JPS60133897A - Automatic and continuous identification, classification and counting method of fine particles - Google Patents

Automatic and continuous identification, classification and counting method of fine particles

Info

Publication number
JPS60133897A
JPS60133897A JP59250377A JP25037784A JPS60133897A JP S60133897 A JPS60133897 A JP S60133897A JP 59250377 A JP59250377 A JP 59250377A JP 25037784 A JP25037784 A JP 25037784A JP S60133897 A JPS60133897 A JP S60133897A
Authority
JP
Japan
Prior art keywords
automatically
microscopic particles
continuously
classifying
particles according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59250377A
Other languages
Japanese (ja)
Inventor
ピエール ブリユル
リシヤール エムリナ
ドウニ ル ゴツフ
デイデイエ パリツクス
イヴアン グラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANTERU ANFUORUMATEITSUKU SOC
Original Assignee
ANTERU ANFUORUMATEITSUKU SOC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANTERU ANFUORUMATEITSUKU SOC filed Critical ANTERU ANFUORUMATEITSUKU SOC
Publication of JPS60133897A publication Critical patent/JPS60133897A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Image Processing (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に動物及び植物由来の微生物(但し、これ
らに限定されるものではない)等、非常に微細な寸法の
微細子を自動的に同定、分類(Sort out)及び
計数し、1qられた結果が(例えば牛乳又は血液等の)
生物学的分析やく例えば工業廃液又は飲料水の浄水場の
自動パイロット等にa31ブる)細菌汚染の自動制御等
種種の分野に用いられる新規の方法に関する。この新規
の方法は正確さ、迅速さ及び低コス1へという点で特徴
がある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for automatically collecting microparticles of very fine size, particularly, but not limited to, microorganisms of animal and plant origin. Identification, sorting (sort out), counting, and 1q results (for example, milk or blood)
The present invention relates to new methods for use in a variety of fields, such as biological analysis and automatic control of bacterial contamination, such as automatic pilots in industrial effluent or drinking water treatment plants. This new method is characterized by accuracy, rapidity and low cost.

[従来の技術1 同様の結果を意図した種々の方法が既に公知である。例
えば、人血分析の場合には、通常の方法ではまず最初に
様々な機械的処理や化学的処理により手で各サンプルを
準備し、それから顕微鏡で各サンプルを調べて調査対象
たる種々の細胞素子を分析・計数する。このような方法
には時間が1卦かるし面倒でもあり、しかも20〜30
%の認識錯誤がある。
[Prior Art 1] Various methods aiming at similar results are already known. For example, in the case of human blood analysis, the usual method is to first prepare each sample by hand through various mechanical and chemical treatments, and then examine each sample under a microscope to identify the various cellular elements being investigated. Analyze and count. This method takes about 1 hexagram of time and is troublesome, and it takes about 20 to 30 hours.
There is a misunderstanding of %.

同様に、液体中の細菌を分析・計数づ−るためには、A
ペレータはまず最初に液体のサンプルを採取し、次いで
細菌検出用に特に造られた培養基に各々植えつけ(この
作業が時間が掛かり、数時間もの時間遅延をもたらす)
、そして最後に既知の形態や形状に比してm++菌を分
析・組数する。これにも上記と同様な限界や不便さがあ
る。
Similarly, in order to analyze and count bacteria in liquid, A
The pelleter first collects a sample of the liquid and then inoculates each in a culture medium specifically designed for bacterial detection (this process is time-consuming and can result in time delays of several hours).
, and finally analyze and count the m++ bacteria in comparison with known forms and shapes. This also has the same limitations and inconveniences as above.

U本発明が解決しようとする問題点] 一般に、今までのところ迅速且つ連続的に所望の結果を
生み出でことができ、しがも人的な錯誤を避けることの
できる上記種類の自動的且つ反復的方法はない。
U Problems to be Solved by the Present Invention In general, automation of the above type has hitherto been able to rapidly and continuously produce the desired results, while avoiding human error. And there is no iterative method.

本発明は掛かる自動的且つ反復的な方法を提供すること
を目的とする。
The present invention aims to provide such an automatic and iterative method.

[問題点を解決するだめの手段j このような目的を達成するため、本発明によれば、原理
が他の用途で個々に公知である操作を一連に組合わせて
いる。
[Means for solving the problem j] To achieve this object, according to the invention, a series of operations whose principles are individually known for other applications are combined.

最初の操作は、一連のサンプルを準備し、連続する台上
に自動的且つ連続的に配し、各リーンプルを連続して記
録するビデオシステムの探査路上で分類することから成
る。
The first operation consists of preparing a series of samples, placing them automatically and sequentially on successive platforms and sorting them on the track of a video system that records each lean pull in succession.

第2の操作は、特定の光学素子を介し顕微鏡によって与
えられる像を、ビデオカメラによって前記した記録をす
ることがら成る。
The second operation consists of recording the image given by the microscope through a particular optical element by means of a video camera, as described above.

第3の操作は、多数の横行と桁行とを右する基盤状レイ
アウトにより各サンプルの像を分解し、従来の技術によ
り各サンプルを分析するため各サンプルに対し所定但の
明らかに確認される域、即ち「画素」を画定することが
ら成る。
The third operation is to decompose the image of each sample by a matrix layout that includes a number of rows and columns, and to analyze each sample by conventional techniques, so that a predetermined but clearly identified area is determined for each sample. , that is, defining a "pixel".

第4の操作は各画素の照度レベルに従ってコンピュータ
により前記した像分析をすることがら成り、各サンプル
の分析結果は統si学的に処理してからプリンタ上にデ
ジタル化することにより、任意時間における分析結果を
知ることができるばかりでなく結果の進展を経時的にた
どることもできる。
The fourth operation consists of performing the above-mentioned image analysis by computer according to the illuminance level of each pixel, and the analysis results of each sample are systematically processed and then digitized on a printer so that they can be used at any time. Not only can you see the analysis results, but you can also follow the progress of the results over time.

これら様々な操作の処理には多数の観察が必要である。Processing these various operations requires a large number of observations.

第1の操作における観察 各」ノンプルは台上に置かれる前に理化学的な処理を受
ける。この準備は対象物の通常の処理に似たものである
が、幾つかの点で異なっている。
Observation in the first operation Each non-pule undergoes physical and chemical treatment before being placed on the table. This preparation is similar to the normal processing of objects, but differs in several respects.

例えば、従来技術では「着色」過程は細菌等の細胞の全
範囲をこれらの生長状態又は生死に関わりなく明らかに
することのみが目的である。
For example, in the prior art, the "coloring" process is only intended to reveal the full extent of cells, such as bacteria, regardless of their growth status or whether they are alive or dead.

しかしながら、本発明では、着色は所定の細胞の生育状
態を表示し、それらを人為構造の着色なしに可視化する
ことを目的としている。
However, in the present invention, the coloring is intended to indicate the growth state of a given cell and to visualize them without coloring artifacts.

同様に着色後にエビ螢光処理〔通常は、上方からの紫外
線(UV))をし、それの再放出光線を濾過することに
より、核を含む全ての細胞を分類してそれらを免疫螢光
処理することにより特定的に抽出することができる。
Similarly, after coloring, the shrimp is treated with fluorescent light (usually ultraviolet (UV) light from above) and the re-emitted light is filtered to classify all cells, including the nucleus, and immunofluorescently treat them. By doing so, it is possible to specifically extract the information.

R後に、各ザンプルを粉砕(pulverizatio
n )又は吹付<j (blowing )により連続
づ゛る台上に自動的に、一定厚さ及び一定径である較正
滴(calil+rated drop )の形テ配”
l−ル。iX h 6 (0滴は台上で規則的且つ均質
に拡がり、カメラにより連続的に観察される。例えば、
台は軸線を中心に回転する水平のガラス円板であってよ
く、滴は同心円に配されてこれらの連続的な円に沿って
探査されるか又は半径方向に円状に探査されるようにな
っている。又は、台を供給コイルから繰り出されて受け
コイルに巻き取られる連続するテープで構成し、このユ
ニット全体を使い捨てのカセッ1〜内に収容してもよい
。この後者の場合には、円板の場合のような台の清浄作
業が必要なくなる。一般に、1 mm3で滴数が表わさ
れ、その統計学的結果が次工程のためのサンプル値等と
して選ばれる。各81劃後は台は自動制御された清浄作
業を受(プる。
After R, each sample was pulverized.
Automatically arrange the shape of a rated drop of a constant thickness and a constant diameter on a continuous table by blowing or blowing.
l-le. iX h 6 (0 drops spread regularly and homogeneously on the table and are continuously observed by a camera. For example,
The platform may be a horizontal glass disk rotating about an axis, so that the drops are arranged in concentric circles and probed along these successive circles, or probed radially in circles. It has become. Alternatively, the platform may consist of a continuous tape that is unwound from a supply coil and wound around a receiving coil, and the entire unit may be housed in a disposable cassette 1. In this latter case, there is no need to clean the stand as is the case with discs. Generally, the number of drops is expressed in 1 mm3, and the statistical results are selected as sample values for the next process. After each 81st harvest, the platform undergoes an automatically controlled cleaning process.

第2の操作の観察 特殊な光学素子を備えた顕微鏡の使用とビデオカメラの
使用が組合され、ビデオカメラでとられた撮像が第3の
操作を考慮してミニコンピユータに送られる。顕微鏡は
連続的に情報を送るから、常に正しく焦点台けされてい
ることが必要である。このため、測微ねじか光学素子と
ザンブル台との間に配されて一定の機械的焦点合けを行
なう。顕微鏡は直接紫外線で照らすのが好ましい。何故
なら、観測はカメラによって写真にとられるのであり、
カメラは人の目よりも多くの光を受けることができるか
らである。
Observation of the second operation The use of a microscope with special optical elements and the use of a video camera are combined, and the images taken with the video camera are sent to a minicomputer in view of the third operation. Since a microscope transmits information continuously, it is necessary to keep it in focus at all times. For this purpose, a micrometer screw is placed between the optical element and the samble table to provide constant mechanical focusing. The microscope is preferably illuminated with direct ultraviolet light. This is because observations are photographed by a camera.
This is because cameras can receive more light than the human eye.

第3の操作での観察 カメラにJ:ってとられた4ナンブルの像はコンピュー
タに送られて、複雑ではあるが従来周知である技術によ
って分析される。周知ゆえ、この技術について更に説明
覆る必要はないが、注目すべきことは、像がコンピュー
タの記憶装置に送られるどき〔[捕捉J (aquis
ition) )、最初に対象たる微細子に対応する画
素の照度の最小値を決めな()ればならないことであり
([間決めJ (thresl+olding) ) 
、一旦サンプルに対する閾値が確立されれば、各微細子
の輪郭を知ることができる。しかしながら、本発明が従
来の手作業の技術と根本的に異なるのはこの技術によっ
てであり、従来技術では一連の所定形状のものとの視察
ににる比較に限られていた。この相違か正確さ及び作業
速度の3aいをもたらず。従来の単純な目視による比較
では、作業速度が遅い、不正確である、誤りが生し1q
るどいった欠点があった。
The images of the four numbers taken by the viewing camera in the third operation are sent to a computer and analyzed by complex but well known techniques. It is well known that there is no need to elaborate further on this technique, but it is worth noting that when the image is sent to computer storage,
ition) ), it is first necessary to determine the minimum value of the illuminance of the pixel corresponding to the target microscopic child ().
, once the threshold for the sample is established, the contour of each microscopic particle can be known. However, it is through this technique that the present invention fundamentally differs from conventional manual techniques, which were limited to visual comparisons with a series of predetermined shapes. This difference does not result in a 3a difference in accuracy and working speed. Traditional simple visual comparisons are slow, inaccurate, and error-prone.
It had some flaws.

この操作の次の過程はこのようにして画定された微細子
の、寸法及び形状に応じた分類である。このような分類
が名演に対して行なわれ、名演の結果が統泪学的に処理
されるので、任意時にお()る又経時的展開を通して受
()取られる情報が非常に正確なものどなる。
The next step in this operation is the classification of the microscopic particles thus defined according to their size and shape. Since such classification is done for great performances and the results of great performances are synoptically processed, the information received at any given time or through chronological development is extremely accurate. .

勿論、像又は形状分析の全般技術(1−パターン認識J
 (pattern recognition ) )
は全く周知のものどなっており、この技術にa′3いて
公知どなっているその他あらゆる副次的な操作を用いる
ことができる。例えば、より明確な像をjqるため[バ
ックグラウンドノイズ」の除去を考慮した象の予処理や
、象の)濾過、拡張、侵食、又は「骸骨化」(skel
etonizing )がそれであって、これら技術の
全てを各々のケースに応じて用いることができる。
Of course, general techniques for image or shape analysis (1-Pattern Recognition J
(pattern recognition)
is quite well known, and any other sub-operations known in the art can be used in this technique. For example, pre-processing the elephant to take into account the removal of [background noise] in order to obtain a clearer image;
etonizing), and all of these techniques can be used depending on each case.

[実 施 例] 本発明の方法の2つの実施例を挙げることにより、本発
明を更に詳細に説明する。
[Examples] The present invention will be explained in more detail by giving two examples of the method of the present invention.

実施例1 この例においCは、本発明の方法が牛乳中の細菌を調べ
るのに用いられる。
Example 1 In this example, the method of the invention is used to examine bacteria in milk.

この例では、最初の操作が、pH6のオレンジアクリジ
ンによるサンプルの着色から成る。
In this example, the first operation consists of coloring the sample with orange acridine at pH 6.

滴中で観察できるのは、無色の脂肪小滴(fatglo
bules) 、脂肪小滴と形状が類似しているか着色
されている点でそれと異なっている生きている白血球、
棒状の細菌、及び「染色」過程でリボ核酸(RNA)及
びデオキシリボ核酸(DNA)と共に又はそれらなしに
現われ復活可能な円形シェルである。このようにして微
生物の全数と白血球の数を知ることができ、それらはU
V<400μで上方から照らすことによりエビ螢光で同
定されるが、それは600ナノμ程のスペクトルの再放
出の後、)濾過できる。
Colorless fat droplets can be observed in the drops.
bules), living white blood cells that are similar in shape to fat droplets or differ from them in being colored;
Rod-shaped bacteria and circular shells that appear and can be revived with or without ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) during the "staining" process. In this way we can know the total number of microorganisms and the number of white blood cells, which are
Identified by shrimp fluorescence by illuminating from above at V<400μ, it can be filtered (after spectral re-emission as small as 600 nanoμ).

次いで、細菌中の酪酸り[]ストリジウム(clost
ridium butyricum )及び螢光菌(p
seudomonas fluorescens )を
追跡できる。
Next, butyrate []stridium (clost) in bacteria
ridium butyricum ) and fluorescent bacteria (p.
seudomonas fluorescens).

両者は探査対象の細菌に対応する血清と特定の着色別を
用いIC免疫螢光法により抽出できる。
Both can be extracted by IC immunofluorescence using serum corresponding to the bacteria to be investigated and a specific coloring.

次に以下の操作を常に低温でサンプルに対して行なう。Next, perform the following operations on the sample at a constant low temperature.

(a)1%のシアン化物と10%のオレンジアクリジン
をサンプルに加え、反応生成物の滴に操作2及び操作3
を施して両微生物を得ることができる。
(a) Add 1% cyanide and 10% orange acridine to the sample and add droplets of reaction product to step 2 and step 3.
Both microorganisms can be obtained by applying

山〉 操作(ωを着色せずに繰返すことによって螢光菌
のみを得ることができる。
By repeating the procedure (ω without coloring), only fluorescent bacteria can be obtained.

(C) 操作(a)を、オレンジアクリジンと特異着色
面Φの両方を加え゛C繰返すことによって酪酸クロスト
リジウムのみを得ることができる。
(C) Only Clostridium butyrate can be obtained by repeating operation (a) by adding both orange acridine and the specific colored surface Φ.

上記操作(a)、山〉、(C)いずれの過程を選んでも
顕微鏡によって得られた像をカメラによって撮像するこ
とができ、撮像はコンピュータの記憶装置を介し、横行
×縦行が512X 512であって262.144個の
点即ち画素を表わす矩形切込みの形で送られる。各点の
深さ、即ら受光量は数字、即ち「ビット」で表わされる
。この場合、6ビツトが用いられ、それらが白としての
零から黒としての63まで64のレベルを表わす。照射
されている対象物の像が黒い背景上にくっきりと現われ
る(寄生虫も同様にくっきりと現われる)。
Regardless of which of the above operations (a), mount, or (c) is selected, the image obtained by the microscope can be captured by a camera, and the image is captured via the computer's storage device, with the horizontal row x vertical row being 512 x 512. It is sent in the form of a rectangular notch representing 262.144 points or pixels. The depth of each point, ie, the amount of light received, is expressed by a number, ie, a "bit." In this case, 6 bits are used and they represent 64 levels, from zero for white to 63 for black. The image of the illuminated object appears clearly on the black background (parasites also appear clearly).

分析操作を始めるときに、照度の埴(閾値)を決め、こ
の点の上を対象要素として数え上げる。
When starting an analysis operation, a threshold value of illuminance is determined, and the areas above this point are counted as target elements.

この「間決め」が一旦確立されれば、[輪郭」過程に進
むこと、即ち各対象物の外形を決めることができ、次い
で各対象物は各外形の座標に従いチャート上に項目分け
(itemize )されて「最大長」や「形状要素j
等の所定数のパラメータを確立でき、それが任意に1を
表わず円かlうり臼まって、「長い」ものから「固い」
ものを分(プることが可能である。次いで選ばれたパラ
メータに対応する対象物がチャート上に選抜され、そし
て結果は最終的に名演及び余滴に関(〕て統計学的に処
理される。この場合、−滴の分析は1.5秒かかり、認
識錯誤率は5%である。
Once this "sizing" is established, one can proceed to the "contouring" process, i.e. determining the outline of each object, and then itemizing each object on a chart according to the coordinates of each outline. "maximum length" and "shape element j
It is possible to establish a predetermined number of parameters such as ``long'' to ``hard''.
Objects corresponding to the selected parameters are then selected on the chart, and the results are finally statistically processed in terms of performance and residual droplets. In this case, the analysis of the -drop takes 1.5 seconds and the recognition error rate is 5%.

これらの数字は各段階の持続期間や現在認められている
D 誤限界等の他のデータとの関連で考慮されねばなら
ない。何故なら、これらは操作の完全自動化から生しl
〔ものであるからである。
These numbers must be considered in the context of other data such as the duration of each stage and currently accepted D error limits. This is because they result from complete automation of operations.
[Because it is a thing.

実施例2 血液分析 血液分析の場合、本発明の方法は細胞自体、即ち赤血球
と白血球の評価において迅速さと正確さを与えるのみは
′かりでなく、その内に含まれている寄生虫も自動的に
検出及び計数できる。
Example 2 Blood Analysis In the case of blood analysis, the method of the invention not only provides rapidity and accuracy in the evaluation of the cells themselves, namely red and white blood cells, but also automatically assesses the parasites contained within them. can be detected and counted.

寄生虫は大きさが非常に小さいのでこのようなことは従
来では到底なし得なかった。しかしながら本発明によれ
ば、例えば、2ミクロン程のマラリア原虫を自OJ的に
検出・計数することが可能になった。
Since parasites are extremely small in size, this would have been impossible to achieve in the past. However, according to the present invention, it has become possible to detect and count, for example, malaria parasites of about 2 microns using OJ.

更に詳細には、本発明の方法による血液分析は次のよう
にして行なわれる。
More specifically, blood analysis according to the method of the present invention is performed as follows.

最初に、粉砕又は吹付(ブにより連続的且つ自動的に台
の上にザンプル配置を行なう。このことは、血液の名演
を台とガラス板との間で押しつぶす従来の方法に比べて
格段の進歩である。
First, the sample is placed on the table continuously and automatically by crushing or spraying. This is a significant improvement over the traditional method of crushing the blood sample between the table and the glass plate. It is.

従来の方法では細胞を破壊又は変形してしまう。Conventional methods destroy or deform cells.

1)l−16のオレンジアクリジンでの着色により、核
がなくRNAもDNAも含まず着色されないままの白血
球と、生きていて種々着色されている核や種々の封入体
く核についてはDNA、封入体についてはRNA)を含
む白血球とが区別される。
1) By coloring l-16 with orange acridine, uncolored leukocytes without nuclei and containing neither RNA nor DNA, as well as living and variously colored nuclei and various inclusion bodies, contain DNA and inclusion bodies. Regarding the body, white blood cells containing RNA) are distinguished.

他方、血液寄生虫が赤血球の内にいる場合には、そのよ
うな寄生虫はDNA及びRNAを含むので着色により明
らかになる。
On the other hand, if blood parasites are present within red blood cells, such parasites will be revealed by staining since they contain DNA and RNA.

像は前記した一般的な技術により分析されるが、「対象
物」の複雑さ加減を考慮に入れるようにする。
The image is analyzed using the general techniques described above, taking into account the complexity of the "object".

実際、着色された周知である白血球が容易に同定できそ
れらの輪郭で計数できれば、この外形の内にある1つ又
は複数の核を形成する内側輪郭やその内側の更に別の構
成要素を見出づことも可能である。次いで、このように
して検出された対象物の数に応じて、種々の型の多核構
成要素を同定・尉数できる。
Indeed, if the well-known colored leukocytes can be easily identified and counted by their contours, one can find the inner contours and further components within this contour that form the nucleus or nuclei. It is also possible to do so. Depending on the number of objects detected in this way, different types of multinuclear components can then be identified and numbered.

赤血球の寄生虫についても同じことがあてはまり、これ
が本発明の方法の主要な新機軸の一つである。例えば、
マラリア原虫が突出物即らキ17 ツI−キン(cat
kin) (D NA)を有すル聞いたリング(RNA
)の形状で見られる。従って、それらは非常に小寸法(
2ミクロン)であるにもかかわらず、分析の流れに沿っ
て最初から自動的且つ連続的に計数できる。
The same is true for red blood cell parasites, and this is one of the main innovations of the method of the invention. for example,
The malaria parasite is a protrusion, i.e. a cat.
kin) (DNA) with a ring (RNA)
). Therefore, they have very small dimensions (
2 microns), it can be counted automatically and continuously from the beginning along the analysis flow.

勿論、本発明の応用範囲は本明細書の始めに述べた如く
実際に無限であり、単に液体中の微細子の計数に留まる
ものではない。例えば、固体物質の表面欠陥の分類及び
計数等、本発明は種々様々の分野に応用し得る。
Of course, the scope of application of the present invention is actually limitless, as stated at the beginning of this specification, and is not limited to simply counting microscopic particles in a liquid. For example, the present invention can be applied to a variety of fields, such as classification and counting of surface defects in solid materials.

[発明の効果] 以上から明らかなように、本発明の微細子を自動的且つ
連続的に同定、分類及び4数する方法によれば、正確、
迅速且つ低コストでしがも人的錯誤を最小限に抑さえて
作業できる等、種種の優れた効果を発揮する。
[Effects of the Invention] As is clear from the above, the method of automatically and continuously identifying, classifying, and counting microscopic particles of the present invention can accurately,
It exhibits various excellent effects, such as being able to work quickly, at low cost, and with minimal human error.

第1頁の続き 0発 明 者 ディプイエ パリツク フラス ■発明者 イヴアン グラ フレ マン し)Continuation of page 1 0 shots bright person dipuye paritsuk fras ■Inventor Yvan Graffret man death)

Claims (1)

【特許請求の範囲】 1) 第1の操作で、一連のサンプルを用意し連続する
移動台上に置き、顕微鏡によって与えられるこれら4ノ
ンプルの像を記録づ−るビデオシステムの探査路上にこ
れらサンプルを広め、次いで第2の操作で前記記録を行
ない、次いで第3の操作で、基盤状レイアウトにより各
サンプルの像を分解し、そして第4の操作で前記像を「
パターン認識」技術により分析し、最後にこの分析結果
を統計学的に処理して、デジタル化し、具体化したデー
タをオペレータに送ることを特徴とづ−る微細子を自動
的且つ連続的に同定、分類及び計数する方法。 2) 第1の操作における用意がエビ螢光による観察後
の特定の着色である、特許請求の範囲第1項に記載の微
細子を自動的且つ連続的に同定、分類及び賞1数する方
法。 3) サンプルを台に載せるのが)重続したわ)砕又は
吹付けにより行なわれる、特許請求の範囲第1)項に記
載の微細子を自動的且つ連続的に同定、分類及び計数す
る方法。 4) 連続する台が、垂直軸線を中心に回転し、連続す
る清浄作業が施されるガラス円板である、特許請求の範
囲第1)項乃至第3)項のいずれかに記載の微細子を自
動的且つ連続的に同定、分類及び組数する方法。 5) 連続づ−る台が、一方のコイルから繰り出されて
一回使われた後に他方のコイルへと巻き取られる連続づ
′るテープであり、該テープが使い捨てのカセット内に
収容される、特許請求の範囲第1)項乃至第3)項のい
ずれかに記載の微細子を自動的且つ連続的に同定、分類
及び計数する方法。 6) 常にサンプル上に自動的に焦点合せするだめの特
殊付属器具を顕微鏡に備えた、特許請求の範囲第1)項
乃至第5)項のいずれかに記載の微細子を自動的且つ連
続的に同定、分類及び削数する方法。 7) 顕微鏡が紫外線で照される、特許請求の範囲第1
)項乃至第5)項のいずれかに記載、の微細子を自動的
且つ連続的に同定、分類及び組数する方法。 8) 第1の操作で用いられる着色料がオレンジアクリ
ジン及び/又は特異着色血清である、特許′[請求の範
囲第1)項乃至第7)項のいずれかに記載の微II子を
自動的且っ連続的に同定、分類及び計数する方法。 9) 牛乳中の細菌調査に用いられる、q*:′f請求
の範囲第1)項乃至第8)項のいずれかに記載の微細子
を自動的且つ連続的に同定、分類及びJj数する方法。 10)血液分析、特に血液内のマラリA7原虫等の調査
に用いられる、特許請求の範囲第1)項乃至第8)項の
いずれかに記載の微細子を自動的且つ連続的に同定、分
類及び4数り゛る方法。
[Claims] 1) In a first operation, a series of samples are prepared and placed on a successive moving stage, and these samples are placed on a probe path of a video system that records the images of these four non-pulses provided by the microscope. , then in a second operation perform said recording, then in a third operation resolve the image of each sample by means of a matrix layout, and in a fourth operation said image
Automatically and continuously identify microscopic particles characterized by analyzing them using "pattern recognition" technology, finally statistically processing the analysis results, digitizing them, and sending the concrete data to the operator. , how to classify and count. 2) A method for automatically and continuously identifying, classifying, and awarding microscopic particles according to claim 1, wherein the preparation in the first operation is specific coloring after observation with shrimp fluorescence. . 3) A method for automatically and continuously identifying, classifying and counting microscopic particles according to claim 1), which is carried out by repeatedly placing the sample on a table, crushing or spraying. . 4) The microscopic device according to any one of claims 1) to 3), wherein the continuous platform is a glass disk that rotates around a vertical axis and performs continuous cleaning operations. A method for automatically and continuously identifying, classifying, and numbering groups. 5) The continuous base is a continuous tape that is unwound from one coil, used once, and then wound onto the other coil, and the tape is housed in a disposable cassette. A method for automatically and continuously identifying, classifying, and counting microscopic particles according to any one of claims 1) to 3). 6) The microscope is equipped with a special accessory for automatically focusing on the sample at all times, so that the microscopic particles according to any one of claims 1) to 5) are automatically and continuously How to identify, classify and reduce numbers. 7) Claim 1, wherein the microscope is illuminated with ultraviolet light
A method for automatically and continuously identifying, classifying, and numbering the microscopic particles described in any one of items 2) to 5). 8) The microorganism according to any one of claims 1) to 7), wherein the coloring agent used in the first operation is orange acridine and/or specific colored serum. and continuous identification, classification and counting methods. 9) Automatically and continuously identify, classify, and count microscopic particles according to any one of claims 1) to 8) used for bacterial investigation in milk. Method. 10) Automatically and continuously identifying and classifying microscopic particles according to any one of claims 1) to 8), which are used for blood analysis, particularly for investigating malaria A7 protozoa, etc. in blood. and 4 counting methods.
JP59250377A 1983-11-28 1984-11-27 Automatic and continuous identification, classification and counting method of fine particles Pending JPS60133897A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8318936A FR2555754A1 (en) 1983-11-28 1983-11-28 METHOD AND DEVICE FOR AUTOMATICALLY ANALYZING BIOLOGICAL SAMPLES
FR8318936 1983-11-28

Publications (1)

Publication Number Publication Date
JPS60133897A true JPS60133897A (en) 1985-07-17

Family

ID=9294589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250377A Pending JPS60133897A (en) 1983-11-28 1984-11-27 Automatic and continuous identification, classification and counting method of fine particles

Country Status (23)

Country Link
JP (1) JPS60133897A (en)
KR (1) KR850004792A (en)
AU (1) AU3590384A (en)
BE (1) BE901099A (en)
BR (1) BR8406026A (en)
CH (1) CH661357A5 (en)
DD (1) DD229218A5 (en)
DE (1) DE3442568A1 (en)
DK (1) DK561784A (en)
ES (1) ES538048A0 (en)
FI (1) FI844662L (en)
FR (1) FR2555754A1 (en)
GB (1) GB2152660A (en)
IL (1) IL73591A0 (en)
IT (1) IT1177346B (en)
LU (1) LU85632A1 (en)
MA (1) MA20282A1 (en)
NL (1) NL8403625A (en)
NO (1) NO844701L (en)
OA (1) OA07875A (en)
PT (1) PT79559B (en)
SE (1) SE8405964L (en)
ZA (1) ZA849212B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073419B2 (en) * 1986-10-07 1995-01-18 東亜医用電子株式会社 Method and device for analyzing cells in fluid
US4918739A (en) * 1988-08-12 1990-04-17 Maraven, S.A. Process and system for digital analysis of images applied to stratigraphic data
US5130559A (en) * 1989-08-26 1992-07-14 Trutzschler Gmbh & Co. Kg Method and apparatus for recognizing particle impurities in textile fiber
EP0464276A1 (en) * 1990-07-02 1992-01-08 International Business Machines Corporation Computer modelling system
GB2254414A (en) * 1991-03-21 1992-10-07 Univ London Volume measurement of microbial organisms.
DE4211904C2 (en) * 1991-04-09 1994-03-17 Werner Maier Automatic procedure for creating a list of different types for a liquid sample
US6731100B1 (en) 1997-05-05 2004-05-04 Chemometec A/S Method and a system for determination of somatic cells in milk
JP2001526780A (en) 1997-05-05 2001-12-18 シェモメテック・アクティーゼルスカブ Method and system for measurement of particles in a liquid sample
SE524587C2 (en) 2003-02-18 2004-08-31 Delaval Holding Ab Method and apparatus for counting somatic cells or small drops of fat in milk
SE528697C2 (en) 2005-03-11 2007-01-30 Hemocue Ab Volumetric determination of the number of white blood cells in a blood sample
EP1748030B1 (en) * 2005-07-07 2016-04-20 Fei Company Method and apparatus for statistical characterization of nano-particles
CN109598328B (en) * 2018-11-21 2023-09-12 山东农业大学 Distributed thousand grain counting method, system, device and terminal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1389553A (en) * 1972-05-23 1975-04-03 Legorreta G Apparatus for investigating microscopic particles
GB1404628A (en) * 1972-12-07 1975-09-03 Coulter Electronics Method and apparatus for analyzing microscopic particles
US4075462A (en) * 1975-01-08 1978-02-21 William Guy Rowe Particle analyzer apparatus employing light-sensitive electronic detector array
US4122518A (en) * 1976-05-17 1978-10-24 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Automated clinical system for chromosome analysis
US4197088A (en) * 1977-09-23 1980-04-08 Akro-Medic Engineering, Inc. Method for qualitative and quantitative determination of immunological reactions
DE2903625A1 (en) * 1978-02-03 1979-08-09 Rush Presbyterian St Luke DEVICE FOR AUTOMATIC BLOOD ANALYSIS
JPS58154064A (en) * 1982-03-08 1983-09-13 Mitsubishi Rayon Co Ltd Method for measuring percentage between lymph bead and t cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROC IEEE COMPUT SOC CONF COMPUT VIS PATTERN RECOGN=1983 *

Also Published As

Publication number Publication date
SE8405964L (en) 1985-05-29
FI844662L (en) 1985-05-29
IT8423769A1 (en) 1986-05-28
GB2152660A (en) 1985-08-07
DK561784D0 (en) 1984-11-27
IL73591A0 (en) 1985-02-28
ES8603994A1 (en) 1986-01-01
LU85632A1 (en) 1985-06-04
OA07875A (en) 1986-11-20
DK561784A (en) 1985-05-29
FR2555754A1 (en) 1985-05-31
ES538048A0 (en) 1986-01-01
DD229218A5 (en) 1985-10-30
CH661357A5 (en) 1987-07-15
GB8429976D0 (en) 1985-01-09
PT79559A (en) 1984-12-01
IT1177346B (en) 1987-08-26
NL8403625A (en) 1985-06-17
MA20282A1 (en) 1985-07-01
SE8405964D0 (en) 1984-11-27
DE3442568A1 (en) 1985-06-05
BR8406026A (en) 1985-08-27
PT79559B (en) 1986-09-08
KR850004792A (en) 1985-07-27
AU3590384A (en) 1985-06-06
NO844701L (en) 1985-05-29
ZA849212B (en) 1985-07-31
IT8423769A0 (en) 1984-11-28
BE901099A (en) 1985-03-15
FI844662A0 (en) 1984-11-28

Similar Documents

Publication Publication Date Title
Buskey et al. Use of the FlowCAM for semi-automated recognition and enumeration of red tide cells (Karenia brevis) in natural plankton samples
Blackburn et al. Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis
US4207554A (en) Method and apparatus for automated classification and analysis of cells
US4125828A (en) Method and apparatus for automated classification and analysis of cells
Booth The use of autofluorescence for analyzing oceanic phytoplankton communities
DE3689856T2 (en) ANALYSIS METHOD AND DEVICE FOR BIOLOGICAL SPECIMES.
CN104094118B (en) Automatically hematoblastic method and apparatus in whole blood sample is identified by micro-image
JPS60133897A (en) Automatic and continuous identification, classification and counting method of fine particles
US8547550B2 (en) Biological and chemical collection and detection
JP2013513087A (en) System and method for time-related microscopy of biological organisms
JP2011007800A (en) Method for the automatic analysis of microscope images
JP2016517009A (en) Optical system and method for real-time analysis of liquid samples
JP2001211896A (en) Image analysis method, device for it, and recording medium
EP1846569B1 (en) Method for identifying germs
JPH02504076A (en) Microorganism detection and counting device and method
Karlson et al. Introduction to methods for quantitative phytoplankton analysis
JP4911423B2 (en) Microorganism measurement method
CN109948544A (en) A kind of automatic positioning of target bacterium colony and recognition methods
US3919530A (en) Color information leukocytes analysis system
JP2001269195A (en) Method, device and recording medium for analyzing image of cell
JP2007510893A (en) Automated analysis of cell samples
Wald et al. Automatic screening of metaphase spreads for chromosome analysis
DE10127221A1 (en) Carrier, for analysis of chemical or biological sensor molecules, has geometrical surface layout for samples, according to scanning method
McKENZIE et al. Use of inorganic membrane filters (Anopore) for epifluorescence and scanning electron microscopy of nanoplankton and picoplankton
Li Bivariate and trivariate analysis in flow cytometry: Phytoplankton size and fluorescence