JPS60131940A - Alloy having thermally recovering function - Google Patents

Alloy having thermally recovering function

Info

Publication number
JPS60131940A
JPS60131940A JP58239849A JP23984983A JPS60131940A JP S60131940 A JPS60131940 A JP S60131940A JP 58239849 A JP58239849 A JP 58239849A JP 23984983 A JP23984983 A JP 23984983A JP S60131940 A JPS60131940 A JP S60131940A
Authority
JP
Japan
Prior art keywords
alloy
shape memory
temp
point
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58239849A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamauchi
清 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP58239849A priority Critical patent/JPS60131940A/en
Publication of JPS60131940A publication Critical patent/JPS60131940A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a shape memory alloy showing its shape memory effect in a wide temp. range and usable at high temp. by adding a specified amount of Si to a shape memory Ti-Ni alloy. CONSTITUTION:High purity sponge Ti is mixed with electrolytic Ni so that 49.5atom% Ti and 50.5atom% Ni are contained, and the mixture is melted by high frequency vacuum induction melting in a graphite crucible to prepare a Ti-Ni alloy. High purity metallic Si is added to the Ti-Ni alloy by 5atom%, and they are melted with Ar arc to manufacture a Ti-Ni-Si alloy having a composition represented by formula 1 (where x=49-52 and y=0.5-10). A shape memory alloy having a considerably increased martensitic transformation start temp. (Ms point) and a considerably increased reverse transformation start temp. (As point) is obtd. The temps. are related to the shape memory performance. The shape memory alloy can be utilized as the material of a temp. sensor or a safety valve.

Description

【発明の詳細な説明】 本発明は+ Ti−Ni系の形状記憶合金に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a +Ti-Ni type shape memory alloy.

Ti−Ni合金は熱弾性型マルテンサイト変態の逆変態
に付随して顕著な形状記憶効果(5hape −Mem
ory−Effect以下SME以下8ナE。)を示す
ことが知られている(「金属J1966年2月13日号
、 P、P 44〜48)。またTi−Ni合金に第3
元素を添カル≠−ゆるTiN1X合金についても顕著(
なSMEを示すことが知られている。
Ti-Ni alloy has a remarkable shape memory effect (5hape-Mem) accompanying the reverse transformation of thermoelastic martensitic transformation.
ory-Effect below SME below 8 naE. ) (``Metal J February 13, 1966 issue, P, P 44-48).
It is also noticeable for the TiN1X alloy that the element is added (
It is known that SMEs exhibit similar characteristics.

T i −Ni−Fe合金は特開昭47−2102 、
 Ti −Ni −Cu合金は特開昭53−28518
 、 Ti −Ni−VおよびTi−Ni−Zr合金は
特開昭53−149732に示されている。またTi−
Ni合金に3d遷移元素(V。
Ti-Ni-Fe alloy is disclosed in Japanese Patent Application Laid-Open No. 47-2102,
Ti-Ni-Cu alloy is disclosed in Japanese Patent Application Laid-Open No. 53-28518.
, Ti-Ni-V and Ti-Ni-Zr alloys are shown in JP-A-53-149732. Also Ti-
3d transition element (V.

Cr 、 Mn’、 Zr)を添加した研究報告結果は
東北大学選研粟28(1972)209〜219に記載
されている。
The results of a research report on the addition of Cr, Mn', Zr) are described in Tohoku University Senken Awa 28 (1972) 209-219.

しかし、これらの元素を添加した合金は形状記憶機能性
にかかわるマルテンサイト変態開始温度(以下Ms点と
略称する。)を低下させる傾向を示すものであった。そ
れ故に特開昭47−2102に示されたTiN1−Fe
合金は極低温下でも応力緩和を示さないパイプ継手に利
用するのを目的としている。
However, alloys to which these elements are added tend to lower the martensitic transformation start temperature (hereinafter abbreviated as Ms point), which is related to shape memory functionality. Therefore, TiN1-Fe shown in JP-A-47-2102
The alloy is intended for use in pipe fittings that do not exhibit stress relaxation even at extremely low temperatures.

本発明の目的とするところは、形状記憶合金を温度セン
サー、および安全弁(プレイカー)として利用するため
の合金開発にあった。
An object of the present invention is to develop a shape memory alloy for use as a temperature sensor and a safety valve.

ところでTfNi合金および従来の’l’1NiX合金
はMa湿温度上限が約75℃であシ、100℃を超えて
作動するセンサー、プレーカーには使用できなかった。
By the way, the upper limit of the Ma humidity temperature of the TfNi alloy and the conventional 'l'1NiX alloy is about 75°C, and cannot be used for sensors and breaker that operate at temperatures exceeding 100°C.

本発明ではこのように動作温度を広範囲に適用できるこ
との知見による。本発明はT’iNi合金にSlを添加
した高硬度な形状記憶合金を提供するものである。本発
明にょるTiN1si合金はこれまでのTiN1X (
X = Fe r Cu −)と異寿シ、同組成T1N
i合金へのSi添加量の増加とともにMs点も上昇傾向
を示す従来とは性質を異にするものである。即ち2本発
明は組成式 %式% (ただしx=49〜52 、 y=o−5〜’10 )
で表わされる熱回復機能を有する合金である。
The present invention is based on the knowledge that the operating temperature can be applied over a wide range in this manner. The present invention provides a highly hard shape memory alloy obtained by adding Sl to a T'iNi alloy. The TiN1si alloy according to the present invention is different from the conventional TiN1X (
X = Fe r Cu -) and Isuji, same composition T1N
This is different from the conventional method in which the Ms point tends to increase as the amount of Si added to the i alloy increases. That is, the present invention has the composition formula % formula % (where x=49 to 52, y=o-5 to '10)
It is an alloy with a heat recovery function expressed by:

ここで、Xが49〜52の範囲外では形状記憶効果が認
められない。またyが0.5未満では、変態点(例えば
Ms点)を上昇させる効果がなく、また硬度を増す効果
はない。yが10を越えると。
Here, when X is outside the range of 49 to 52, no shape memory effect is observed. Further, if y is less than 0.5, there is no effect of increasing the transformation point (for example, Ms point), and there is no effect of increasing hardness. When y exceeds 10.

Ms点は低下し、硬度が犬きくなυすぎ熱間加工および
冷間加工が困難となる。それ故yは帆5〜10とする。
The Ms point decreases and the hardness becomes so low that hot working and cold working become difficult. Therefore, let y be sails 5-10.

以下実施例に基づき説明する。The following will be explained based on examples.

実施例−1 スポンデTi (純度99.9係)、電解Ni(純度9
9.9 % )の重量をはかl) Ti 49.5原子
パーセン) 、 Ni 50.5原子パーセントの割合
になるようにし、黒鉛ルツボを用いた高周波真空誘導溶
解によ!’ T150”50なる合金を得た。そののち
それらの一部をセラミックスカッターで切断し、金属シ
リコン(純度99.9 % )を組成比で5原子パーセ
ントになるように加えてアルゴンアーク溶解によりTi
N1Si合金を得た。その時の分析値はTi:47原子
ノ臂−セントr Nt : 48原子・ぐ−セント+S
i:5原子・ぐ−セントであった。その后すンフ0ルは
熱間加工、および冷間加工により厚さ0.5mmtの試
験片に加工され、変態温度2機械特性測定サンプルとし
て供された。
Example-1 Sponde Ti (purity 99.9), electrolytic Ni (purity 9)
The weight of 9.9%) was adjusted to a ratio of Ti (49.5 atomic percent) and Ni (50.5 atomic percent) by high-frequency vacuum induction melting using a graphite crucible. 'T150''50 was obtained.A part of it was then cut with a ceramic cutter, metallic silicon (purity 99.9%) was added at a composition ratio of 5 atomic percent, and Ti was melted by argon arc melting.
A N1Si alloy was obtained. The analysis values at that time were: Ti: 47 atoms centr Nt: 48 atoms cent + S
i: 5 atoms/g-cents. After that, the resulting foam was processed into a test piece with a thickness of 0.5 mm by hot working and cold working, and was used as a sample for measuring mechanical properties at a transformation temperature of 2.

まだ大量に同合金を得る方法として高周波真空誘導溶解
によ’) Tt : 47原子ノ9−セント、 Ni 
:48i子?−セン)、St:5原子i4−セントの割
合とした原料を一時に溶解することが可能である。
High-frequency vacuum induction melting is a method to obtain the same alloy in large quantities.') Tt: 47 atoms/9 cents, Ni
:48i child? It is possible to dissolve raw materials at a ratio of St: 5 atoms i4-cents at a time.

実施例−2 表1に示される合金を実施例−1の方法によシ得、 M
s点およびAs点(逆変態開始温度)の測定結果を表−
2に示す。表−2に示すようにSt量増加によりMs点
+ As点上昇の傾向が伺える。
Example-2 The alloy shown in Table 1 was obtained by the method of Example-1, and M
The measurement results of the s point and the As point (reverse transformation start temperature) are shown in the table below.
Shown in 2. As shown in Table 2, there is a tendency for the Ms point + As point to increase as the St amount increases.

実施例−3 ° 第3元素として添加されるSiの影響を調べるため
に、実施例−1の方法に基づきTi:50.5原子i?
−セン) 、 Ni :49.5原子1?−セントから
なるT1Ni合金およびTi 49.5原子ノ々−セン
ト+ Ni’:50.5原子パーセントからなるT1N
i合金にそれぞれ帆5ないし15原子ノE−セントの8
1を添加したTjNiSi合金を数種製造した。
Example-3 To investigate the influence of Si added as a third element, Ti: 50.5 atoms i? based on the method of Example-1.
- Sen), Ni: 49.5 atoms 1? - T1Ni alloy consisting of Ti 49.5 atomic percent + Ni': 50.5 atomic percent
i alloys each sail 5 to 15 atoms of E-cent 8
Several types of TjNiSi alloys containing 1 were prepared.

第1図にMs点に及ぼす添加Siの影響を示している。FIG. 1 shows the influence of added Si on the Ms point.

第1図に見るように、 Si添加量の増加とともにMs
点は上昇の傾向を示し、5ないし10原子パーセントで
最大値を示すことがわかった。
As shown in Figure 1, as the amount of Si added increases, Ms
It was found that the points showed an increasing trend and reached a maximum value between 5 and 10 atomic percent.

得られた合金の硬度はヒラカース硬度は195ないし7
50であったが+5tslO原子パーセント添加までの
合金は熱間加工、冷間加工が可能で添加による脆化の傾
向が認められなかったのに対し、si:is原子・や−
セント添加合金は切削等の加工はほとんど出来なかった
。出来たとしてもその加工装置が高価なものを用いるこ
とや加工能率が極めて悪いという問題があり、限定した
The hardness of the obtained alloy is 195 to 7 on the Hiracas hardness.
50, but alloys up to the addition of +5 tslO atomic percent could be hot worked and cold worked, and no tendency for embrittlement was observed due to the addition, whereas si:is atoms and -
It was almost impossible to process the cent-added alloy by cutting. Even if it were possible, there were problems such as using expensive processing equipment and extremely poor processing efficiency, so it was limited.

表−1 B 92 103 D 40 50 E 90 102 以下余日 また加工されだSi:10原子t4−セントまでの合金
はMs点以下の変形に対し少なくとも5チの回復ができ
た。
Table 1 B 92 103 D 40 50 E 90 102 The Si alloy, which was processed again over the next few days, was able to recover at least 5 degrees against deformation below the Ms point.

第2図には実施例に基づく硬度に及ぼすSi添加量の影
響を示しているがSi添加量の増加と伴に硬度の上昇が
認められる。
FIG. 2 shows the influence of the amount of Si added on the hardness based on the examples, and it is observed that the hardness increases as the amount of Si added increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMs点に及ばずT1Ni合金へのS+添加の影
響を示している。ここで示す(a)はTi :50.5
原子A’−セント、 Ni : 49.5原子/e−セ
ントのT1Ni合金に81を添加した時の図であり、(
b)はTj : 49.5原子ノぐ−セント* Ni 
:50.5原子ノぐ一セ/トにSlを添加した時の図で
ある。 第2図は硬度に及ぼすT1Ni合金へのSt添加の鬼1
図 第2図 一ヤ55(原うバー怒ント)
Figure 1 shows the effect of S+ addition to the T1Ni alloy below the Ms point. (a) shown here is Ti: 50.5
This is a diagram when 81 is added to a T1Ni alloy with atoms A'-cents, Ni: 49.5 atoms/e-cents, and (
b) is Tj: 49.5 atoms cent*Ni
: It is a figure when Sl is added to 1 set/t of 50.5 atoms. Figure 2 shows the effect of St addition on T1Ni alloy on hardness.
Figure 2 Ichiya 55 (Hara Ubarant)

Claims (1)

【特許請求の範囲】 1、組成式 %式% ) で表わされる熱回復機能を有する合金。[Claims] 1. Composition formula %formula% ) An alloy with a heat recovery function represented by
JP58239849A 1983-12-21 1983-12-21 Alloy having thermally recovering function Pending JPS60131940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58239849A JPS60131940A (en) 1983-12-21 1983-12-21 Alloy having thermally recovering function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58239849A JPS60131940A (en) 1983-12-21 1983-12-21 Alloy having thermally recovering function

Publications (1)

Publication Number Publication Date
JPS60131940A true JPS60131940A (en) 1985-07-13

Family

ID=17050782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58239849A Pending JPS60131940A (en) 1983-12-21 1983-12-21 Alloy having thermally recovering function

Country Status (1)

Country Link
JP (1) JPS60131940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508556A (en) * 2009-11-02 2013-03-07 サエズ スマート マテリアルズ Ni-Ti semi-finished product and manufacturing method thereof
CZ307747B6 (en) * 2017-11-16 2019-04-10 Vysoká škola chemicko-technologická v Praze Ni-Ti-Si alloy with increased phase transition temperatures
WO2022102586A1 (en) * 2020-11-13 2022-05-19 パナソニックIpマネジメント株式会社 Ni-ti-based alloy, heat-absorbing/generating material, ni-ti-based alloy production method, and heat exchange device
CN114875265A (en) * 2022-04-07 2022-08-09 华南理工大学 Wide-temperature-range light NiTiSi shape memory alloy damping material and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508556A (en) * 2009-11-02 2013-03-07 サエズ スマート マテリアルズ Ni-Ti semi-finished product and manufacturing method thereof
JP2013155436A (en) * 2009-11-02 2013-08-15 Saes Smart Materials Ni-Ti SEMI-FINISHED PRODUCT AND METHOD FOR PRODUCING THE SAME
JP2014029022A (en) * 2009-11-02 2014-02-13 Saes Smart Materials Ni-Ti SEMI-FINISHED PRODUCTS AND PRODUCTION METHODS THEREOF
US9315880B2 (en) 2009-11-02 2016-04-19 Saes Smart Materials Ni-Ti semi-finished products and related methods
CZ307747B6 (en) * 2017-11-16 2019-04-10 Vysoká škola chemicko-technologická v Praze Ni-Ti-Si alloy with increased phase transition temperatures
WO2022102586A1 (en) * 2020-11-13 2022-05-19 パナソニックIpマネジメント株式会社 Ni-ti-based alloy, heat-absorbing/generating material, ni-ti-based alloy production method, and heat exchange device
CN114875265A (en) * 2022-04-07 2022-08-09 华南理工大学 Wide-temperature-range light NiTiSi shape memory alloy damping material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Ito et al. Physical and mechanical properties of single crystals of the T2 phase in the Mo–Si–B system
CA1066922A (en) Heat-resistant allow for welded structures
US5167732A (en) Nickel aluminide base single crystal alloys
US2977225A (en) High-temperature alloys
US3150971A (en) High-temperature tungsten base alloys
JPS6350448A (en) Dispersion reinforced alloy
Chiba et al. Correlation between ductility and ordering energy of Ni3Al
JPS60131940A (en) Alloy having thermally recovering function
US5006054A (en) Low density heat resistant intermetallic alloys of the Al3 Ti type
JPS633938B2 (en)
Nic et al. Alloying of Al3Ti with Mn and Cr to form cubic L12 phases
CA1101699A (en) High-strength, high-expansion manganese alloy
US5336340A (en) Ni-Ti-Al alloys
US4891184A (en) Low density heat resistant intermetallic alloys of the Al3 Ti type
JPS6254176B2 (en)
US3110588A (en) Brazing alloy
US3202506A (en) High-temperature oxidation-resistant cobalt base alloys
US5215605A (en) Niobium-aluminum-titanium intermetallic compounds
JPH0647700B2 (en) Long range ordered alloy
JPH04180542A (en) High strength material reduced in thermal expansion
EP1205568B1 (en) Cr-BASE ALLOY EXCELLENT IN BALANCE BETWEEN STRENGTH AND DUCTILITY AT HIGH TEMPERATURE
JPS59179765A (en) Elinvar constant-modulus alloy
Frommeyer et al. Intermetallics of aluminum
JPH06256890A (en) Heat resistant iron alloy for casting
Masumoto et al. Damping Capacity and Pitting Corrosion Resistance of Fe–Co–Cr Alloys