JPS6234889B2 - - Google Patents

Info

Publication number
JPS6234889B2
JPS6234889B2 JP5361480A JP5361480A JPS6234889B2 JP S6234889 B2 JPS6234889 B2 JP S6234889B2 JP 5361480 A JP5361480 A JP 5361480A JP 5361480 A JP5361480 A JP 5361480A JP S6234889 B2 JPS6234889 B2 JP S6234889B2
Authority
JP
Japan
Prior art keywords
bucket
working arm
angle
arm
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5361480A
Other languages
Japanese (ja)
Other versions
JPS56150229A (en
Inventor
Kunio Kashiwagi
Kozo Ono
Yasuo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP5361480A priority Critical patent/JPS56150229A/en
Publication of JPS56150229A publication Critical patent/JPS56150229A/en
Publication of JPS6234889B2 publication Critical patent/JPS6234889B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明はローデイング油圧シヨベル、バツク
ホウ油圧シヨベル等の腕式作業機のバケツト角を
制御する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the bucket angle of an arm-type working machine such as a loading hydraulic excavator or a backhoe hydraulic excavator.

ローデイング油圧シヨベルのブーム上げ操作の
際に土砂の落下を防止するため、またはバツクホ
ウ油圧シヨベルの法面、水平面掘削時に掘削角を
一定に保つためには、作業腕すなわちブームやア
ームの動作中にもバケツトの水平面からの角度す
なわち絶対角度を一定に保つ必要があり、このよ
うな操作には高度な技術と多大な労力が必要であ
る。この問題を解決するためには、バケツト操作
を行なわなくともバケツトの絶対角度が自動的に
一定になるようにすればよく、このための方法と
しては、リンクによる方法、油圧による方法、電
気的に行なう方法等が提案されている。
In order to prevent earth and sand from falling when lifting the boom of a loading hydraulic excavator, or to maintain a constant digging angle when excavating slopes or horizontal surfaces with a loading hydraulic excavator, it is necessary to It is necessary to keep the angle of the bucket from the horizontal plane, that is, the absolute angle, constant, and such operations require advanced techniques and a great deal of effort. In order to solve this problem, the absolute angle of the bucket can be automatically kept constant without the need for bucket operation.There are several ways to do this: a link method, a hydraulic method, and an electrical method. Several methods have been proposed.

第1図はローデイング油圧シヨベルのフロント
部を示す図である。図において1は油圧シヨベル
本体、2は本体1に枢着されたブーム、3はブー
ム2の先端に枢着されたアーム、4はアーム3の
先端に枢着されたバケツト、5はブームを俯仰動
するブームシリンダ、6はアーム3を揺動するア
ームシリンダ、7はバケツト4を回動するバケツ
トシリンダ、8は本体1に対するブーム2の角度
すなわちブーム角度を検出し、ブーム角度信号α
を出力する角度計、9はブーム2に対するアーム
3の角度すなわちアーム角度を検出し、アーム角
度信号βを出力する角度計、10はアーム3に対
するバケツト4の角度すなわちバケツト角度を検
出し、バケツト角度信号γを出力する角度計であ
る。
FIG. 1 is a diagram showing the front part of a loading hydraulic excavator. In the figure, 1 is the main body of the hydraulic excavator, 2 is the boom that is pivotally attached to the main body 1, 3 is the arm that is pivoted to the tip of the boom 2, 4 is the bucket that is pivoted to the tip of the arm 3, and 5 is the boom that is raised and raised. 6 is an arm cylinder that swings the arm 3; 7 is a bucket cylinder that rotates the bucket 4; 8 detects the angle of the boom 2 with respect to the main body 1, that is, the boom angle; and 8 detects the boom angle signal α.
An angle meter 9 detects the angle of the arm 3 with respect to the boom 2, that is, the arm angle, and outputs an arm angle signal β; 10 detects the angle of the bucket 4 with respect to the arm 3, that is, the bucket angle; It is an angle meter that outputs a signal γ.

第2図は従来のバケツト角制御方法を実施する
ための装置を示す図である。図において11,1
2は油圧ポンプ、13は油圧ポンプ11とバケツ
トシリンダ7との間に設けられた手動操作弁、1
4は手動操作弁13を操作するためのバケツト操
作レバー、15は油圧ポンプ12とバケツトシリ
ンダ7との間に設けられた電磁制御弁、16は角
度信号α,β,γの合計値すなわち絶対角度信号
δを求める加算器、17はスイツチ18がオンに
なつたときの加算器16の出力信号δすなわち目
標絶対角度信号δpを記憶する記憶装置、19は
記憶装置17の出力信号δpと加算器16の出力
信号との差すなわち角度偏差信号Δγを算出する
加減算器、20は加減算器19の出力信号を係数
倍して信号kΔγを出力する係数器、21はスイ
ツチ22がオンのとき係数器20の出力信号を増
幅および補償し、適当なバケツトシリンダ7の速
度を与えるべく電磁制御弁15を制御する増幅器
であり、スイツチ18,22はバケツト操作レバ
ー14を中立位置にしたときにオンとなる。
FIG. 2 is a diagram showing an apparatus for implementing a conventional bucket angle control method. 11,1 in the figure
2 is a hydraulic pump; 13 is a manually operated valve provided between the hydraulic pump 11 and the bucket cylinder 7;
4 is a bucket operation lever for operating the manually operated valve 13; 15 is an electromagnetic control valve provided between the hydraulic pump 12 and the bucket cylinder 7; 16 is the total value of the angle signals α, β, and γ, that is, the absolute value; An adder for calculating the angle signal δ; 17 a storage device for storing the output signal δ of the adder 16 when the switch 18 is turned on, that is, the target absolute angle signal δ p ; 19 an output signal δ p of the storage device 17; An adder/subtractor 20 calculates the difference with the output signal of the adder 16, that is, an angular deviation signal Δγ. 20 is a coefficient multiplier that multiplies the output signal of the adder/subtractor 19 by a coefficient and outputs a signal kΔγ. 21 is a coefficient when the switch 22 is on. This is an amplifier that amplifies and compensates the output signal of the bucket cylinder 20 and controls the electromagnetic control valve 15 to give an appropriate speed to the bucket cylinder 7. The switches 18 and 22 are turned on when the bucket operating lever 14 is placed in the neutral position. becomes.

この装置においては、バケツト操作レバー14
が作動位置にあるときには、バケツト操作レバー
14の操作量に応じた速度でバケツトシリンダ7
が動作し、バケツト4の角速度もバケツト操作レ
バー14の操作量に応じた値となる。そして、バ
ケツト操作レバー14を中立位置に戻し、ブーム
2、アーム3の少なくとも一方を作動したときに
は、スイツチ18,22がオンとなり、そのとき
の目標絶対角度信号δpが記憶装置17に記憶さ
れ加減算器19により角度偏差信号Δγが出力さ
れ係数器20から信号kΔγが出力され、増幅器
21により電磁制御弁15が信号kΔγに応じた
量だけ切換えられて、バケツトシリンダ7が信号
kΔγに応じた速度で作動するから、バケツト4
の角速度が信号kΔγに応じた値となる。ところ
で、バケツト4の絶対角度θはブーム角度、アー
ム角度、バケツト角度をそれぞれA,B,Γとす
ると、次式で表わされる。
In this device, the bucket operating lever 14
When the bucket cylinder 7 is in the operating position, the bucket cylinder 7 moves at a speed corresponding to the amount of operation of the bucket operating lever 14.
operates, and the angular velocity of the bucket belt 4 also takes on a value corresponding to the amount of operation of the bucket steering lever 14. Then, when the bucket operating lever 14 is returned to the neutral position and at least one of the boom 2 and arm 3 is operated, the switches 18 and 22 are turned on, and the target absolute angle signal δ p at that time is stored in the storage device 17 and added/subtracted. The angular deviation signal Δγ is outputted by the device 19, the signal kΔγ is outputted from the coefficient unit 20, the electromagnetic control valve 15 is switched by an amount corresponding to the signal kΔγ by the amplifier 21, and the bucket cylinder 7 is set at a speed corresponding to the signal kΔγ. Because it works, Bucket 4
The angular velocity of is a value corresponding to the signal kΔγ. Incidentally, the absolute angle θ of the bucket belt 4 is expressed by the following equation, where A, B, and Γ are the boom angle, arm angle, and bucket angle, respectively.

θ=A+B+Γ+C ここで、Cはバケツト4の形状等により定まつ
た一定値である。したがつて、絶対角度信号δ≡
α+β+γは絶対角度θに応じた値となるから、
絶対角度θを一定に保つには、絶対角度信号δが
一定になるようにすればよい。そして、この装置
においては、目標絶対角度信号δpと絶対角度信
号δとの差すなわち角度偏差信号Δγに応じた角
速度でバケツト4を回動する。このため、角度信
号α,β,γが変化したとしても、バケツト4の
絶対角度θは、バケツト4の手動操作を停止した
ときの絶対角度に保たれる。この状態で、バケツ
ト操作レバー14を作動位置にすると、スイツチ
18,22がオフになり、バケツト4は操作レバ
ー14の操作量に応じた角速度で回動する。
θ=A+B+Γ+C Here, C is a constant value determined by the shape of the bucket 4, etc. Therefore, the absolute angle signal δ≡
Since α+β+γ is a value according to the absolute angle θ,
In order to keep the absolute angle θ constant, the absolute angle signal δ may be kept constant. In this device, the bucket belt 4 is rotated at an angular velocity according to the difference between the target absolute angle signal δ p and the absolute angle signal δ, that is, the angular deviation signal Δγ. Therefore, even if the angle signals α, β, and γ change, the absolute angle θ of the bucket belt 4 is maintained at the absolute angle when the manual operation of the bucket belt 4 is stopped. In this state, when the bucket operating lever 14 is set to the operating position, the switches 18 and 22 are turned off, and the bucket 4 rotates at an angular velocity according to the amount of operation of the operating lever 14.

すなわち、従来のバケツト角制御方法は、ブー
ム2、アーム3の少なくとも一方を操作している
とき、バケツト4の絶対角度θが一定になるとき
のバケツト角度信号すなわち目標バケツト角度信
号γr=δp−α−βを求めて、目標バケツト角度
信号γrと実際のバケツト角度信号γとの差すな
わち角度偏差信号Δrを求めている。
That is, in the conventional bucket belt angle control method, when at least one of the boom 2 and arm 3 is operated, the bucket belt angle signal when the absolute angle θ of the bucket belt 4 becomes constant, that is, the target bucket belt angle signal γ r = δ p −α−β is determined to determine the difference between the target bucket angle signal γ r and the actual bucket tilt angle signal γ, that is, the angular deviation signal Δr.

Δγ=δp−δ=δp−α−β−γ=γr−γそ
して、角度偏差信号Δγにゲインを乗じた信号k
Δγに応じた速度でバケツト4が回動されるので
あり、バケツト4をある速度で回動するには、常
に角度偏差信号Δγが零でないことが必要であ
る。ところで、普通は制御系のゲインkを大きく
すれば、角度偏差信号Δγを常に小さくすること
ができるが、油圧シヨベルのように遅れの大きい
系では、ゲインkを大きくするとハンチングを起
こしてしまうから、ゲインkを小さくしなければ
ならず、この場合には角度偏差信号Δγがかなり
大きくなつてしまうから、精度よくバケツト角を
制御することができない。
Δγ=δ p −δ=δ p −α−β−γ=γ r −γ And the signal k obtained by multiplying the angular deviation signal Δγ by the gain
The bucket belt 4 is rotated at a speed corresponding to Δγ, and in order to rotate the bucket belt 4 at a certain speed, it is necessary that the angular deviation signal Δγ is always not zero. By the way, normally the angular deviation signal Δγ can be kept small by increasing the gain k of the control system, but in a system with a large delay such as a hydraulic excavator, increasing the gain k will cause hunting. The gain k must be made small, and in this case the angular deviation signal Δγ becomes considerably large, making it impossible to accurately control the bucket angle.

また、従来のバケツト角制御方法においては、
バケツト4の手動操作を停止したときのバケツト
4の絶対角度θに応じた目標絶対角度信号δp
記憶して、ブーム2、アーム3を動作してもバケ
ツト4の絶対角度θを一定に保つように自動制御
し、この状態でバケツト4の手動操作を開始する
と、自動制御を停止し、バケツト4がバケツト操
作レバー14の操作量に応じた角速度で回動する
ようにしている。したがつて、自動制御時に所定
の角速度で回動していたバケツト4が、バケツト
操作レバー14を操作すると、今までの角速度と
は無関係な角速度で回動し始めるから、スムーズ
な操作フイーリングが得られない。たとえば、自
動制御時にバケツト4の絶対角度θを一定に保つ
ためにバケツト4が角速度γ〓で第1図時計方向
に回動しているときに、操作者がバケツト4の絶
対角度θをもつと小さく修正しようと考えてバケ
ツト操作レバー14をバケツト4が時計方向に回
動するように操作したとき、バケツト操作レバー
14によつて指令されたバケツト4の角速度γ〓
が角速度γ〓より小さいと、バケツト4の絶対角
度θは小さくならずにかえつて大きくなつてしま
い、操作者の意図と反して、危険である。この問
題を解決するためには、自動制御時にバケツト操
作レバー14が操作されたときには、そのバケツ
ト操作レバー14の出力信号を目標絶対角度信号
δpに加算してやればよいが、この場合にはコス
トや応答性などの問題があり、現状では実現が困
難である。
In addition, in the conventional bucket angle control method,
The target absolute angle signal δ p corresponding to the absolute angle θ of the bucket 4 when manual operation of the bucket 4 is stopped is stored, and the absolute angle θ of the bucket 4 is kept constant even when the boom 2 and arm 3 are operated. When manual operation of the bucket 4 is started in this state, the automatic control is stopped and the bucket 4 is rotated at an angular velocity corresponding to the amount of operation of the bucket 4. Therefore, when the bucket handle 4, which was rotating at a predetermined angular velocity during automatic control, operates the bucket handle operation lever 14, it starts rotating at an angular velocity that is unrelated to the previous angular velocity, resulting in a smooth operation feeling. I can't. For example, when the bucket belt 4 is rotating clockwise in Figure 1 at an angular velocity γ = 1 to keep the absolute angle θ of the bucket belt 4 constant during automatic control, the operator When the bucket handlebar 4 is rotated clockwise with the intention of making a small correction, the angular velocity of the bucket handler 4 commanded by the bucket handler 14 is γ 〓 2
If the angular velocity γ is smaller than 1 , the absolute angle θ of the bucket 4 will not become smaller but will instead become larger, which is contrary to the operator's intention and is dangerous. In order to solve this problem, when the bucket operation lever 14 is operated during automatic control, the output signal of the bucket operation lever 14 may be added to the target absolute angle signal δ p , but in this case, the cost and the There are problems such as responsiveness, which makes it difficult to realize at present.

この発明は上述の問題点を解決するためになさ
れたもので、バケツト角度を精度よく制御でき、
また自動制御時におけるバケツトの絶対角度の修
正操作をスムーズに行なうことができる腕式作業
機のバケツト角制御方法を提供することを目的と
する。
This invention was made to solve the above-mentioned problems, and the bucket angle can be controlled with high accuracy.
Another object of the present invention is to provide a bucket belt angle control method for an arm-type work machine that allows smooth adjustment of the absolute bucket angle during automatic control.

この目的を達成するため、この発明においては
作業機本体に枢着され第1油圧シリンダにより俯
仰動される第1作業腕と、その第1作業腕の先端
に枢着され第2油圧シリンダにより揺動される第
2作業腕と、その第2作業腕の先端に取付けられ
バケツトシリンダにより回動されるバケツトとを
備えた腕式作業機のバケツト角制御方法におい
て、上記第1作業腕の角速度と上記第2作業腕の
角速度との加算値から上記バケツトの動くべき角
速度に応じた制御速度信号を求め、かつ上記第1
作業腕、上記第2作業腕および上記バケツトの角
度を検出し、上記第1作業腕、上記第2作業腕お
よび上記バケツトの角度から上記バケツトの目標
角度と実際角度との差に応じた角度補正信号を求
め、上記第1作業腕、上記第2作業腕の操作時
に、上記制御速度信号と上記角度補正信号とを加
算した信号に応じた角速度で上記バケツトを回動
し、また上記第1作業腕、上記第2作業腕の操作
時に上記バケツトを手動操作したとき、上記制御
速度信号と上記バケツトの手動操作信号とを加算
した信号に応じた角速度で上記バケツトを回動
し、さらに上記第1作業腕、上記第2作業腕の操
作時に、上記制御速度信号と上記角度補正信号と
を加算した信号に応じた角速度で上記バケツトを
回動し、上記第1作業腕、上記第2作業腕の操作
時に上記バケツトを手動操作したとき、上記制御
速度信号と上記バケツトの手動操作信号とを加算
した信号に応じた角速度で上記バケツトを回動す
る。
In order to achieve this object, the present invention includes a first working arm that is pivotally connected to the work machine body and is moved up and down by a first hydraulic cylinder, and a first working arm that is pivotally connected to the tip of the first working arm and is swung by a second hydraulic cylinder. In the method for controlling the bucket angle of an arm-type working machine, which includes a second working arm that is moved, and a bucket that is attached to the tip of the second working arm and rotated by a bucket cylinder, the angular velocity of the first working arm is controlled. and the angular velocity of the second working arm to obtain a control speed signal corresponding to the angular velocity at which the bucket should move, and
The angles of the working arm, the second working arm, and the bucket are detected, and the angles are corrected based on the angles of the first working arm, the second working arm, and the bucket according to the difference between the target angle and the actual angle of the bucket. The signal is obtained, and when the first working arm and the second working arm are operated, the bucket is rotated at an angular velocity according to the signal obtained by adding the control speed signal and the angle correction signal, and the first work arm is operated. When the bucket belt is manually operated when operating the second working arm, the bucket belt is rotated at an angular velocity according to a signal obtained by adding the control speed signal and the manual operation signal of the bucket handle, and When operating the working arm and the second working arm, the bucket is rotated at an angular velocity according to a signal obtained by adding the control speed signal and the angle correction signal, and the first working arm and the second working arm are rotated. When the bucket door is manually operated, the bucket door is rotated at an angular velocity according to a signal obtained by adding the control speed signal and the manual operation signal of the bucket door.

第3図はこの発明に係る腕式作業機のバケツト
角制御方法を実施するための装置を示す図であ
る。図において23はブーム角度信号αとアーム
角度信号βとの和を求める加算器、24は加算器
23の出力信号α+βを微分する微分器、25は
係数器の出力信号kΔγと微分器の出力信号α+
β≡−γ〓rとの差を求める加算器、26はバケツ
ト操作レバー14の操作量に応じた信号を出力す
る手動操作装置、27は加算器25の出力信号と
手動操作装置26の出力信号との和を求める加算
器、28は加算器25と加算器27との間に設け
られたスイツチ、29,30はそれぞれブーム操
作レバー、アーム操作レバー、31〜33はそれ
ぞれ操作レバー29,30,14の操作状態を検
出するレバー操作検出器、34は操作レバー2
9,30の少なくとも一方が作動位置になつたと
き制御信号Aを出力し、操作レバー29,30の
少なくとも一方が作動位置でありかつ操作レバー
14が作動位置でないとき制御信号Bを出力する
制御指令装置で、制御信号Aが出力されたときス
イツチ28がオンになり、制御信号Bが出力され
たときスイツチ18,22がオンになる。
FIG. 3 is a diagram showing an apparatus for carrying out the bucket angle control method for an arm-type working machine according to the present invention. In the figure, 23 is an adder that calculates the sum of the boom angle signal α and the arm angle signal β, 24 is a differentiator that differentiates the output signal α+β of the adder 23, and 25 is the output signal kΔγ of the coefficient unit and the output signal of the differentiator. α+
An adder for calculating the difference between β≡−γ〓 r , 26 a manual operating device that outputs a signal according to the amount of operation of the bucket operating lever 14, and 27 an output signal of the adder 25 and an output signal of the manual operating device 26. 28 is a switch provided between the adder 25 and the adder 27, 29 and 30 are respectively a boom operating lever and an arm operating lever, and 31 to 33 are operating levers 29, 30, A lever operation detector detects the operation state of 14, 34 is the operation lever 2
A control command that outputs a control signal A when at least one of the operating levers 29 and 30 is in the operating position, and outputs a control signal B when at least one of the operating levers 29 and 30 is in the operating position and the operating lever 14 is not in the operating position. In the device, when control signal A is output, switch 28 is turned on, and when control signal B is output, switches 18 and 22 are turned on.

第4図は制御指令装置34の一例を示す図であ
る。図において35はオア素子、36はインバー
タ、37はアンド素子である。
FIG. 4 is a diagram showing an example of the control command device 34. In the figure, 35 is an OR element, 36 is an inverter, and 37 is an AND element.

第5図は制御指令装置34の他の一例を示す図
である。図において38,39は操作レバー2
9,30が作動位置になつたときオンとなるスイ
ツチ40は操作レバー14が作動位置でないとき
オンとなるスイツチである。
FIG. 5 is a diagram showing another example of the control command device 34. In the figure, 38 and 39 are the operating levers 2
A switch 40 that is turned on when the operating levers 9 and 30 are in the operating position is a switch that is turned on when the control lever 14 is not in the operating position.

この装置においては、バケツト操作レバー14
のみを操作しているときには、制御指令装置34
から制御信号A,Bが出力されないから、スイツ
チ18,22,28はオフであり、電磁制御弁1
5はバケツト操作レバー14の操作量に応じた量
だけ切換えられ、バケツト4の角速度はバケツト
操作レバー14の操作量に応じた値となる。ま
た、操作レバー29,30の少なくとも一方を操
作し、操作レバー14を操作しなければ、制御指
令装置34から制御信号A,Bが出力されるか
ら、スイツチ18,22,28がオンとなる。こ
のため、バケツト4は加算器27の出力信号γ〓r
+kΔγに応じた角速度で回動される。ところ
で、上述の如くバケツト4の絶対角度θに応じた
絶対角度信号δは次式で表わされる。
In this device, the bucket operating lever 14
When operating only the control command device 34
Since the control signals A and B are not output from the switch 18, 22, and 28 are off, the solenoid control valve 1
5 is switched by an amount corresponding to the amount of operation of the bucket operation lever 14, and the angular velocity of the bucket 4 has a value corresponding to the amount of operation of the bucket operation lever 14. Further, if at least one of the operating levers 29 and 30 is operated but the operating lever 14 is not operated, the control signals A and B are output from the control command device 34, so that the switches 18, 22, and 28 are turned on. Therefore, the bucket 4 receives the output signal γ〓 r of the adder 27
It is rotated at an angular velocity according to +kΔγ. By the way, as mentioned above, the absolute angle signal δ corresponding to the absolute angle θ of the bucket 4 is expressed by the following equation.

δ=α+β+γ そして、絶対角度θを一定とした場合すなわち
絶対角度信号δを一定とした場合には、この式を
微分すると次式のようになる。
δ=α+β+γ Then, when the absolute angle θ is constant, that is, when the absolute angle signal δ is constant, the following expression is obtained by differentiating this expression.

γ〓=−α〓−β〓 したがつて、バケツト4の角速度を制御速度信号
−α〓−β〓≡γ〓rに応じた値とすれば、バケツト4
の絶対角度θが一定になる。そして、外乱の影響
等により絶対角度θが操作レバー29,30の操
作開始時の絶対角度θから変動したときには、そ
の変動量に比例した信号kΔγに応じた速度でバ
ケツト4の角速度が修正され、バケツト4の絶対
角度θは一定に保たれる。つぎに、この状態でバ
ケツト操作レバー14をも操作すると、制御指令
装置34からは制御信号Aのみが出力されるか
ら、スイツチ18,22がオフになる。したがつ
て、バケツト4は制御速度信号γ〓rに手動操作装
置26の出力信号を加算した信号に応じた角速度
で回動するから、バケツト4の絶対角度θをバケ
ツト操作レバー14の操作量に対応した速度で修
正することができる。つぎに、この状態でバケツ
ト操作レバー14を中立位置に戻すと、制御指令
装置34から制御信号Bが出力され、スイツチ1
8,22がオンとなるので、記憶装置17にはそ
の時点の絶対角度θに応じた値の目標絶対角度信
号δpが記憶され、バケツト4はそれ以後その絶
対角度θを保持する。
γ〓=−α〓−β〓 Therefore, if the angular velocity of the bucket 4 is a value according to the control speed signal −α〓−β〓≡γ〓 r , the bucket 4
The absolute angle θ becomes constant. When the absolute angle θ varies from the absolute angle θ at the start of operation of the operating levers 29 and 30 due to the influence of disturbance, the angular velocity of the bucket 4 is corrected at a speed according to the signal kΔγ proportional to the amount of variation, The absolute angle θ of the bucket 4 is kept constant. Next, when the bucket control lever 14 is also operated in this state, only the control signal A is output from the control command device 34, so that the switches 18 and 22 are turned off. Therefore, since the bucket belt 4 rotates at an angular velocity according to the signal obtained by adding the output signal of the manual operation device 26 to the control speed signal γ r It can be corrected at a corresponding speed. Next, when the bucket control lever 14 is returned to the neutral position in this state, the control signal B is output from the control command device 34, and the switch 1
8 and 22 are turned on, the target absolute angle signal δ p having a value corresponding to the absolute angle θ at that time is stored in the storage device 17, and the bucket 4 holds that absolute angle θ from then on.

第6図はこの発明に係る腕式作業機のバケツト
角制御方法を実施するための他の装置の一部を示
す図である。図において41は加算器25と増幅
器21との間に設けられたスイツチで、スイツチ
41は制御指令装置34の出力信号Aが出力され
たときオンとなる。
FIG. 6 is a diagram showing a part of another device for implementing the bucket angle control method for an arm-type working machine according to the present invention. In the figure, 41 is a switch provided between the adder 25 and the amplifier 21, and the switch 41 is turned on when the output signal A of the control command device 34 is output.

この装置においては、バケツト操作レバー14
のみを操作したときには、スイツチ41がオフで
あり、バケツト4はバケツト操作レバー14の操
作量に応じた角速度で回動される。また、操作レ
バー29,30のいずれか一方を作動位置とし、
バケツト操作レバー14を中立位置としたときに
は、バケツト4が加算器25の出力信号γ〓r+k
Δγに応じた角速度で回動されるから、バケツト
4の絶対角度θは一定に保たれる。そして、この
状態でバケツト操作レバー14をも作動位置にす
ると、油圧ポンプ11の圧油もバケツトシリンダ
7に供給されるから、バケツト4の絶対角度θを
変化させることができる。さらに、この状態から
バケツト操作レバー14を中立位置に戻すと、バ
ケツト4はそのときの絶対角度θを保持する。
In this device, the bucket operating lever 14
When only the bucket handle lever 14 is operated, the switch 41 is off, and the bucket handle 4 is rotated at an angular velocity according to the amount of operation of the bucket handle operation lever 14. Further, one of the operating levers 29 and 30 is set to the operating position,
When the bucket control lever 14 is set to the neutral position, the bucket 4 outputs the output signal γ〓 r +k of the adder 25.
Since it is rotated at an angular velocity according to Δγ, the absolute angle θ of the bucket 4 is kept constant. If the bucket operating lever 14 is also set to the operating position in this state, the pressure oil from the hydraulic pump 11 is also supplied to the bucket cylinder 7, so that the absolute angle θ of the bucket 4 can be changed. Furthermore, when the bucket steering lever 14 is returned to the neutral position from this state, the bucket steering wheel 4 maintains the absolute angle θ at that time.

すなわち、この発明に係るバケツト角制御方法
においては、ブーム2、アーム3を操作している
ときにバケツト4の絶対角度θを一定に保つため
に、ブーム2、アーム3の角速度信号α〓,β〓から
制御速度信号−α〓−β〓≡γ〓rを求めて、この制御
速度信号γ〓rに応じた角度でバケツト4を回動し
てオープンループ制御を行なう。したがつて、従
来のように角度偏差信号Δγでバケツト4の角速
度を制御するいわゆる位置フイードバツク制御方
式より、この発明のようなオープンループ制御の
方が応答が速く、またハンチングを起こすことが
なく、荷の重量のような系のパラメータの変化、
バケツト4が何かに当つたときのような外乱の影
響が小さければ、バケツト角度を精度よく制御す
ることができる。そして、この発明に係るバケツ
ト角制御方法においては、角度偏差信号すなわち
角度補正信号Δγによる位置フイードバツク制御
をも行なつているからオープンループ制御と位置
フイードバツク制御とを組合わせた制御であり、
系のパラメータ変化、外乱の影響等が大きくと
も、それによつて生じた絶対角度θの変化を位置
フイードバツク制御で修正することができるの
で、バケツト角度をきわめて精度よく制御するこ
とができる。
That is, in the bucket belt angle control method according to the present invention, in order to keep the absolute angle θ of the bucket belt 4 constant while operating the boom 2 and arm 3, the angular velocity signals α〓 and β of the boom 2 and arm 3 are adjusted. A control speed signal -α〓-β〓≡γ〓 r is obtained from 〓, and open loop control is performed by rotating the bucket 4 at an angle according to this control speed signal γ〓 r . Therefore, compared to the conventional position feedback control method in which the angular velocity of the bucket 4 is controlled using the angular deviation signal Δγ, the open loop control according to the present invention has a faster response and does not cause hunting. changes in system parameters such as load weight,
If the influence of disturbances such as when the bucket belt 4 hits something is small, the bucket belt angle can be controlled with high precision. In the bucket angle control method according to the present invention, position feedback control is also performed using the angle deviation signal, that is, the angle correction signal Δγ, so the control is a combination of open loop control and position feedback control.
Even if the system parameters change, the influence of disturbance, etc. are large, the resulting change in the absolute angle θ can be corrected by position feedback control, so the bucket angle can be controlled with extremely high accuracy.

また、この発明に係るバケツト角制御方法で
は、制御速度信号γ〓rに応じた速度でバケツト4
を回動しており、この状態でバケツト操作レバー
14が操作されたときに、角度補正信号Δγの代
わりにバケツトの手動操作信号を制御速度信号γ〓
に加算するから、絶対角度θを手動操作信号に
応じた速度で変化させることができるので、自動
制御時におけるバケツトの絶対角度θの修正操作
をスムーズに行なうことができる。
Further, in the bucket angle control method according to the present invention, the bucket angle is
When the bucket control lever 14 is operated in this state, the manual operation signal of the bucket is used instead of the angle correction signal Δγ as the control speed signal γ
Since the absolute angle θ is added to r , the absolute angle θ can be changed at a speed according to the manual operation signal, so that the absolute angle θ of the bucket can be smoothly corrected during automatic control.

なお、上述実施例においては、油圧シヨベルの
バケツト角制御方法について説明したが、油圧シ
ヨベルに限定されない。また、上述実施例におい
ては、ローデイング油圧シヨベルのバケツト角制
御方法について説明したが、バツクホウ油圧シヨ
ベルでも全く同様である。さらに、バケツトシリ
ンダ7の一端がアーム3ではなくブーム2に枢着
され、アーム3を揺動したとしてもバケツト4の
絶対角度θが自動的にほぼ一定に保たれるもの
や、ブーム2とバケツト4のみからなるローダの
ような構造のものの場合には、ブーム2の角速度
信号α〓から制御速度信号γ〓rを求め、ブーム角度
信号α、バケツト角度信号γから角度補正信号Δ
γを求めてもよい。また、上述実施例において
は、ブーム角度信号α、アーム角度信号β、バケ
ツト角度信号γを角度計8〜10により直接的に検
出したが、シリンダ5〜7の伸長量を検出するこ
と等により角度信号α,β,γを間接的に求めて
もよい。さらに、上述実施例においては、角度信
号α,β,を微分することにより、間接的に角速
度信号α〓,β〓を求めたが、直接的に角速度信号
α〓,β〓を求めてもよく、シリンダ5〜7の速度や
シリンダ5〜7に接続された管路の流量などの角
速度信号α〓,β〓に対応する値を用いてもよい。ま
た、上述実施例では、レバー操作検出器31,3
2により操作レバー29,30の操作状態を検出
したが、法面掘削のように、ブーム2、アーム3
をある関係で自動制御するときなどには、その自
動制御信号により操作レバー29,30の操作状
態を検出してもよく、ブーム2、アーム3の角速
度信号α〓,β〓により操作レバー29,30の操作
状態を検出してもよい。さらに、演算部はアナロ
グ回路で構成しても、マイクロコンピユータなど
のデジタル回路で構成してもよい。また、電磁制
御弁15を電気油圧変換弁とパイロツト操作形流
量制御弁の組合せにし、手動操作信号をパイロツ
ト圧として取出し、電気油圧変換弁によるパイロ
ツト圧と加算する構成としてもよい。さらに、電
磁制御弁15のような弁を制御してシリンダ7を
制御せずに、流体圧源であるポンプの吐出量を制
御してシリンダ7を制御してもよい。
In addition, in the above-mentioned Example, although the bucket angle control method of the hydraulic excavator was demonstrated, it is not limited to a hydraulic excavator. Further, in the above-described embodiment, a method for controlling the bucket angle of a loading hydraulic shovel has been described, but the method is exactly the same for a backhoe hydraulic shovel. Furthermore, one end of the bucket cylinder 7 is pivotally connected to the boom 2 instead of the arm 3, so that even if the arm 3 is swung, the absolute angle θ of the bucket cylinder 4 is automatically kept almost constant; In the case of a loader-like structure consisting of only a bucket 4, the control speed signal γ〓 r is obtained from the angular velocity signal α〓 of the boom 2, and the angle correction signal Δ is calculated from the boom angle signal α and the bucket angle signal γ.
You may also find γ. In the above embodiment, the boom angle signal α, the arm angle signal β, and the bucket angle signal γ are directly detected by the angle meters 8 to 10, but the angle The signals α, β, and γ may also be determined indirectly. Furthermore, in the above embodiment, the angular velocity signals α〓, β〓 were indirectly obtained by differentiating the angular signals α, β, but the angular velocity signals α〓, β〓 may also be obtained directly. , values corresponding to the angular velocity signals α〓, β〓 such as the speeds of the cylinders 5 to 7 and the flow rates of the pipes connected to the cylinders 5 to 7 may be used. Further, in the above embodiment, the lever operation detectors 31, 3
2 detected the operation status of the operating levers 29 and 30, but as in slope excavation, the boom 2 and arm 3
When automatically controlling the operating levers 29 and 30 in a certain relationship, the operating states of the operating levers 29 and 30 may be detected using the automatic control signal, and the operating states of the operating levers 29 and 30 may be detected using the angular velocity signals α and β of the boom 2 and the arm 3, respectively. Thirty operating states may be detected. Furthermore, the arithmetic unit may be configured with an analog circuit or a digital circuit such as a microcomputer. Alternatively, the electromagnetic control valve 15 may be a combination of an electro-hydraulic conversion valve and a pilot-operated flow control valve, and the manual operation signal may be taken out as pilot pressure and added to the pilot pressure from the electro-hydraulic conversion valve. Furthermore, instead of controlling the cylinder 7 by controlling a valve such as the electromagnetic control valve 15, the cylinder 7 may be controlled by controlling the discharge amount of a pump that is a fluid pressure source.

以上説明したように、この発明に係る腕式作業
機のバケツト角制御方法においては、バケツト角
度を精度よく制御でき、また自動制御時における
バケツトの絶対角度の修正操作をスムーズに行な
うことができる。このように、この発明の効果は
顕著である。
As described above, in the bucket belt angle control method for an arm-type work machine according to the present invention, the bucket belt angle can be controlled with high precision, and the absolute angle of the bucket can be smoothly corrected during automatic control. As described above, the effects of this invention are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はローデイング油圧シヨベルのフロント
部を示す図、第2図は従来のバケツト角制御方法
を実施するための装置を示す図、第3図はこの発
明に係るバケツト角制御方法を実施するための装
置を示す図、第4図、第5図はそれぞれ制御指令
装置の一例を示す図、第6図はこの発明に係るバ
ケツト角制御方法を実施するための他の装置の一
部を示す図である。 1……油圧シヨベル本体、2……ブーム、3…
…アーム、4……バケツト、5……ブームシリン
ダ、6……アームシリンダ、7……バケツトシリ
ンダ、8〜10……角度計、13……手動操作
弁、14……バケツト操作レバー、15……電磁
制御弁、16……加算器、17……記憶装置、1
8……スイツチ、19……加減算器、22……ス
イツチ、23……加算器、24……微分器、25
……加算器、26……手動操作装置、27……加
算器、28……スイツチ、29……ブーム操作レ
バー、30……アーム操作レバー、31〜33…
…レバー操作検出器、34……制御指令装置、4
1……スイツチ。
FIG. 1 is a diagram showing the front part of a loading hydraulic excavator, FIG. 2 is a diagram showing a device for implementing the conventional bucket belt angle control method, and FIG. 3 is a diagram showing a device for implementing the bucket belt angle control method according to the present invention. FIG. 4 and FIG. 5 are diagrams each showing an example of a control command device, and FIG. 6 is a diagram showing a part of another device for carrying out the bucket angle control method according to the present invention. It is. 1...Hydraulic excavator body, 2...Boom, 3...
...Arm, 4...Bucket, 5...Boom cylinder, 6...Arm cylinder, 7...Bucket cylinder, 8-10...Angle meter, 13...Manual operation valve, 14...Bucket operation lever, 15 ... Solenoid control valve, 16 ... Adder, 17 ... Memory device, 1
8... switch, 19... adder/subtractor, 22... switch, 23... adder, 24... differentiator, 25
...Adder, 26...Manual operating device, 27...Adder, 28...Switch, 29...Boom operation lever, 30...Arm operation lever, 31-33...
... Lever operation detector, 34 ... Control command device, 4
1...Switch.

Claims (1)

【特許請求の範囲】 1 作業機本体に枢着され第1油圧シリンダによ
り俯仰動される第1作業腕と、その第1作業腕の
先端に枢着され第2油圧シリンダにより揺動され
る第2作業腕と、その第2作業腕の先端に取付け
られバケツトシリンダにより回動されるバケツト
とを備えた腕式作業機のバケツト角制御方法にお
いて、上記第1作業腕の角速度と上記第2作業腕
の角速度との加算値から上記バケツトの動くべき
角速度に応じた制御速度信号を求め、かつ上記第
1作業腕、上記第2作業腕および上記バケツトの
角度を検出し、上記第1作業腕、上記第2作業腕
および上記バケツトの角度から上記バケツトの目
標角度と実際角度との差に応じた角度補正信号を
求め、上記第1作業腕、上記第2作業腕の操作時
に、上記制御速度信号と上記角度補正信号とを加
算した信号に応じた角速度で上記バケツトを回動
することを特徴とする腕式作業機のバケツト角制
御方法。 2 上記バケツトの上記目標角度を、上記第1作
業腕、上記第2作業腕の操作開始時点または上記
バケツトの操作終了時点の上記バケツトの絶対角
度と上記第1作業腕、上記第2作業腕の角度とか
ら求めることを特徴とする特許請求の範囲第1項
記載の腕式作業機のバケツト角制御方法。 3 作業機本体に枢着され第1油圧シリンダによ
り俯仰動される第1作業腕と、その第1作業腕の
先端に枢着され第2油圧シリンダにより揺動され
る第2作業腕と、その第2作業腕の先端に取付け
られバケツトシリンダにより回動されるバケツト
とを備えた腕式作業機のバケツト角制御方法にお
いて、上記第1作業腕の角速度と上記第2作業腕
の角速度との加算値から上記バケツトの動くべき
角速度に応じた制御速度信号を求め、上記第1作
業腕、上記第2作業腕の操作時に上記バケツトを
手動操作したとき、上記制御速度信号と上記バケ
ツトの手動操作信号とを加算した信号に応じた角
速度で上記バケツトを回動することを特徴とする
腕式作業機のバケツト角制御方法。 4 作業機本体に枢着され第1油圧シリンダによ
り俯仰動される第1作業腕と、その第1作業腕の
先端に枢着され第2油圧シリンダにより揺動され
る第2作業腕と、その第2作業腕の先端に取付け
られバケツトシリンダにより回動されるバケツト
とを備えた腕式作業機のバケツト角制御方法にお
いて、上記第1作業腕の角速度と上記第2作業腕
の角速度との加算値から上記バケツトの動くべき
角速度に応じた制御速度信号を求め、かつ上記第
1作業腕、上記第2作業腕および上記バケツトの
角度を検出し、上記第1作業腕、上記第2作業腕
および上記バケツトの角度から上記バケツトの目
標角度と実際角度との差に応じた角度補正信号を
求め、上記第1作業腕、上記第2作業腕の操作時
に、上記制御速度信号と上記角度補正信号とを加
算した信号に応じた角速度で上記バケツトを回動
し、上記第1作業腕、上記第2作業腕の操作時に
上記バケツトを手動操作したとき、上記制御速度
信号と上記バケツトの手動操作信号とを加算した
信号に応じた角速度で上記バケツトを回動するこ
とを特徴とする腕式作業機のバケツト角制御方
法。
[Scope of Claims] 1. A first working arm which is pivotally connected to the working machine body and is moved up and down by a first hydraulic cylinder, and a first working arm which is pivotally connected to the tip of the first working arm and is swung by a second hydraulic cylinder. In the method for controlling the bucket angle of an arm-type working machine equipped with two working arms and a bucket that is attached to the tip of the second working arm and rotated by a bucket cylinder, the angular velocity of the first working arm and the second bucket can be controlled. A control speed signal corresponding to the angular velocity at which the bucket belt should move is determined from the added value with the angular velocity of the working arm, and the angles of the first working arm, the second working arm, and the bucket belt are detected; , an angle correction signal corresponding to the difference between the target angle and the actual angle of the bucket is calculated from the angles of the second working arm and the bucket, and when the first working arm and the second working arm are operated, the control speed is adjusted. A bucket belt angle control method for an arm-type work machine, characterized in that the bucket belt is rotated at an angular velocity according to a signal obtained by adding a signal and the angle correction signal. 2. The target angle of the bucket can be determined by calculating the absolute angle of the bucket at the start of operation of the first working arm and the second working arm or the end of the operation of the bucket and the angle of the first working arm and the second working arm. 2. A bucket angle control method for an arm-type working machine according to claim 1, wherein the bucket angle is determined from the angle. 3. A first working arm that is pivotally connected to the work equipment body and is moved up and down by a first hydraulic cylinder; a second working arm that is pivotally connected to the tip of the first working arm and is swung by a second hydraulic cylinder; In a bucket angle control method for an arm-type working machine equipped with a bucket that is attached to the tip of a second working arm and rotated by a bucket cylinder, the angular velocity of the first working arm and the angular velocity of the second working arm are A control speed signal corresponding to the angular velocity at which the bucket tote should move is determined from the added value, and when the bucket tot is manually operated when operating the first working arm and the second working arm, the control speed signal and the manual operation of the bucket tote are determined. A bucket belt angle control method for an arm-type work machine, characterized in that the bucket belt is rotated at an angular velocity according to a signal obtained by adding a signal. 4. A first working arm that is pivotally connected to the work equipment body and is moved up and down by a first hydraulic cylinder; a second working arm that is pivotally connected to the tip of the first working arm and is swung by a second hydraulic cylinder; In a bucket angle control method for an arm-type working machine equipped with a bucket that is attached to the tip of a second working arm and rotated by a bucket cylinder, the angular velocity of the first working arm and the angular velocity of the second working arm are A control speed signal corresponding to the angular velocity at which the bucket should move is determined from the added value, and the angles of the first working arm, the second working arm, and the bucket are detected, and the first working arm, the second working arm An angle correction signal corresponding to the difference between the target angle and the actual angle of the bucket is determined from the angle of the bucket, and when the first working arm and the second working arm are operated, the control speed signal and the angle correction signal are calculated. When the bucket is rotated at an angular velocity according to the signal obtained by adding the above control speed signal and the manual operation signal of the bucket, when the bucket is manually operated when the first working arm and the second working arm are operated, A bucket belt angle control method for an arm-type work machine, characterized in that the bucket belt is rotated at an angular velocity according to a signal obtained by adding up the bucket belt.
JP5361480A 1980-04-24 1980-04-24 Control of bucket angle of oil-pressure shovel, etc. Granted JPS56150229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5361480A JPS56150229A (en) 1980-04-24 1980-04-24 Control of bucket angle of oil-pressure shovel, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5361480A JPS56150229A (en) 1980-04-24 1980-04-24 Control of bucket angle of oil-pressure shovel, etc.

Publications (2)

Publication Number Publication Date
JPS56150229A JPS56150229A (en) 1981-11-20
JPS6234889B2 true JPS6234889B2 (en) 1987-07-29

Family

ID=12947774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5361480A Granted JPS56150229A (en) 1980-04-24 1980-04-24 Control of bucket angle of oil-pressure shovel, etc.

Country Status (1)

Country Link
JP (1) JPS56150229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142874U (en) * 1987-03-11 1988-09-20
JPH03107892U (en) * 1990-02-19 1991-11-06

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189221A (en) * 1986-02-13 1987-08-19 Kubota Ltd Controller for boom-shaped working machine
JPS62133753U (en) * 1986-02-13 1987-08-22
JPS62244930A (en) * 1986-04-15 1987-10-26 Kubota Ltd Controller for front loader
JPH0633608B2 (en) * 1986-12-16 1994-05-02 株式会社クボタ Front loader control device
JPH03241122A (en) * 1990-02-19 1991-10-28 Kubota Corp Bucket controller of back-hoe
JP2509368B2 (en) * 1990-05-23 1996-06-19 日立建機株式会社 Posture angle control device for work attachment
EP1416095B1 (en) * 2002-10-31 2011-10-12 Deere & Company Work vehicle, in particular a backhoe and/or a vehicle with a front loader
JP7412918B2 (en) * 2019-08-01 2024-01-15 住友重機械工業株式会社 excavator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142874U (en) * 1987-03-11 1988-09-20
JPH03107892U (en) * 1990-02-19 1991-11-06

Also Published As

Publication number Publication date
JPS56150229A (en) 1981-11-20

Similar Documents

Publication Publication Date Title
US6098322A (en) Control device of construction machine
JP3306301B2 (en) Front control device for construction machinery
KR100231757B1 (en) Method and device for controlling attachment of construction machine
US5572809A (en) Control for hydraulically operated construction machine having multiple tandem articulated members
US5737993A (en) Method and apparatus for controlling an implement of a work machine
CA2250899C (en) Control method and control apparatus for a construction machine
KR20000068221A (en) Device for controlling limited-area excavation with construction machine
KR950009324B1 (en) Automatic control method and device of actuator for excavator
EP0900887A1 (en) Controller of construction machine
JPS6234889B2 (en)
JP3441886B2 (en) Automatic trajectory control device for hydraulic construction machinery
JPS6234888B2 (en)
JPH0257168B2 (en)
JPH0320531B2 (en)
JPH0424493B2 (en)
JPH10259619A (en) Control device for construction machine
JPH083187B2 (en) Power shovel bucket angle controller
JPH0424494B2 (en)
JP3653153B2 (en) Construction machine control equipment
JPH0257166B2 (en)
JPH0418165B2 (en)
JPH0257167B2 (en)
JPH0791845B2 (en) Bucket angle control method
JPH02232430A (en) Controller for depth of excavation of hydraulic shovel
JP2687169B2 (en) Slope work control device for construction machinery