JPS60133127A - Method of controlling bucket angle of loading shovel - Google Patents

Method of controlling bucket angle of loading shovel

Info

Publication number
JPS60133127A
JPS60133127A JP24086483A JP24086483A JPS60133127A JP S60133127 A JPS60133127 A JP S60133127A JP 24086483 A JP24086483 A JP 24086483A JP 24086483 A JP24086483 A JP 24086483A JP S60133127 A JPS60133127 A JP S60133127A
Authority
JP
Japan
Prior art keywords
packet
angle
boom
arm
bucket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24086483A
Other languages
Japanese (ja)
Other versions
JPH0424494B2 (en
Inventor
Kunio Kashiwagi
柏木 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP24086483A priority Critical patent/JPS60133127A/en
Publication of JPS60133127A publication Critical patent/JPS60133127A/en
Publication of JPH0424494B2 publication Critical patent/JPH0424494B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/432Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude
    • E02F3/433Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude horizontal, e.g. self-levelling

Abstract

PURPOSE:To prevent dropping of earth during movement, by a method wherein, when either a boom or an arm is controlled and height from the reference surface of a bucket exceeds a given value a bucket angular speed signal, determined from a boom, an arm, and a bucket angle, is outputted. CONSTITUTION:The angle alpha of a boom 2, the angle beta of an arm 3 and the angle gamma of a bucket are respectively detected, and a deviation DELTAgamma between a bucket absolute angle theta=alpha+beta+gamma and a desired absolute angle theta0 is determined. Further, a difference (bucket angular speed) between the differentiation value of the addition value of the boom angle alpha and the arm angle beta and the deviation DELTAgamma is determined. Meanwhile, from the boom angle alpha, the arm angle beta, and the bucket angle gamma, a height (h) from a reference value G.L of a bucket 4 is determined. Only when the height (h) exceeds a set height and at least either of boom and control levers 13 and 14 is controlled, an instruction signal T is outputted from a control instruction device 33 to input a bucket angular speed to a bucket controller 28.

Description

【発明の詳細な説明】 本発明はローディング油圧ショベルのパケットに積載さ
れた土砂の落下を防止するパケット角制御方法(関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a packet angle control method for preventing earth and sand loaded on packets of a loading hydraulic excavator from falling.

ローディング油圧ショベルのブーム上げ操作の際にパケ
ットに積載された土砂の落下を防止するためには、ブー
ムやアームの動作中にパケットの水平面からの角度すな
わちパケット絶対角度Y一定に保つ必要があり、このよ
うな操作には高度な技術と多大な労力が必要である。こ
の問題を解決するためには、パケット操作な行わなくと
もパケット絶対角度が自動的に一定になるようにすれば
よく、このための方法としては、リンクによる方法、油
圧による方法、電気的に行なう方法等が提案されている
In order to prevent the earth and sand loaded in the packet from falling when the boom of a loading hydraulic excavator is raised, it is necessary to keep the angle of the packet from the horizontal plane, that is, the absolute packet angle Y, constant during the operation of the boom or arm. Such operations require advanced techniques and a great deal of effort. In order to solve this problem, it is sufficient to automatically make the absolute packet angle constant without any packet manipulation, and methods for this include a link method, a hydraulic method, and an electrical method. Several methods have been proposed.

これ等の提案では、一定に保つパケット絶対角度の値と
して、常にあらかじめ与えられた一定値を取るもの、ブ
ームまたはアームの操作を開始した時点のパケット絶対
角度シ一定値として取るものとがある。
In these proposals, as the value of the packet absolute angle to be kept constant, there are some that always take a constant value given in advance, and others that take the packet absolute angle as a constant value at the time when operation of the boom or arm is started.

しかし、前者の場合[はオペレータの意志とは無関係に
パケット絶対角度がある一定値になるので、パケットの
土砂積載状態に応じてパケット絶対角度を変、!!する
ことができず、またブーム上げ中にパケット操作を行っ
て掻き上げ掘削を行うことができない等の欠点があり、
操作性の上で好ましくない。
However, in the former case, the absolute packet angle will be a constant value regardless of the operator's will, so the absolute packet angle will be changed depending on the sediment loading status of the packet. ! There are drawbacks such as the inability to perform raking and excavation by performing packet operations while the boom is being raised.
Unfavorable in terms of operability.

後者の場合には、パケット操作を加えて、パケット絶対
角度を補正するようにすることができるので前者の欠点
を補うことができるが、パケットが地表面付近またはそ
れエリ下方で掘削が終了し、パケットを起こしたときに
、リンク制約上充分にパケット角度こしきれない。した
がってそのパケット絶対角度な保つのではパケットが前
方に傾きすぎる欠点がある。また、掘削中に、ブームま
たはアームのみt操作してもパケット角制御が行われて
しまうことは掘削のための操作性が悪化する。
In the latter case, the disadvantage of the former can be compensated for by adding packet manipulation to correct the packet absolute angle, but the excavation ends when the packet is near or below the ground surface. When a packet is generated, the packet angle cannot be adjusted sufficiently due to link constraints. Therefore, if the absolute packet angle is maintained, the packet will tilt too far forward. Further, even if only the boom or arm is operated during excavation, packet angle control is performed, which deteriorates the operability for excavation.

本発明は、上記従来技術の欠点に鑑みなされたもので、
オペレータの意志に応じて、かつパケットの基準面エリ
の高さが所定値以上になったときパケット角制御4行う
ようにすることな目的とする。
The present invention was made in view of the drawbacks of the above-mentioned prior art, and
It is an object of the present invention to perform packet angle control 4 according to an operator's will and when the height of a reference plane edge of a packet becomes a predetermined value or more.

この目的ヲ達成するため本発明は、バケツ)ノ基準面よ
りの高さが設定値以上で且つブーム操作レバーとアーム
操作レバーのうちの少くとも一方が操作されパケット操
作レノ4−が操作されない条件が成立したとき、そのと
ぎのパケットの絶対角度信号を目標値としてパケットシ
リンダを作動制御するようにしたものである。
In order to achieve this objective, the present invention provides a condition in which the height of the bucket (bucket) from the reference plane is greater than or equal to a set value, at least one of the boom operation lever and the arm operation lever is operated, and the packet operation lever 4- is not operated. When this holds true, the operation of the packet cylinder is controlled using the absolute angle signal of the next packet as a target value.

以下本発明の一実施例V第1図および第2図を参照して
説明する。
Embodiment V of the present invention will be described below with reference to FIGS. 1 and 2.

第1図tsローテインク油圧ショベルのフロント部を示
す図である。図においてlは油圧ショベル本体、2は本
体lに枢着されたブーム、3はブーム2の先iに枢着さ
れたアーム、4はアーム3の先端に枢着されたパケット
、5はブーム2を俯仰するブームシリンダ、6はアーム
3を揺動するアームシリンダ、7はパケット4を回動す
るパケットシリンダ、8は本体lに対するブーム20角
度すなわちブーム角度ケ検出し、ブーム角度信号αン出
力する角度計、9はブーム2に対するアーム30角度す
なわちアーム角度を検出し、アーム角度信号β、V出力
する角度計、10はアーム3に対するパケット4の角度
すなわちパケット角度を検出し、パケット角度傭号γを
出力する角度計である。
FIG. 1 is a diagram showing the front part of the ts rotary ink hydraulic excavator. In the figure, l is the main body of the hydraulic excavator, 2 is a boom pivoted to the main body l, 3 is an arm pivoted to the tip i of the boom 2, 4 is a packet pivoted to the tip of the arm 3, and 5 is the boom 2 6 is an arm cylinder that swings the arm 3, 7 is a packet cylinder that rotates the packet 4, 8 detects the boom 20 angle relative to the main body l, that is, the boom angle, and outputs a boom angle signal α. An angle meter 9 detects the angle of the arm 30 relative to the boom 2, that is, the arm angle, and outputs an arm angle signal β, V; an angle meter 10 detects the angle of the packet 4 relative to the arm 3, that is, the packet angle, and outputs the packet angle signal γ It is an angle meter that outputs .

第2図は本発明のローディングショベルのパケット角制
御方法を実施するための制御装置を示す図である。図に
おいて11は油圧ポンプ、12は油圧ポンプ11とパケ
ットシリンダ7との間に設けられた電磁制御弁、13,
14.15はそれぞれブーム操作レバー、アーム操作レ
バー、パケット操作レバー、16は角度信号α、β、γ
の合計値すなわちパケット絶対角度信号0v求めろ加算
器、17はスイッチ18がオンになったときの加算器1
6の出力信号θを目標絶対角度信号θ0として記憶する
記憶装置、19は記憶装置17の出力信号θ。と加算器
16の出力信号θとの差すなわち角度偏差信号Δγを算
出する加減算器、20は加減算器19の出力信号!係数
倍して信号にΔrを出力する係数器、21は係数器20
と加減算器250間に設けられたスイッチ、22はパケ
ット操作レバー15の操作量に応じた手動操作信号ン出
力する手動操作装置、23はブーム角度信号αとアーム
角度信号βとの和をめる加算器、24は加算器23の出
力信号α+βを微分する微分器、25は係数器20の出
力信号にΔrと微分器24の出力信号&十ン三−7Fと
の差をめる加算器、26は加減算器z5の出力信号と手
動操作装置22の出力信号との和なめる加算器、27は
加減算器25と加算器26との間に設けられたスイッチ
、28は加算器26の出力信号を増巾および補償し、パ
ケットシリンダ7の速度を与えるべく電磁制御弁12V
制御する増巾器、29,30゜31はそれぞれ操作レバ
ー13,14.15が操作されているか否かを検出する
レバー操作検出器であり、それぞれ操作レバー13,1
4.15が操作されると操作検知信号a、b、c♀出ヵ
する。
FIG. 2 is a diagram showing a control device for implementing the method for controlling the packet angle of a loading shovel according to the present invention. In the figure, 11 is a hydraulic pump, 12 is an electromagnetic control valve provided between the hydraulic pump 11 and the packet cylinder 7, 13,
14 and 15 are the boom operation lever, arm operation lever, and packet operation lever, respectively, and 16 are the angle signals α, β, and γ.
17 is the adder 1 when the switch 18 is turned on.
19 is an output signal θ of the storage device 17; and the output signal θ of the adder 16, that is, the angular deviation signal Δγ. 20 is the output signal of the adder/subtractor 19! 21 is a coefficient unit 20 that multiplies the coefficient and outputs Δr to the signal.
22 is a manual operation device that outputs a manual operation signal according to the amount of operation of the packet operation lever 15, and 23 is a sum of the boom angle signal α and the arm angle signal β. an adder; 24 is a differentiator that differentiates the output signal α+β of the adder 23; 25 is an adder that calculates the difference between Δr and the output signal of the differentiator 24 &ten3-7F in the output signal of the coefficient multiplier 20; 26 is an adder that sums the output signal of the adder/subtractor z5 and the output signal of the manual operating device 22; 27 is a switch provided between the adder/subtractor 25 and the adder 26; Solenoid control valve 12V to increase and compensate the speed of the packet cylinder 7
The amplifiers to be controlled, 29, 30, and 31 are lever operation detectors that detect whether or not the operating levers 13, 14, and 15 are operated, respectively.
When 4.15 is operated, operation detection signals a, b, c♀ are output.

32は角度信号α、β、rv入力しパケット40基準値
からの高さを演算する高さ演算器で、例えば第3図に示
すように、ブーム2の本体l枢着点P0とアーム3のブ
ーム2の枢着点P1の距離をノl、枢着点Plとパケッ
ト4のアーム[i点P2の距@ %’ l 2 、枢着
点P2とパケット歯先点Paの距離1k13、GaLか
ら枢着点P。の高さケhoとすると、パケット刃先点P
3の高さh3は、 hs=ho+j l5iaα−j2sin(α+β)+
7,5in(α+β+r)で表わされ、また枢着点P2
の高さh2は、h 2=h 、 +l 、sinα−j
12sin(α+β)として演算することができろ。
Reference numeral 32 denotes a height calculator which receives angle signals α, β, and rv and calculates the height from the reference value of the packet 40. For example, as shown in FIG. The distance between the pivot point P1 of the boom 2 is 1, the distance between the pivot point P1 and the arm of the packet 4 [the distance between the i point P2 @ %' l 2 , the distance between the pivot point P2 and the packet tip point Pa is 1k13, from GaL Pivot point P. If the height of is keho, then the packet cutting edge point P
The height h3 of 3 is hs=ho+j l5iaα−j2sin(α+β)+
7,5in (α+β+r), and the pivot point P2
The height h2 is h2=h, +l, sin α-j
It can be calculated as 12sin(α+β).

33は1ツバ−操作検出器13〜15の信号a。33 is the signal a of the 1st tab operation detectors 13-15.

b、cvお工び高さ演算器32の出力信号by、入力し
、スイッチ゛18.21,27に対する制御信号T、8
9出力する制御指令装置である。
b, input the output signal by of the cv machining height calculator 32, and control signal T, 8 for the switches 18, 21, 27;
This is a control command device that outputs 9 signals.

制御信号Tは、ブーム操作レバー13と7−A操作レバ
ー14のうちの少くとも一方が操作され且つパケット高
さh(例えばパケット刃先点P3の高さhs )が設定
値り、よりも太きいとき出力され、制御信号Sは、制御
信号Tが出力され且つパケット操作レバーJ5が操作さ
れていないとき出力される。すなわち論理式で表わせば
、T=(a+b)・(h)h。) 8=T −c=(a+b ) @ c −(h)h e
 )である。
The control signal T is set when at least one of the boom operating lever 13 and the 7-A operating lever 14 is operated and the packet height h (for example, the height hs of the packet cutting edge point P3) is greater than or equal to the set value. The control signal S is output when the control signal T is output and the packet operation lever J5 is not operated. That is, if expressed as a logical formula, T=(a+b)・(h)h. ) 8=T −c=(a+b ) @c −(h)h e
).

制御信号Tが出力されると、スイッチ27がオンになり
、制御信号Sが出力されるとスイッチ18.21がオン
になる。
When the control signal T is output, the switch 27 is turned on, and when the control signal S is output, the switch 18.21 is turned on.

上述した制御装置においては、パケット操作レバーのみ
を操作しているかまたはパケット高さhが設定値り、以
下で且つブーム操作レバー13とアーム操作レバー14
のうちの少くとも一方とパケット操作レバー15とを同
時に操作しているときには、制御指令装置33からの制
御信号T、 8が出力されないから、スイッチ18,2
1.27は共にオフであり、電磁制御弁12はパケット
操作レバー15の手動操作信号に応じて切換えられ、パ
ケットシリンダ7の速度すなわちパケット40角速度は
パケット操作レバー15の操作量に応じた値となる。
In the above-mentioned control device, either only the packet operating lever is operated, or the packet height h is equal to or less than the set value, and the boom operating lever 13 and the arm operating lever 14 are operated.
When at least one of them and the packet operation lever 15 are operated simultaneously, the control signals T and 8 from the control command device 33 are not output, so the switches 18 and 2 are not output.
1 and 27 are both off, the electromagnetic control valve 12 is switched in response to the manual operation signal of the packet operation lever 15, and the speed of the packet cylinder 7, that is, the angular velocity of the packet 40, is a value corresponding to the amount of operation of the packet operation lever 15. Become.

また、パケット高さhが設定値heLり太ぎく、ズーム
操作レバー13とアーム操作レバー14のうちの少くと
も一方を操作し、パケット操作レバーl !ll−操作
しなければ、制御指令装置33から制御信号T、Sが出
力されるから、スイッチ18゜21.27が共にオンと
なる。このため、パケットシリンダ7の速度すなわちパ
ケット4の角速度は加算器26の出力汽+klrVc応
じた値となる。
When the packet height h reaches the set value heL, at least one of the zoom operation lever 13 and the arm operation lever 14 is operated, and the packet operation lever l! If no operation is performed, control signals T and S are output from the control command device 33, so that both switches 18, 21, and 27 are turned on. Therefore, the velocity of the packet cylinder 7, that is, the angular velocity of the packet 4, has a value corresponding to the output steam of the adder 26+klrVc.

ところで、パケット4の絶対角度θ(第1図参照)はブ
ーム角度、アーム角度、パケット角度をそれぞれA、B
、rと↑ろと、次式で表わされろ。
By the way, the absolute angle θ of packet 4 (see Figure 1) is determined by the boom angle, arm angle, and packet angle A and B, respectively.
, r and ↑ro are expressed by the following formula.

θ=、4−1+7’+c ここで、Cはパケット4の形状等により足った一定値で
ある。したがって、絶対角度信号θ=α+β+γは絶対
角度θに応じた値となるから、絶対角度θを一定に保つ
ためには、絶対角度信号θを一定に保つようにすれば良
い。
θ=, 4-1+7'+c Here, C is a constant value depending on the shape of the packet 4, etc. Therefore, since the absolute angle signal θ=α+β+γ has a value according to the absolute angle θ, in order to keep the absolute angle θ constant, it is sufficient to keep the absolute angle signal θ constant.

そして、絶対角度θな一定とした場合すなわち絶対角度
信号θを一定とした場合VCは、この式を微分すると次
式のようになる。
When the absolute angle θ is constant, that is, when the absolute angle signal θ is constant, VC is obtained by differentiating this equation as shown in the following equation.

1=−a−J したがって、パケット40角速度をパケット制御速度信
号−&−2壬7rに応じた値とすれば、パケット絶対角
度θが一定の値となる。そして外乱の影響、例えばパケ
ット4が衝外物に当ったり、電磁制御弁12の特性や圧
油の粘度、温度、圧力の変化等、により絶対角度θが操
作レバー13または操作レバー14の操作開始時点から
変動したときには、その変動tlC応じたにΔrに応じ
た速度でパケット40角速度が修正され、パケット4の
絶対角度θは一定に保たれる。
1=-a-J Therefore, if the angular velocity of the packet 40 is set to a value according to the packet control velocity signal -&-2 7r, the packet absolute angle θ becomes a constant value. Then, due to the influence of disturbances, such as the packet 4 hitting an impact object, the characteristics of the electromagnetic control valve 12, and changes in the viscosity, temperature, and pressure of the pressure oil, the absolute angle θ changes when the operating lever 13 or 14 starts operating. When the angular velocity of the packet 40 changes from the point in time, the angular velocity of the packet 40 is corrected at a speed corresponding to Δr in accordance with the variation tlC, and the absolute angle θ of the packet 4 is kept constant.

つぎに1この状態でパケット操作レバー15Vも操作す
ると、制御指令装置33から制御信号Tのみが出力され
るから、スイッチ18.2日エオフになる。したがって
、パケット4は制御速度信号;、ttC手動操作装置2
2の出力信号であるパケット手動操作信号を加算した信
号に応じた角速度で回動するから、パケット4の絶対角
度θをパケット操作レバー15の操作jlIVc対応し
た速度で修正することができろ。
Next, when the packet operation lever 15V is also operated in this state, only the control signal T is output from the control command device 33, so that the switch 18.2 is turned off. Therefore, packet 4 is a control speed signal; ttC manual operating device 2
Since it rotates at an angular velocity according to the signal obtained by adding the packet manual operation signal which is the output signal of No. 2, the absolute angle θ of the packet 4 can be corrected at a speed corresponding to the operation jlIVc of the packet operation lever 15.

さらに、この状態でパケット操作レバ−15Fa’中立
位置に戻すと、制御指令装#33から制御信号Sが出力
され、スイッチ18.21がオンとなるので、記憶装#
17にはその時点の絶対角度信号θ0が記憶され、パケ
ット4はそれ以後θ。に対応する絶対角度θを保持する
Furthermore, when the packet operation lever 15Fa' is returned to the neutral position in this state, the control signal S is output from the control command device #33 and the switch 18.21 is turned on.
The absolute angle signal θ0 at that point in time is stored in 17, and the packet 4 is θ from then on. The absolute angle θ corresponding to is held.

一般に掘削時にはパケット高さhは設定値h6より小さ
いため、制御指令装置33から制御指令信号T、 8は
出力されないので、バケット角の制御は行われず、掘削
時の操作性は良好となる。
Generally, during excavation, since the packet height h is smaller than the set value h6, the control command signals T and 8 are not output from the control command device 33, so the bucket angle is not controlled, and the operability during excavation is good.

この状態で掘削を終了し、パケット4v起こして土砂を
積載したと縁、地表面より下方ではパケット高さhはま
だ設定値h1より小さい。そしてこの状態からブーム上
げを行いパケット高さhが大きくなり、パケット絶対角
度θも大きくなってh>h6となった時点で、パケット
目標絶対角度信号θ。が設定され、以後パケット絶対角
θが一定となるよう制御されろ。設定値hcはパケット
4Vc積載された土砂の落下を防止する最も好ましいパ
ケット絶対角度θに合わせて設定される。
When the excavation is completed in this state and the packet 4v is raised to load earth and sand, the packet height h below the ground surface is still smaller than the set value h1. Then, when the boom is raised from this state, the packet height h increases, and the packet absolute angle θ also increases, so that h>h6, the packet target absolute angle signal θ is determined. is set and thereafter controlled so that the absolute packet angle θ is constant. The set value hc is set in accordance with the most preferable packet absolute angle θ that prevents the earth and sand loaded with the packet 4Vc from falling.

以上説明した本発明によれば下記の効果を奏することが
できろ。
According to the present invention explained above, the following effects can be achieved.

(1) 掘削径地表面より下でパケット角度こして土砂
を積載し、ブームまたはアーム上げ?行った時にも、土
砂が落下しない好ましいパケット角度を保つことができ
る。
(1) Load the soil by straining the packet at an angle below the excavation diameter ground surface and raise the boom or arm? Even when the bag is moved, a favorable packet angle can be maintained to prevent dirt from falling.

(2) ブームまたはアーム上げ時にもパケット操作レ
バーによるパケット角度の手動補正が容易で操作感覚が
良好である。
(2) Even when the boom or arm is raised, manual correction of the packet angle using the packet control lever is easy and provides a good operating feel.

(3)通常の掘削時にはパケット角制御が行われず掘削
時の操作性が良好となる。
(3) Packet angle control is not performed during normal excavation, resulting in good operability during excavation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の実施例に係り、第1図はロ
ーディング油圧ショベルのフロント部V示Y 図、 m
 2 図はローディングショベルのバケット角制御方法
を実施するための制御装置ケ示す図、第3図はパケット
高さの演算な説明するための図である。 1・・・・・・ローディングショベル本体、2・・・・
・・7’−ム、3・・・・リアーム、4・・・・・・パ
ケット、5・・−−−−7” −ムシリンダ、6・旧・
・アームシリンダ、7・・・・・・パケットシリンダ、
8,9,10・・・・・・角度計、12・・・・・・電
磁制御弁、13・・・・・・ブーム操作レノ(−114
・・・・・・7−A操作レバー、15・・・・・・)く
ケラト操作レバー、16・・・・・・パケット絶対角度
信号θをめろ加算器、17・・・・・・記憶装置(ノク
ケット目標絶対角θ。を記憶)、18,21.27・・
・・・・スイッチ、22・・・・・・手動操作装置52
4・・・・・・微分器、32・・・・・・高さ演算器、
33・・・・・・制御指令装置。 第1図 β 第2図 ? 第3図 P。
1 to 3 relate to embodiments of the present invention, and FIG. 1 shows the front part of the loading hydraulic excavator.
2 is a diagram showing a control device for implementing the bucket angle control method of a loading shovel, and FIG. 3 is a diagram for explaining the calculation of the packet height. 1...Loading shovel body, 2...
...7'-arm, 3...rearm, 4...packet, 5...----7''-mu cylinder, 6, old...
・Arm cylinder, 7...Packet cylinder,
8,9,10... Angle meter, 12... Solenoid control valve, 13... Boom operation leno (-114
...7-A operating lever, 15...) Kukerato operating lever, 16...... Adder for adding packet absolute angle signal θ, 17... Storage device (memorizes Nokket target absolute angle θ), 18, 21.27...
. . . Switch, 22 . . . Manual operation device 52
4...Differentiator, 32...Height calculator,
33... Control command device. Figure 1 β Figure 2? Figure 3 P.

Claims (1)

【特許請求の範囲】[Claims] 本体に枢着されブームシリンダにエリ俯仰動されるブー
ムと、このブーム先端部に枢着されアームシリンダによ
り揺動されるアームと、このアーム先端部に枢着されパ
ケットシリンダにより回動されるパケットとを有するロ
ーディングショベルのパケット角制御方法において、パ
ケットの基準面よりの高さが設定値以上で且つブー奔操
作レバーとアーム操作レバーのうちの少くとも一方が操
作されパケット操作レバーが操作されない条件が成立し
たとき、そのときのパケット絶対角度信号な目標値とし
てパケットシリンダを作動制御することを特徴とするロ
ーディングショベルのノ(ケラト角制御方法。
A boom that is pivotally attached to the main body and tilted up and down by a boom cylinder, an arm that is pivoted to the tip of this boom and swung by an arm cylinder, and a packet that is pivoted to the tip of this arm and rotated by a packet cylinder. In the method for controlling the packet angle of a loading shovel, the height of the packet from the reference plane is equal to or greater than a set value, and at least one of the boot operation lever and the arm operation lever is operated, and the packet operation lever is not operated. A method for controlling a kerato angle for a loading excavator, characterized in that when , the packet absolute angle signal at that time is used as a target value to control the operation of a packet cylinder.
JP24086483A 1983-12-22 1983-12-22 Method of controlling bucket angle of loading shovel Granted JPS60133127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24086483A JPS60133127A (en) 1983-12-22 1983-12-22 Method of controlling bucket angle of loading shovel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24086483A JPS60133127A (en) 1983-12-22 1983-12-22 Method of controlling bucket angle of loading shovel

Publications (2)

Publication Number Publication Date
JPS60133127A true JPS60133127A (en) 1985-07-16
JPH0424494B2 JPH0424494B2 (en) 1992-04-27

Family

ID=17065838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24086483A Granted JPS60133127A (en) 1983-12-22 1983-12-22 Method of controlling bucket angle of loading shovel

Country Status (1)

Country Link
JP (1) JPS60133127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669663A1 (en) * 1990-11-23 1992-05-29 Hydromo Civil engineering work machine including means making it possible to control the position of the tool which it includes
EP1211357A1 (en) * 2000-12-04 2002-06-05 Faucheux Industries Front-loading attachement for a carrier vehicle
EP1362958A3 (en) * 2002-05-14 2004-03-31 Botschafter-Knopff, IIse Vehicle provided with a working tool as well as a control system for a working tool with a parallel guidance
EP1416095A1 (en) * 2002-10-31 2004-05-06 Deere & Company Work vehicle, in particular a backhoe and/or a vehicle with a front loader
EP1300595A3 (en) * 2001-10-04 2005-07-20 Husco International, Inc. Electronically controlled hydraulic system for lowering a boom in an emergency

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669663A1 (en) * 1990-11-23 1992-05-29 Hydromo Civil engineering work machine including means making it possible to control the position of the tool which it includes
EP1211357A1 (en) * 2000-12-04 2002-06-05 Faucheux Industries Front-loading attachement for a carrier vehicle
FR2817574A1 (en) * 2000-12-04 2002-06-07 Faucheux Ind Soc FRONT LOADER FOR CARRIER
EP1300595A3 (en) * 2001-10-04 2005-07-20 Husco International, Inc. Electronically controlled hydraulic system for lowering a boom in an emergency
EP1362958A3 (en) * 2002-05-14 2004-03-31 Botschafter-Knopff, IIse Vehicle provided with a working tool as well as a control system for a working tool with a parallel guidance
EP1416095A1 (en) * 2002-10-31 2004-05-06 Deere & Company Work vehicle, in particular a backhoe and/or a vehicle with a front loader

Also Published As

Publication number Publication date
JPH0424494B2 (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US5957989A (en) Interference preventing system for construction machine
JP3091667B2 (en) Excavation control device for construction machinery
JP3811190B2 (en) Area-limited excavation control device for construction machinery
US7530185B2 (en) Electronic parallel lift and return to carry on a backhoe loader
KR102041895B1 (en) Construction machinery
JP3306301B2 (en) Front control device for construction machinery
EP2924176B1 (en) Front loader
US8500387B2 (en) Electronic parallel lift and return to carry or float on a backhoe loader
EP0905325A1 (en) Control device of construction machine
JP5356521B2 (en) Swing control device for work machine
KR20010090531A (en) Control equipment for working machine
WO2019088065A1 (en) Work machine
WO2019202673A1 (en) Work machine
US20100215469A1 (en) Electronic Parallel Lift And Return To Dig On A Backhoe Loader
WO2019123927A1 (en) Work machine
JPH101968A (en) Automatic locus controller for hydraulic construction equipment
JPS60133127A (en) Method of controlling bucket angle of loading shovel
JPH0424493B2 (en)
JPH09328774A (en) Automatic locus control device of hydraulic construction machine
JPH0257168B2 (en)
US20230129066A1 (en) Work machine and control method for work machine
CN111032967B (en) Working machine
JP7096425B2 (en) Work machine
JPH083187B2 (en) Power shovel bucket angle controller
JP2674918B2 (en) Hydraulic excavator