JPH0424493B2 - - Google Patents

Info

Publication number
JPH0424493B2
JPH0424493B2 JP24086383A JP24086383A JPH0424493B2 JP H0424493 B2 JPH0424493 B2 JP H0424493B2 JP 24086383 A JP24086383 A JP 24086383A JP 24086383 A JP24086383 A JP 24086383A JP H0424493 B2 JPH0424493 B2 JP H0424493B2
Authority
JP
Japan
Prior art keywords
bucket
angle
arm
boom
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24086383A
Other languages
Japanese (ja)
Other versions
JPS60133126A (en
Inventor
Kunio Kashiwagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP24086383A priority Critical patent/JPS60133126A/en
Publication of JPS60133126A publication Critical patent/JPS60133126A/en
Publication of JPH0424493B2 publication Critical patent/JPH0424493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/308Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working outwardly
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/432Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude
    • E02F3/433Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude horizontal, e.g. self-levelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Description

【発明の詳細な説明】 本発明はローデイング油圧シヨベルのバケツト
に積載された土砂の落下を防止するバケツト角制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bucket angle control method for preventing earth and sand loaded on a bucket of a loading hydraulic excavator from falling.

ローデイング油圧シヨベルのブーム上げ操作の
際に積載された土砂の落下を防止するためには、
ブームやアームの動作中にバケツトの水平面から
の角度すなわちバケツト絶対角度を一定に保つ必
要があり、このような操作には高度な技術と多大
な労力が必要である。この問題を解決するために
は、バケツト操作を行わなくともバケツト絶対角
度が自動的に一定になるようにすればよく、この
ための方法としては、リンクによる方法、油圧に
よる方法、電気的に行なう方法等が提案されてい
る。
To prevent the loaded earth and sand from falling when lifting the boom of a loading hydraulic excavator,
During the operation of the boom or arm, it is necessary to keep the angle of the bucket from the horizontal plane, that is, the absolute bucket angle, constant, and such operations require advanced technology and a great deal of effort. In order to solve this problem, the absolute bucket angle can be automatically kept constant without the need for bucket operation.There are three methods for this: a link method, a hydraulic method, and an electrical method. Several methods have been proposed.

これ等の提案では、一定に保つバケツト絶対角
度の値として、常にあらかじめ与えられた一定値
を取るもの、ブームまたはアームの操作を開始し
た時点のバケツト絶対角度を一定値として取るも
のとがある。
In these proposals, as the value of the absolute bucket angle to be kept constant, there are some that always take a pre-given constant value, and others that take the absolute bucket angle at the time when the operation of the boom or arm is started as a constant value.

しかし、前者の場合にはオペレータの意志とは
無関係にバケツト絶対角度がある一定値となるの
で、バケツトの土砂積載状態に応じてバケツト絶
対角度を変更することができず、またブーム上げ
中にバケツト操作を行つて掻き上げ掘削を行うこ
とができない等の欠点があり、操作性の上で好ま
しくない。
However, in the former case, the bucket absolute angle remains a certain value regardless of the operator's will, so it is not possible to change the bucket absolute angle depending on the soil loading status of the bucket, and the bucket cannot be adjusted while the boom is being raised. This method has disadvantages such as the inability to carry out raking and excavating operations, which is undesirable in terms of operability.

後者の場合には、バケツト操作を加えて、バケ
ツト絶対角度を補正するようにすることができる
ので前者の欠点を補うことができるが、バケツト
が地表面付近またはそれより下方で掘削が終了
し、バケツトを起こしたときに、リンクの制約上
充分にバケツトを起こしきれない。したがつてそ
のバケツト絶対角度を保つのではバケツトが前方
に傾きすぎる欠点がある。また、掘削中に、ブー
ムまたはアームのみを操作してもバケツト角制御
が行われてしまうことは掘削のための操作性が悪
化する。
In the latter case, the defect of the former can be compensated for by adding a bucket operation to correct the absolute bucket angle, but if the excavation ends when the bucket is near or below the ground surface, When I try to wake up the bucket, I can't wake it up enough due to link constraints. Therefore, maintaining the absolute angle of the bucket has the disadvantage that the bucket tilts too far forward. Further, even if only the boom or arm is operated during excavation, the bucket angle control is performed, which deteriorates the operability for excavation.

本発明は、上記従来技術の欠点に鑑みなされた
もので、オペレータの意志に応じて、かつバケツ
ト絶対角度が所定以上になつたときバケツト角制
御を行うようにすることを目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and it is an object of the present invention to perform bucket tip angle control according to the will of the operator and when the absolute bucket tip angle exceeds a predetermined value.

この目的を達成するために、本発明は、本体に
枢着されブームシリンダにより俯仰動されるブー
ムと、このブーム先端部に枢着されアームシリン
ダにより揺動されるアームと、このアーム先端部
に枢着されバケツトシリンダにより回動されるバ
ケツトとを有するローデイングシヨベルのバケツ
ト角制御方法において、バケツト絶対角度信号が
バケツトからの積載物の落下防止を考慮して予め
設定される設定値以上で、且つブーム操作レバー
とアーム操作レバーのうちの少なくとも一方が操
作されバケツト操作レバーが操作されない条件が
成立したとき、そのときのバケツト絶対角度信号
を目標値としてバケツトシリンダを作動制御する
ように構成してある。
In order to achieve this object, the present invention includes a boom that is pivotally connected to a main body and is moved up and down by a boom cylinder, an arm that is pivotally connected to the tip of this boom and is swung by an arm cylinder, and In a method for controlling the bucket angle of a loading shovel having a bucket that is pivotally mounted and rotated by a bucket cylinder, the bucket absolute angle signal is equal to or greater than a preset value that is set in consideration of preventing the loaded object from falling from the bucket. and when a condition is established in which at least one of the boom operation lever and the arm operation lever is operated and the bucket operation lever is not operated, the operation of the bucket cylinder is controlled using the bucket absolute angle signal at that time as a target value. It is configured.

以下本発明の一実施例を第1図および第2図を
参照して説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図はローデイング油圧シヨベルのフロント
部を示す図である。図において1は油圧シヨベル
本体、2は本体1に枢着されたブーム、3はブー
ム2の先端に枢着されたアーム、4はアーム3の
先端に枢着されたバケツト、5はブーム2を俯仰
するブームシリンダ、6はアーム3を揺動するア
ームシリンダ、7はバケツト4を回動するバケツ
トシリンダ、8は本体1に対するブーム2の角度
すなわちブーム角度を検出し、ブーム角度信号α
を出力する角度計、9はブーム2に対するアーム
3の角度すなわちアーム角度を検出し、アーム角
度信号βを出力する角度計、10はアーム3に対
するバケツト4の角度すなわちバケツト角度を検
出し、バケツト角度信号γを出力する角度計であ
る。
FIG. 1 is a diagram showing the front part of a loading hydraulic excavator. In the figure, 1 is the main body of a hydraulic excavator, 2 is a boom pivotally connected to the main body 1, 3 is an arm pivotally attached to the tip of the boom 2, 4 is a bucket pivotally attached to the tip of the arm 3, and 5 is the boom 2. 6 is an arm cylinder that swings the arm 3; 7 is a bucket cylinder that rotates the bucket 4; 8 detects the angle of the boom 2 with respect to the main body 1, that is, the boom angle; and 8 detects the boom angle signal α.
An angle meter 9 detects the angle of the arm 3 with respect to the boom 2, that is, the arm angle, and outputs an arm angle signal β; 10 detects the angle of the bucket 4 with respect to the arm 3, that is, the bucket angle; It is an angle meter that outputs a signal γ.

第2図は本発明のローデイングシヨベルのバケ
ツト角制御方法を実施するための制御装置を示す
図である。図において11は油圧ポンプ、12は
油圧ポンプ11とバケツトシリンダ7との間に設
けられた電磁制御弁、13,14,15はそれぞ
れブーム操作レバー、アーム操作レバー、バケツ
ト操作レバー、16は角度信号α、β、γの合計
値すなわちバケツト絶対角度信号θを求める加算
器、17はスイツチ18がオンになつたときの加
算器16の出力信号すなわちバケツト絶対角度信
号θを目標値θ0として記憶する記憶装置、19は
記憶装置17の出力信号θ0と加算器16の出力信
号θとの差すなわち角度偏差信号Δγを算出する
加減算器、20は加減算器19の出力信号を係数
倍して信号kΔγを出力する係数器、21は係数器
20と加減算器25の間に設けられたスイツチ、
22はバケツト操作レバー15の操作量に応じた
手動操作信号を出力する手動操作装置、23はブ
ーム角度信号αとアーム角度信号βとの和を求め
る加算器、24は加算器23の出力信号α+βを
微分する微分器、25は係数器20の出力信号
kΔγと微分器24の出力信号α〓+β〓≡−γ〓rとの
差を
求める加減算器、26は加減算器25の出力信号
と手動操作装置22の出力信号との和を求める加
算器、27は加減算器25と加算器26との間に
設けられたスイツチ、28は加算器26の出力信
号を増巾および補償し、バケツトシリンダ7の速
度を与えるべく電磁制御弁12を制御する増巾
器、29,30,31はそれぞれ操作レバー1
3,14,15が操作されているか否かを検出す
るレバー操作検出器であり、それぞれ操作レバー
13,14,15が操作されると操作検知信号
a,b,cを出力する。33はレバー操作検出器
13〜15の信号a,b,cおよび加算器16の
出力信号であるバケツト絶対角度信号θを入力
し、スイツチ18,21,27に対する制御信号
T,Sを出力する制御指令装置である。
FIG. 2 is a diagram showing a control device for carrying out the bucket angle control method for a loading shovel according to the present invention. In the figure, 11 is a hydraulic pump, 12 is an electromagnetic control valve provided between the hydraulic pump 11 and the bucket cylinder 7, 13, 14, and 15 are respectively a boom operating lever, an arm operating lever, and a bucket operating lever, and 16 is an angle. An adder 17 calculates the total value of the signals α, β, and γ, that is, the bucket absolute angle signal θ, and 17 stores the output signal of the adder 16 when the switch 18 is turned on, that is, the bucket absolute angle signal θ, as a target value θ 0 . 19 is an adder/subtractor that calculates the difference between the output signal θ 0 of the storage device 17 and the output signal θ of the adder 16, that is, an angular deviation signal Δγ; 20 is a signal obtained by multiplying the output signal of the adder/subtractor 19 by a coefficient; a coefficient unit that outputs kΔγ; 21 is a switch provided between the coefficient unit 20 and the adder/subtractor 25;
22 is a manual operation device that outputs a manual operation signal according to the amount of operation of the bucket operation lever 15; 23 is an adder that calculates the sum of the boom angle signal α and the arm angle signal β; 24 is the output signal α+β of the adder 23; 25 is the output signal of the coefficient multiplier 20.
An adder/subtractor that calculates the difference between kΔγ and the output signal α〓+β〓≡−γ〓 r of the differentiator 24; 26 is an adder that calculates the sum of the output signal of the adder/subtractor 25 and the output signal of the manual operating device 22; 27; 28 is a switch provided between the adder/subtractor 25 and the adder 26; 28 is an amplifier for amplifying and compensating the output signal of the adder 26 and controlling the electromagnetic control valve 12 to provide the speed of the bucket cylinder 7; 29, 30, and 31 are the operating levers 1 and 29, 30, and 31 respectively.
This is a lever operation detector that detects whether or not the operating levers 3, 14, and 15 are operated, and outputs operation detection signals a, b, and c when the operating levers 13, 14, and 15 are operated, respectively. A control unit 33 inputs the signals a, b, and c of the lever operation detectors 13 to 15 and the bucket absolute angle signal θ, which is the output signal of the adder 16, and outputs control signals T and S for the switches 18, 21, and 27. It is a command device.

制御信号Tは、ブーム操作レバー13とアーム
操作レバー14のうちの少くとも一方が操作され
且つバケツト絶対角度信号θが制御指令装置33
に設定された設定値θcよりも大きいとき出力さ
れ、制御信号Sは、制御信号Tが出力され且つバ
ケツト操作レバー15が操作されていないときに
出力される。すなわち論理式で表わせば、 T=(a+b)・(θ>θc) S=T・=(a+b)・(θ>θc) である。
The control signal T is generated when at least one of the boom operation lever 13 and the arm operation lever 14 is operated and the bucket absolute angle signal θ is output from the control command device 33.
The control signal S is output when the control signal T is output and the bucket operating lever 15 is not operated. That is, if expressed as a logical formula, T=(a+b)·(θ>θ c ) S=T·=(a+b)·(θ>θ c ).

制御信号Tが出力されると、スイツチ27がオ
ンになり、制御信号Sが出力されるとスイツチ1
8,21がオンになる。
When the control signal T is output, the switch 27 is turned on, and when the control signal S is output, the switch 1 is turned on.
8 and 21 are turned on.

上述した制御装置においては、バケツト操作レ
バーのみを操作しているかまたはバケツト絶対角
度信号θが設定値θc以下で且つブーム操作レバー
13とアーム操作レバー14のうちの少なくとも
一方とバケツト操作レバー15とを同時に操作し
ているときには、制御指令装置33からの制御信
号T,Sが出力されないから、スイツチ18,2
1,27は共にオフであり、電磁制御弁12はバ
ケツト操作レバー15の手動操作信号に応じて切
換えられ、バケツトシリンダ7の速度すなわちバ
ケツト4の角速度はバケツト操作レバー15の操
作量に応じた値となる。
In the above-mentioned control device, only the bucket control lever is operated, or the bucket absolute angle signal θ is less than or equal to the set value θ c , and at least one of the boom control lever 13 and the arm control lever 14 and the bucket control lever 15 are operated. When the switches 18 and 2 are operated simultaneously, the control signals T and S from the control command device 33 are not output.
1 and 27 are both off, the electromagnetic control valve 12 is switched in response to a manual operation signal from the bucket operation lever 15, and the speed of the bucket cylinder 7, that is, the angular velocity of the bucket 4, is changed according to the amount of operation of the bucket operation lever 15. value.

また、バケツト絶対角度信号θがθcより大き
く、ブーム操作レバー13とアーム操作レバー1
4のうちの少くとも一方を操作し、バケツト操作
レバー15を操作しなければ、制御指令装置33
から制御信号T,Sが出力されるから、スイツチ
18,21,27が共にオンとなる。このため、
バケツトシリンダ7の速度すなわちバケツト4の
角速度は加算器26の出力γ〓r+kΔγに応じた値と
なる。
In addition, if the bucket absolute angle signal θ is larger than θ c , the boom operation lever 13 and the arm operation lever 1
4, and if the bucket operation lever 15 is not operated, the control command device 33
Since the control signals T and S are outputted from the switch 1, the switches 18, 21, and 27 are all turned on. For this reason,
The speed of the bucket cylinder 7, that is, the angular velocity of the bucket 4, has a value corresponding to the output γ〓 r +kΔγ of the adder 26.

ところで、バケツト4の絶対角度Θ(第1図参
照)はブーム角度、アーム角度、バケツト角度を
それぞれA,B,Υとすると、次式で表わされ
る。
By the way, the absolute angle Θ (see FIG. 1) of the bucket belt 4 is expressed by the following equation, where A, B, and Υ are the boom angle, arm angle, and bucket angle, respectively.

Θ=A+B+Υ+C ここで、Cはバケツト4の形状等により定つた
一定値である。したがつて、バケツト絶対角度信
号θ=α+β+γは絶対角度Θに応じた値となる
から、絶対角度Θを一定に保つためには、バケツ
ト絶対角度信号θを一定に保つようにすれば良
い。
Θ=A+B+Υ+C Here, C is a constant value determined by the shape of the bucket 4, etc. Therefore, since the bucket absolute angle signal θ=α+β+γ has a value according to the absolute angle Θ, in order to keep the absolute angle Θ constant, the bucket absolute angle signal θ may be kept constant.

そして、絶対角度Θを一定とした場合すなわち
バケツト絶対角度信号θを一定とした場合には、
この式を微分すると次式のようになる。
When the absolute angle Θ is constant, that is, when the bucket absolute angle signal θ is constant,
Differentiating this equation gives the following equation.

γ〓=−α〓−β〓 したがつて、バケツト4の角速度をバケツト制
御速度信号−α〓−β〓≡γ〓rに応じた値とすれば、

ケツト絶対角度Θが一定の値となる。そして外乱
の影響、例えばバケツト4が衝外物に当つたり、
電磁制御弁12の特性や圧油の粘度、温度、圧力
の変化等、により絶対角度Θが操作レバー13ま
たは14の操作開始時の絶対角度Θから変動した
ときには、その変動量に応じたkΔrに応じた速度
でバケツト4の角速度が修正され、バケツト4の
絶対角度Θは一定に保たれる。
γ〓=−α〓−β〓 Therefore, if the angular velocity of the bucket 4 is set as a value according to the bucket control speed signal −α〓−β〓≡γ〓 r ,
The bucket absolute angle Θ becomes a constant value. And the influence of disturbances, for example, bucket 4 hits an impact object,
When the absolute angle Θ varies from the absolute angle Θ at the start of operation of the operating lever 13 or 14 due to the characteristics of the electromagnetic control valve 12 or changes in the viscosity, temperature, or pressure of the pressure oil, kΔr is adjusted according to the amount of variation. The angular velocity of the bucket 4 is corrected at a corresponding speed, and the absolute angle Θ of the bucket 4 is kept constant.

つぎに、この状態でバケツト操作レバー15を
も操作すると、制御指令装置33から制御信号T
のみが出力されるから、スイツチ18,21はオ
フになる。したがつて、バケツト4は制御速度信
号γ〓rに手動操作装置22の出力信号であるバケツ
ト手動操作信号を加算した信号に応じた角速度で
回動するから、バケツト4の絶対角度Θをバケツ
ト操作レバー15の操作量に対応した速度で修正
することができる。
Next, when the bucket control lever 15 is also operated in this state, a control signal T is sent from the control command device 33.
Since only the signal is output, the switches 18 and 21 are turned off. Therefore, since the bucket 4 rotates at an angular velocity according to the signal obtained by adding the bucket manual operation signal, which is the output signal of the manual operation device 22, to the control speed signal γ〓 r , the absolute angle Θ of the bucket 4 is determined by the bucket operation. Correction can be made at a speed corresponding to the amount of operation of the lever 15.

さらに、この状態でバケツト操作レバー15を
中立位置に戻すと、制御指令装置33から制御信
号Sが出力され、スイツチ18,21がオンとな
るので、記憶装置17にはその時点のバケツト絶
対角度信号θが目標値θ0として記憶され、バケツ
ト4はそれ以後この目標値θ0に対応する絶対角度
Θを保持する。
Furthermore, when the bucket control lever 15 is returned to the neutral position in this state, the control signal S is output from the control command device 33 and the switches 18 and 21 are turned on. θ is stored as the target value θ 0 and the bucket 4 holds the absolute angle Θ corresponding to this target value θ 0 from then on.

一般に掘削時のバケツト絶対角度信号θは設定
値θcより小さいため、制御指令装置33から制御
信号T,Sは出力されないので、バケツト角の制
御は行われず、掘削時の操作性は良好となる。
Generally, the bucket absolute angle signal θ during excavation is smaller than the set value θ c , so the control signals T and S are not output from the control command device 33, so the bucket angle is not controlled, and operability during excavation is good. .

この状態で掘削を終了し、バケツト4を起こし
て土砂を積載したとき、地表面より下方ではバケ
ツト絶対角度信号θはまだ設定値θcより小さい。
そしてこの状態からブーム上げを行うに従つてバ
ケツト絶対角度Θすなわちバケツト絶対角度信号
θは大きくなるので、θ>θcとなつた時点で、そ
の時点のバケツト絶対角度信号θが目標値θ0とし
て記憶装置17に記憶され、以後この目標値θ0
応じて絶対角度Θが一定となるように制御され
る。なお、上述した制御指令装置33に予め設定
される設定値θcは、バケツト4に積載された土砂
の落下を防止する好ましい値に選択されている。
When excavation is finished in this state and the bucket 4 is raised to load earth and sand, the bucket absolute angle signal θ is still smaller than the set value θ c below the ground surface.
Then, as the boom is raised from this state, the bucket absolute angle Θ, that is, the bucket absolute angle signal θ, increases, so when θ>θ c , the bucket absolute angle signal θ at that point becomes the target value θ 0 . It is stored in the storage device 17, and thereafter, the absolute angle Θ is controlled to be constant according to this target value θ 0 . Note that the set value θ c preset in the control command device 33 described above is selected to be a preferable value that prevents the earth and sand loaded in the bucket 4 from falling.

さらに、これ以後、バケツト操作レバー15に
よつてθ>θc方向にバケツトの絶対角度Θを補正
すれば、補正後のバケツト絶対角度信号θが目標
値θ0に設定されるので、土砂の積載状態に合わせ
て最適なバケツト絶対角度Θに補正できる。
Furthermore, if the absolute angle Θ of the bucket is subsequently corrected in the direction θ>θ c using the bucket operation lever 15, the corrected bucket absolute angle signal θ is set to the target value θ 0 , so that the loading of earth and sand is It can be corrected to the optimal bucket absolute angle Θ according to the situation.

以上説明した本発明によれば下記の効果を奏す
ることができる。
According to the present invention described above, the following effects can be achieved.

(1) 掘削後地表面より下でバケツトを起こして土
砂を積載し、ブームまたはアーム上げを行つた
時にも、土砂が落下しない好ましいバケツト角
度を保つことができる。
(1) After excavation, the bucket can be raised below the ground surface to load earth and sand, and even when the boom or arm is raised, a preferable angle of the bucket can be maintained so that the earth and sand will not fall.

(2) ブームまたはアーム上げ時にもバケツト操作
レバーによるバケツト角度の手動補正が容易で
操作感覚が良好である。
(2) Even when raising the boom or arm, manual correction of the bucket angle using the bucket control lever is easy and provides a good operating feel.

(3) 通常の掘削時にはバケツト角制御が行われ
ず、掘削時の操作性が良好となる。
(3) Bucket angle control is not performed during normal excavation, improving operability during excavation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例に係り、
第1図はローデイング油圧シヨベルのフロント部
を示す図、第2図はローデイングシヨベルのバケ
ツト角制御方法を実施するための制御装置を示す
図である。 1……ローデイングシヨベル本体、2……ブー
ム、3……アーム、4……バケツト、5……ブー
ムシリンダ、6……アームシリンダ、7……バケ
ツトシリンダ、8,9,10……角度計、12…
…電磁制御弁、13……ブーム操作レバー、14
……アーム操作レバー、15……バケツト操作レ
バー、16……バケツト絶対角度信号θを求める
加算器、17……記憶装置(バケツト絶対角度信
号θの目標値θ0を記憶)、18,21,27……
スイツチ、22……手動操作装置、24……微分
器、33……制御指令装置。
FIGS. 1 and 2 relate to embodiments of the present invention,
FIG. 1 is a diagram showing the front part of a loading hydraulic shovel, and FIG. 2 is a diagram showing a control device for carrying out a method for controlling the bucket angle of the loading shovel. 1... Loading shovel body, 2... Boom, 3... Arm, 4... Bucket, 5... Boom cylinder, 6... Arm cylinder, 7... Bucket cylinder, 8, 9, 10... Angle meter, 12...
... Solenoid control valve, 13 ... Boom operation lever, 14
...Arm operating lever, 15...Bucket operating lever, 16...Adder for calculating the bucket absolute angle signal θ, 17...Storage device (memorizes the target value θ 0 of the bucket absolute angle signal θ), 18, 21, 27...
Switch, 22... Manual operation device, 24... Differentiator, 33... Control command device.

Claims (1)

【特許請求の範囲】[Claims] 1 本体に枢着されブームシリンダにより俯仰動
されるブームと、このブーム先端部に枢着されア
ームシリンダにより揺動されるアームと、このア
ーム先端部に枢着されバケツトシリンダにより回
動されるバケツトとを有するローデイングシヨベ
ルのバケツト角制御方法において、バケツト絶対
角度信号がバケツトからの積載物の落下防止を考
慮して予め設定される設定値以上で、且つブーム
操作レバーとアーム操作レバーのうちの少なくと
も一方が操作されバケツト操作レバーが操作され
ない条件が成立したとき、そのときのバケツト絶
対角度信号を目標値としてバケツトシリンダを作
動制御することを特徴とするローデイングシヨベ
ルのバケツト角制御方法。
1. A boom that is pivotally attached to the main body and is moved up and down by a boom cylinder, an arm that is pivoted to the tip of this boom and swung by an arm cylinder, and an arm that is pivoted to the tip of this arm and rotated by a bucket cylinder. In the method for controlling the bucket angle of a loading shovel with a bucket, the absolute bucket angle signal is equal to or higher than a preset value that takes into consideration prevention of the load from falling from the bucket, and the boom operating lever and arm operating lever are Bucket angle control for a loading shovel, characterized in that when a condition is established in which at least one of the bucket levers is operated and the bucket control lever is not operated, the operation of the bucket cylinder is controlled using the bucket absolute angle signal at that time as a target value. Method.
JP24086383A 1983-12-22 1983-12-22 Method of controlling bucket angle of loading shovel Granted JPS60133126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24086383A JPS60133126A (en) 1983-12-22 1983-12-22 Method of controlling bucket angle of loading shovel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24086383A JPS60133126A (en) 1983-12-22 1983-12-22 Method of controlling bucket angle of loading shovel

Publications (2)

Publication Number Publication Date
JPS60133126A JPS60133126A (en) 1985-07-16
JPH0424493B2 true JPH0424493B2 (en) 1992-04-27

Family

ID=17065824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24086383A Granted JPS60133126A (en) 1983-12-22 1983-12-22 Method of controlling bucket angle of loading shovel

Country Status (1)

Country Link
JP (1) JPS60133126A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083187B2 (en) * 1985-10-08 1996-01-17 株式会社小松製作所 Power shovel bucket angle controller
EP0310674B1 (en) * 1987-03-19 1993-01-07 Kabushiki Kaisha Komatsu Seisakusho Operation speed controller of construction machine
JPS63236827A (en) * 1987-03-23 1988-10-03 Kobe Steel Ltd Controller for excavator
FR2808817A1 (en) * 2000-05-15 2001-11-16 Groupe Mecalac PUBLIC WORKS MACHINE
FR2827320B1 (en) * 2001-05-15 2003-10-10 Faucheux Ind Soc PROGRAMMABLE CHARGER DEVICE
DE10221551A1 (en) * 2002-05-14 2003-12-04 Botschafter Knopff Ilse Control device for a work tool with a parallel guide
US7222444B2 (en) * 2004-10-21 2007-05-29 Deere & Company Coordinated linkage system for a work vehicle
FI123932B (en) 2006-08-16 2013-12-31 John Deere Forestry Oy Control of a boom structure and one to the same with a hinge attached tool
US8862340B2 (en) 2012-12-20 2014-10-14 Caterpillar Forest Products, Inc. Linkage end effecter tracking mechanism for slopes

Also Published As

Publication number Publication date
JPS60133126A (en) 1985-07-16

Similar Documents

Publication Publication Date Title
US7530185B2 (en) Electronic parallel lift and return to carry on a backhoe loader
US8500387B2 (en) Electronic parallel lift and return to carry or float on a backhoe loader
US6098322A (en) Control device of construction machine
US5957989A (en) Interference preventing system for construction machine
US20100254793A1 (en) Electronic Anti-Spill
US20100215469A1 (en) Electronic Parallel Lift And Return To Dig On A Backhoe Loader
KR20010090531A (en) Control equipment for working machine
JPH0424493B2 (en)
JP3441886B2 (en) Automatic trajectory control device for hydraulic construction machinery
JPH0424494B2 (en)
JPS6234889B2 (en)
JPH0257168B2 (en)
CA2689325A1 (en) Electronic parallel lift and return to carry or float on a backhoe loader
JPS6234888B2 (en)
JP2009243157A (en) Excavation control device of excavator
JPH0320531B2 (en)
JPH083187B2 (en) Power shovel bucket angle controller
JPH0791845B2 (en) Bucket angle control method
JPS6241826A (en) Bucket angle controller
JPH09228426A (en) Work machine control device of construction machine
JP2871890B2 (en) Excavator excavation control device
JPS5891233A (en) Control on bucket of loading shovel
JPH0251010B2 (en)
JPS5820837A (en) Control on bucket of loading shovel
JPH04161528A (en) Blade controller for crawler tractor