JPS60131953A - Amorphous alloy - Google Patents

Amorphous alloy

Info

Publication number
JPS60131953A
JPS60131953A JP23985583A JP23985583A JPS60131953A JP S60131953 A JPS60131953 A JP S60131953A JP 23985583 A JP23985583 A JP 23985583A JP 23985583 A JP23985583 A JP 23985583A JP S60131953 A JPS60131953 A JP S60131953A
Authority
JP
Japan
Prior art keywords
amorphous alloy
magnetic
amorphous
stress corrosion
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23985583A
Other languages
Japanese (ja)
Inventor
Morikazu Yamada
盛一 山田
Tsutomu Nakamura
務 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP23985583A priority Critical patent/JPS60131953A/en
Publication of JPS60131953A publication Critical patent/JPS60131953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an amorphous alloy having superior resistance to corrosion and stress corrosion cracking and suitable for use as the material of a magnetic separating element by specifying a composition consisting of Fe, Ni, a metallic element such as Mo, a Pt group element and metalloids. CONSTITUTION:This amorphous alloy has a composition represented by a formula (Fe1-aNia)100-x-y-zLxMyNz (where L is at least one among Mo, W, Cr, Nb, Ti, Zr and Al, M is two or more among Si, B, P and C, N is at least one among Ru, Rh, Pd, Os, Ir and Pt, a is 0.2-0.6atom%, x is 0.5-10%, y is 15- 30% and z is 0.1-10%). The amorphous alloy has high strength, high corrosion resistance and especially superior resistance to stress corrosion cracking, and it is suitable for use as the material of a magnetic separating element having a high gradient. The amorphous alloy is obtd. by solidifying a molten alloy having said prescribed composition by very rapid cooling before crystallization takes place so as to form a glassy solid.

Description

【発明の詳細な説明】 本発明は、非晶質合金の一用途として液中に混入してい
る磁性粒子を小さい磁界のもとて能率良く吸着分離する
ための磁気分離素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic separation element for efficiently adsorbing and separating magnetic particles mixed in a liquid using a small magnetic field as one use for amorphous alloys.

従来、高勾配磁気分離素子として磁性ステンレス等の強
磁性合金が使用されている。しかし、これらは残留磁束
密度が高いため、これらよ多構成されたフィルターは、
再生時に多量の洗浄液を必要とする。また、耐食性が悪
いため、金属表面に錆が生じ、高勾配磁気分離装置稼働
中に、錆が離脱し処理液中に混入する。その結果、磁性
ステンレス等の強磁性合金は、磁気分離効率を低下させ
る欠点を有している。
Conventionally, ferromagnetic alloys such as magnetic stainless steel have been used as high gradient magnetic separation elements. However, because these have a high residual magnetic flux density, these multi-component filters
Requires a large amount of cleaning fluid during regeneration. In addition, due to poor corrosion resistance, rust forms on the metal surface, and during operation of the high gradient magnetic separation apparatus, the rust separates and mixes into the processing liquid. As a result, ferromagnetic alloys such as magnetic stainless steel have the disadvantage of reducing magnetic separation efficiency.

これらの問題を解決すべく近年、低残留磁束密度、高耐
食性等の優れた特質を有する非晶質軟磁性合金が注目さ
れている。非晶質合金は、製造上の特質から主に連続薄
帯として得られ磁気分離素子として使用する場合には磁
気分離機構上狭幅薄帯とすることが必要となる。
In order to solve these problems, amorphous soft magnetic alloys, which have excellent properties such as low residual magnetic flux density and high corrosion resistance, have attracted attention in recent years. Due to manufacturing characteristics, amorphous alloys are mainly obtained as continuous ribbons, and when used as magnetic separation elements, it is necessary to form narrow ribbons due to the magnetic separation mechanism.

本発明は前述の如き、従来から使用されている結晶質強
磁性合金及び非晶質強磁性合金のもつ欠点を解決すべく
鋭意研究した結果得られたものであり、原子濃度で (Fe1−aNla)100−X−y−2LXMyNz
但し、LはMo 、W+Cr、Nb+Ti +Zr及び
Atから選ばれる少なくとも1種 MはSi rB+P及びCよシ選ばれる少なくとも2種 NはRu+Rh+Pd+Os+Ir及びptよシ選ばれ
る少なくとも1種 aは0.2〜0.6(at%) Xは0.1〜10 (at%) yは15〜30 (at%) 2は0.5〜10 (at%) からなることを特徴とする耐食性、耐応力腐食割れに優
れた非晶質合金である。
The present invention was obtained as a result of intensive research to solve the drawbacks of conventionally used crystalline ferromagnetic alloys and amorphous ferromagnetic alloys, as described above. )100-X-y-2LXMyNz
However, L is at least one kind selected from Mo, W+Cr, Nb+Ti +Zr and At, M is Si, at least two kinds are selected from rB+P and C, N is at least one kind selected from Ru+Rh+Pd+Os+Ir and pt, and a is 0.2 to 0. .6 (at%) X is 0.1 to 10 (at%) y is 15 to 30 (at%) 2 is 0.5 to 10 (at%) It is an amorphous alloy with excellent properties.

次に1本発明の詳細な説明する。Next, one aspect of the present invention will be explained in detail.

非晶質合金は共晶点付近の組成を有する溶融金属を超急
冷し、結晶化がおこる前に凝固させ、ガラス状の固体に
することによって得られ、長周期にわたる規則的な原子
配列を欠く合金である。本発明者は2本発明の前記特定
成分組成を有する非晶質合金において1強度が大きく、
耐食性に富み特に耐応力腐食割れに優れている非晶質合
金であり磁気分離素子としての特性を有していることを
知見した。
Amorphous alloys are obtained by ultra-rapidly cooling a molten metal with a composition near the eutectic point, solidifying it before crystallization occurs and forming a glass-like solid, and it lacks a regular atomic arrangement over a long period of time. It is an alloy. The present inventor has found that: (1) the amorphous alloy having the specific component composition of the present invention has high strength;
It has been discovered that this amorphous alloy has excellent corrosion resistance, particularly stress corrosion cracking resistance, and has properties as a magnetic separation element.

第1表は本発明の非晶質合金と本発明の組成範囲外の非
晶質合金及び従来から使用されているステンレス磁性線
(STJS 410)について成分組成、磁気特性、腐
食減量、応力腐食割れに要する時間及び強度について示
した表である。ただし、Blooは印加磁界100(O
e)のときの磁束密度である。腐食量は32℃で1規定
の塩酸(以下1 N −HCt)■100時間浸漬し1
重量変化よシ算出しめた。
Table 1 shows the composition, magnetic properties, corrosion loss, and stress corrosion cracking of the amorphous alloy of the present invention, the amorphous alloy outside the composition range of the present invention, and the conventionally used stainless steel magnetic wire (STJS 410). This is a table showing the time and intensity required for this. However, Bloo has an applied magnetic field of 100 (O
This is the magnetic flux density at the time of e). The amount of corrosion is determined by immersion in 1 N hydrochloric acid (hereinafter referred to as 1 N-HCt) at 32°C for 100 hours.
I calculated the weight change.

以下余白 応力腐食割れに要する時間は、薄帯及び細線をガラス棒
(1,8mmφ)を用い、スA?イラル状に巻キ利は各
々の先端を接着、32℃、 1NLHczでの薄帯及び
細線の破断に致る時間とした。(非晶質合金の試料寸法
は幅約1 mm +厚み約25μmであり。
The time required for margin stress corrosion cracking is shown below using a glass rod (1.8 mmφ) for thin strips and thin wires. The tips of each roll were glued together in a spiral shape, and the time was set at 32°C and 1 NLHcz until the ribbon and wire broke. (The sample dimensions of the amorphous alloy are approximately 1 mm in width and approximately 25 μm in thickness.

ステンレス磁性線(SUS 410)は0.1 myn
φの市販細線とした。) 第1表に示した試料A1〜6は本発明による非晶質合金
の代表例であり、耐食性が良く、特に応力腐食割れした
本発明の組成範囲外の非晶質合金に比べ著しく改善され
ている。又、ステンレス磁性線と比較しても本発明の非
晶質合金は腐食量において格段に優れている。
Stainless steel magnetic wire (SUS 410) is 0.1 myn
A commercially available fine wire of φ was used. ) Samples A1 to A6 shown in Table 1 are representative examples of amorphous alloys according to the present invention, and have good corrosion resistance, and are particularly significantly improved compared to amorphous alloys outside the composition range of the present invention that suffer from stress corrosion cracking. ing. Furthermore, compared to stainless steel magnetic wire, the amorphous alloy of the present invention is significantly superior in terms of the amount of corrosion.

第1図は(Fe 1 aNI a)7BS 110B 
9R1I 2T l 1の組成(原子%)を有する非晶
質合金においてa値(Fe 、!: Niの組成比)を
変えた際の磁束密度(B100) ’応力腐食割れに到
る時間及び腐食減量率を示す。(測定方法は前述と同様
である。)第1図から明らかなように、応力腐食割れは
B=Q、Q5〜o、15の成分組成の非晶質合金で最低
値を示し、約30公租度で破断する。また、a=0.2
〜0,8では、応力腐食割れは発生しにくい。一方腐食
減量は、a値の及ばず影響が太き(、a≧0.1が望ま
しい。非晶質合金は成分組成に応じである温度で結晶質
合金に変化し、非晶質合金としての特性が失われる。
Figure 1 shows (Fe 1 aNI a) 7BS 110B
9R1I 2T l Magnetic flux density (B100) when the a value (Fe,!:Ni composition ratio) is changed in an amorphous alloy having the composition (atomic %) of 1 'Time to reach stress corrosion cracking and corrosion weight loss Show rate. (The measurement method is the same as described above.) As is clear from Figure 1, the stress corrosion cracking shows the lowest value in the amorphous alloy with the component composition of B=Q, Q5~o, and 15, and about 30% It breaks at a certain degree. Also, a=0.2
~0.8, stress corrosion cracking is less likely to occur. On the other hand, corrosion weight loss is not affected by the a value and is strongly affected (a≧0.1 is desirable.Amorphous alloys change to crystalline alloys at a certain temperature depending on the component composition, and as amorphous alloys Characteristics are lost.

(この温度は約400〜500℃の範囲にある。)非晶
質合金を磁気分離素子として使用する場合。
(This temperature is in the range of about 400-500°C.) When the amorphous alloy is used as a magnetic separation element.

溶接法は難しい(前述した理由による)。したがって磁
気分離用フィルターを作製する際、非晶質合金の薄帯を
渥過槽に充てんするか支柱に巻きつける等が考えられ、
非晶質合金薄帯に加わる応力を避けることは困難である
。よって、応力腐食割れの改善はきわめて重要である。
The welding method is difficult (for the reasons mentioned above). Therefore, when producing a magnetic separation filter, it is possible to fill a filter tank with a thin strip of amorphous alloy or wrap it around a support.
It is difficult to avoid stress applied to the amorphous alloy ribbon. Therefore, improvement of stress corrosion cracking is extremely important.

本発明の非晶質合金は前述した如く、耐食性が良く、特
に応力腐食割れに優れた特徴を有するものである。
As mentioned above, the amorphous alloy of the present invention has good corrosion resistance, and is particularly excellent in stress corrosion cracking.

次に、高勾配磁気分離方式の原理を説明する。Next, the principle of the high gradient magnetic separation method will be explained.

磁場の強さH1磁場勾配d)];/dxO中では1体積
V。
Magnetic field strength H1 magnetic field gradient d)]; /dx 1 volume V in O.

磁化Mの磁性粒子に作用する力Fは H F(X−M・■・□ x で表わされる。したがって、磁場勾配dH/dXを大き
くすることにより強磁性粒子に限らず常磁性粒子までも
吸着分離が可能である。
The force F that acts on magnetic particles with magnetization M is expressed as H F (X-M・■・□ Separation is possible.

第2図は2本発明による非晶質合金薄帯を用いた。磁気
分離装置の一実施例を示した図である。
In FIG. 2, two amorphous alloy ribbons according to the present invention were used. 1 is a diagram showing an example of a magnetic separation device.

また、第3図は、第2図において印加磁場を変えた際の
磁性粒子吸着率を示す図でrる。
Moreover, FIG. 3 is a diagram showing the magnetic particle adsorption rate when the applied magnetic field is changed in FIG. 2.

本発明である(Fe0.6N10.4)785i10B
9Ru2Ti0.5原子係を有する幅0.1 mm +
厚み約25μmの非晶質合金薄帯を用い印加磁場と磁性
粒子吸着率との関係から、ステンレス磁性線と比較する
と、磁性粒子吸着率は本発明による非晶質合金が優れて
いることがわかる。(磁性粒子は酸化鉄Fe3O4粉末
とし。
(Fe0.6N10.4)785i10B which is the present invention
9Ru2Ti0.5 atomic ratio width 0.1 mm +
From the relationship between the applied magnetic field and the magnetic particle adsorption rate using an amorphous alloy ribbon with a thickness of about 25 μm, it can be seen that the amorphous alloy according to the present invention has an excellent magnetic particle adsorption rate when compared with stainless steel magnetic wire. . (The magnetic particles are iron oxide Fe3O4 powder.

磁性粒子吸着率は流過前の水溶液中に含まれている酸化
鉄の濃度と各々の印加磁場のもとで流通させ、吸着分離
した後の水溶液中に残存する酸化鉄の濃度によシ算出し
た。) 以上のことから2本発明の非晶質合金は耐食性特に耐応
力腐食割れに関し、結晶質合金の細線より優れており、
高勾配磁気分離素子として最適である。
The magnetic particle adsorption rate is calculated based on the concentration of iron oxide contained in the aqueous solution before flowing, and the concentration of iron oxide remaining in the aqueous solution after being adsorbed and separated by flowing under each applied magnetic field. did. ) From the above, the amorphous alloy of the present invention is superior to fine wires of crystalline alloys in terms of corrosion resistance, particularly resistance to stress corrosion cracking.
It is most suitable as a high gradient magnetic separation element.

次に1本発明の非晶質合金において、成分組成を限定す
る理由を説明する。
Next, the reason for limiting the component composition in the amorphous alloy of the present invention will be explained.

組成式 (Fe1−aNia)100、−y−2LXM
yN2において、鉄、ニッケル比aを0.2 < a 
< 0.6に限定する理由は、a(0,2では応力腐食
割れが発生しやすく、磁気分離素子として使用すること
はできない。またa ) 0.6では磁束密度(B10
0)が減少し、磁気分離素子として充分な特性が得られ
ない。よって、鉄、ニッケル比aは前記範囲に限定した
Composition formula (Fe1-aNia)100, -y-2LXM
In yN2, iron to nickel ratio a is 0.2 < a
The reason for limiting the value to <0.6 is that a(0,2) tends to cause stress corrosion cracking and cannot be used as a magnetic separation element.
0) decreases, and sufficient characteristics as a magnetic separation element cannot be obtained. Therefore, the iron/nickel ratio a was limited to the above range.

LはMo +W、Cr +Nb 、Ti 、Zr +A
Aの少なくとも1種であり、白金族元素との相乗効果に
よシ本発明の非晶質合金の耐食性、耐応力腐食割れを改
善する元素である。Lの組成比Xにおいて、x(0,1
では耐食性の改善効果が得られず、x)10では磁束密
度(B100)が減少し磁気分離素子として充分な特性
が得られない。よって0.1 < x < 10原子係
に限定した。ここでl < x < 7原子係ではさら
に好ましい。
L is Mo +W, Cr +Nb, Ti, Zr +A
A is an element that improves the corrosion resistance and stress corrosion cracking resistance of the amorphous alloy of the present invention through a synergistic effect with platinum group elements. At the composition ratio X of L, x(0,1
With x) of 10, the magnetic flux density (B100) decreases and sufficient characteristics as a magnetic separation element cannot be obtained. Therefore, it was limited to 0.1 < x < 10 atoms. Here, it is more preferable that l < x < 7 atoms.

半金属元素MをSi+B+P、Cよシ選ばれる少々くと
も2種以上とし、15<y≦30原子チに限定する理由
は、y<15原子チでは非晶化しに<<、非晶質合金を
得ることが困難である。またy〉30原子チにおいても
X〈15原子係と同様に非晶質化しに<<、併せて、磁
束密度が著しく低下し、磁気分離子として充分な特性が
得られない。よって、15<y<30原子チに限定した
The reason why the metalloid element M is at least two selected from Si+B+P and C, and is limited to 15<y≦30 atoms, is that when y<15 atoms, it becomes amorphous and the amorphous alloy is difficult to obtain. Also, in the case of y>30 atoms, as in the case of X<15 atoms, it becomes amorphous and the magnetic flux density decreases significantly, making it impossible to obtain sufficient characteristics as a magnetic separator. Therefore, it was limited to 15<y<30 atoms.

白金族元素NをRu+Rh、Pd+0s+Ir+Ptよ
シ選ばれる少なくとも1種としO65< z < 10
原子チに限定する理由は、z(0,5原子チでは耐食性
及び耐応力腐食割れの改善効果が得られず、またZ〉1
0原子チでは磁速密度(B100)が減少し磁気分離素
子として充分な特性が得られない。よって。
The platinum group element N is at least one selected from Ru+Rh, Pd+0s+Ir+Pt, and O65<z<10
The reason for limiting it to atomic hydrogen is that z (0,5 atomic hydrogen does not improve corrosion resistance and stress corrosion cracking resistance, and Z〉1
With zero atoms, the magnetic velocity density (B100) decreases and sufficient characteristics as a magnetic separation element cannot be obtained. Therefore.

Q、5<z<IQ原子チに限定した。ここで1≦z <
 6原子チではさらに好ましい。
Q, 5<z<IQ atoms are limited. Here 1≦z<
More preferred is 6 atoms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は+ (Fe1−a”a)78 5i1oB、R
u2Ti1の組成を有する非晶質合金において、鉄、ニ
ュソヶル比aを変えた際の応力腐食割れに到る時間、腐
食減量率及び磁束密度(B100)を示す図である。 第2図は磁気分離素子として本発明の非晶質合金薄帯を
用いた磁気分離装置の一実施例を示す図であシ、1は枠
体、2は供給パイプ、3は排水パイプ、4は磁気分離素
子(本発明による非晶質合金薄帯)、5は金網、6は磁
化コイル、7は微粒子等を含む処理前流体、8はp過処
理された流体である。 第3図は、印加磁場を変えた際の磁性粒子吸着率を示す
図である。 第1図 Q(at7.) 壓2図 本発明にょろり卜gら實1自づ卜 印加磁場(Oe)
Figure 1 is + (Fe1-a”a)78 5i1oB, R
FIG. 2 is a diagram showing the time to stress corrosion cracking, corrosion weight loss rate, and magnetic flux density (B100) when iron and Nysogal ratio a are changed in an amorphous alloy having a composition of u2Ti1. FIG. 2 is a diagram showing an embodiment of a magnetic separation device using the amorphous alloy ribbon of the present invention as a magnetic separation element, in which 1 is a frame, 2 is a supply pipe, 3 is a drainage pipe, and 4 1 is a magnetic separation element (an amorphous alloy ribbon according to the present invention), 5 is a wire mesh, 6 is a magnetizing coil, 7 is a pre-treatment fluid containing fine particles, etc., and 8 is an overtreated fluid. FIG. 3 is a diagram showing the magnetic particle adsorption rate when changing the applied magnetic field. Figure 1 Q (at7.) Figure 2 Figure 2 The present invention's magnetic field (Oe)

Claims (1)

【特許請求の範囲】 1、原子濃度で(Fe 1−8Ni a) 100−x
−y−z LxMyN2(但し、LはMo +W+Cr
 +Nb +Ti +Zr及びAtから選ばれる少なく
とも1種。 MはSi 、B、P及びCよシ選ばれる少なくとも2種
以上。 NはRu+Rh+Pd+Os+Ir及びptよシ選ばれ
る少なくとも1種。 a id 0.2〜0.6 (at%)Xは0.5〜1
0 (at%) yは15〜30 (at%) 2は0.1〜10 (at%)) からなることを特徴とする耐食性、耐応力腐食割れに優
れた非晶質合金。 以下余日
[Claims] 1. In atomic concentration (Fe 1-8Nia) 100-x
-y-z LxMyN2 (L is Mo +W+Cr
+Nb +Ti +At least one selected from Zr and At. M is at least two or more selected from Si, B, P, and C. N is at least one selected from Ru+Rh+Pd+Os+Ir and pt. a id 0.2~0.6 (at%)X is 0.5~1
0 (at%) y is 15 to 30 (at%) 2 is 0.1 to 10 (at%)) An amorphous alloy having excellent corrosion resistance and stress corrosion cracking resistance. Remaining days below
JP23985583A 1983-12-21 1983-12-21 Amorphous alloy Pending JPS60131953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23985583A JPS60131953A (en) 1983-12-21 1983-12-21 Amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23985583A JPS60131953A (en) 1983-12-21 1983-12-21 Amorphous alloy

Publications (1)

Publication Number Publication Date
JPS60131953A true JPS60131953A (en) 1985-07-13

Family

ID=17050877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23985583A Pending JPS60131953A (en) 1983-12-21 1983-12-21 Amorphous alloy

Country Status (1)

Country Link
JP (1) JPS60131953A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514017A (en) * 1974-07-01 1976-01-13 Tohoku Daigaku Kinzoku Zairyo Kokyodo taihiro taizenmenfushoku taikoshoku taisukimafushoku taioryokufushokuware taisuisozeiseiyo amorufuasutetsugokin
JPS56105453A (en) * 1980-01-23 1981-08-21 Matsushita Electric Ind Co Ltd Amorphous alloy
JPS56105454A (en) * 1980-01-23 1981-08-21 Matsushita Electric Ind Co Ltd Amorphous alloy
JPS5754242A (en) * 1980-09-19 1982-03-31 Hitachi Ltd Metal-metallic amorphous alloy and electromagnetic filter using the alloy
JPS58136755A (en) * 1982-02-08 1983-08-13 Hitachi Metals Ltd Corrosion resistant amorphous alloy for transformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514017A (en) * 1974-07-01 1976-01-13 Tohoku Daigaku Kinzoku Zairyo Kokyodo taihiro taizenmenfushoku taikoshoku taisukimafushoku taioryokufushokuware taisuisozeiseiyo amorufuasutetsugokin
JPS56105453A (en) * 1980-01-23 1981-08-21 Matsushita Electric Ind Co Ltd Amorphous alloy
JPS56105454A (en) * 1980-01-23 1981-08-21 Matsushita Electric Ind Co Ltd Amorphous alloy
JPS5754242A (en) * 1980-09-19 1982-03-31 Hitachi Ltd Metal-metallic amorphous alloy and electromagnetic filter using the alloy
JPS58136755A (en) * 1982-02-08 1983-08-13 Hitachi Metals Ltd Corrosion resistant amorphous alloy for transformer

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JPH06104870B2 (en) Method for producing amorphous thin film
WO1981000861A1 (en) Amorphous alloys
JP4959099B2 (en) Method for producing heat exchanger and brazing material composition useful therefor
US4572750A (en) Magnetic alloy for magnetic recording-reproducing head
JPH0681086A (en) Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance
JPS60131953A (en) Amorphous alloy
JPS60131952A (en) Amorphous alloy
Müller et al. The influence of refractory element additions on the magnetic properties and on the crystallization behaviour of nanocrystalline soft magnetic Fe-B-Si-Cu alloys
JPS60131951A (en) Amorphous alloy
JPS6016512B2 (en) Amorphous magnetic alloy with excellent corrosion resistance and stress corrosion cracking resistance
Chessin et al. Paramagnetic susceptibility, electrical resistivity, and lattice parameters of nickel‐rich nickel‐tantalum alloys
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
Ohno et al. Structural changes in the oxidation zones of gold alloys for porcelain bonding containing small amounts of Fe and Sn
JPS6155590B2 (en)
JPS5893856A (en) Iron-chromium-aluminum alloy
JPS58120759A (en) Amorphous alloy for magnetic head
JP4086194B2 (en) Fe-Pt permanent magnet alloy with low Pt content
JPS6020047B2 (en) How to remove magnetic substances from fluids
JPH07145455A (en) Ferrous soft magnetic alloy
RU2178206C2 (en) Magnetic core
JP2003034849A (en) Fe-BASED SOFT MAGNETIC ALLOY WITH HIGH SATURATION MAGNETIC-FLUX DENSITY
JP7274361B2 (en) Alloy for seed layer of magnetic recording media
JP3255216B2 (en) Fe-based microcrystalline soft magnetic alloy
JPS58119316A (en) Matrix for magnetic filter