2次スケール酸洗時間及び2次スケール生
成量との関係を示す図表。第7図及び第8図はSIC粉
とAI203粉の混合物の塗布量と2次スケール酸洗時
間及び2次スケール生成量との関係を示す図表である。
多′図家2図 茅う図 孝ぐ図 多3図 多6図 多7図 第8図
FIGS. 1 and 2 are charts showing the relationship between the mixing ratio of SIC powder and AI203 powder, secondary scale pickling time, and secondary scale production amount. Figures 3, 4, 5, and 6 are for SIC powder, AI2
A chart showing the relationship between the particle size of Q powder, secondary scale pickling time, and secondary scale production amount. FIGS. 7 and 8 are charts showing the relationship between the amount of the mixture of SIC powder and AI203 powder applied, the secondary scale pickling time, and the amount of secondary scale produced.
Many drawings 2 drawings Kaya drawing filial drawings 3 drawings 6 drawings 7 drawings 8th figure

Claims (1)

【特許請求の範囲】 1 7μ以下のSiCの粉末と5μ以下のAl_2O_
3の粉末を下式に従い混合し被加熱鋼材の表面に20〜
600(g/m^2)存在せしめると共に、その上に酸
化防止剤の層を形成せしめて加熱し圧延する事を特徴と
する酸洗性の優れた鋼材の製造方法。 (Al_2O_3)/(SiC+Al_2O_3)×1
00=20〜80(%)
[Claims] 1 SiC powder of 7μ or less and Al_2O_ of 5μ or less
3. Mix the powder according to the formula below and apply it to the surface of the heated steel material.
600 (g/m^2) and forming a layer of antioxidant thereon, followed by heating and rolling. (Al_2O_3)/(SiC+Al_2O_3)×1
00=20~80(%)
JP7717180A 1980-06-10 1980-06-10 Method for manufacturing steel materials with excellent pickling properties Expired JPS6013407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7717180A JPS6013407B2 (en) 1980-06-10 1980-06-10 Method for manufacturing steel materials with excellent pickling properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7717180A JPS6013407B2 (en) 1980-06-10 1980-06-10 Method for manufacturing steel materials with excellent pickling properties

Publications (2)

Publication Number Publication Date
JPS572829A JPS572829A (en) 1982-01-08
JPS6013407B2 true JPS6013407B2 (en) 1985-04-06

Family

ID=13626342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7717180A Expired JPS6013407B2 (en) 1980-06-10 1980-06-10 Method for manufacturing steel materials with excellent pickling properties

Country Status (1)

Country Link
JP (1) JPS6013407B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071756A (en) * 1983-09-22 1985-04-23 フオルクスアイグナ− ベトリ−プ フオルスタ−トウフアブリケン Fibrous flat structure having surface effect
JPH11169905A (en) * 1997-12-05 1999-06-29 Mitsubishi Heavy Ind Ltd Method for suppressing generation of scale in hot finishing mill and device therefor
CN105177248A (en) * 2015-08-28 2015-12-23 济南昊泽环保科技有限公司 High-temperature-resistant oxidation and decarbonization preventing coating for workpiece

Also Published As

Publication number Publication date
JPS572829A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
DE60211542T2 (en) METHOD FOR THE CONTINUOUS MOLDING OF ELECTRIC BELT WITH CONTROLLED SPRAY COOLING
DE69703590T2 (en) METHOD FOR PRODUCING CORNORIENTED ELECTRICALLY CONDUCTING STEEL SHEET WITH HIGH MAGNETIC PROPERTIES
CN107201478B (en) A kind of Ultra-low carbon orientation silicon steel preparation method based on reducing twin-roll thin strip continuous casting technology
TW469180B (en) Cold rolled steel
FR2439238A1 (en) PROCESS FOR THE PRODUCTION OF ORIENTED SILICON STEEL FROM BAR-MOLDED SLABS
JPS6013407B2 (en) Method for manufacturing steel materials with excellent pickling properties
DE1954773A1 (en) Process for the production of oriented magnetic steel sheets with low iron losses
DE60320448T2 (en) METHOD FOR PRODUCING A SILICONALLY CORRORATED ELECTRO-STEEL PLATE WITH SUPERIOR RE-MAGNETIZATION LOSS CHARACTERISTIC
JPS5928525A (en) Manufacture of cube-on-edge silicon steel
DE2334739C3 (en) Process for the production of magnetic sheets with a Goss texture
JPH05306438A (en) Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JP3412959B2 (en) Method for producing mirror-oriented silicon steel sheet with low iron loss
JPS5920729B2 (en) Method for manufacturing steel materials with extremely excellent pickling properties
JPS5577910A (en) Manufacture through continuous annealing of cold rolled steel sheet for drawing work
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
US3756867A (en) Method of producing silicon steels with oriented grains by coiling with aluminum strip
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
US4482401A (en) Method for producing cube-on-edge oriented silicon steel
US4381251A (en) Oxidation inhibitor
JP3067895B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JP2826005B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2001234246A5 (en)
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPH08239770A (en) Coating agent for forming insulating film on silicon steel sheet and grain-oriented silicon steel sheet