JPS60131828A - Method for recovering rhenium from waste acid - Google Patents

Method for recovering rhenium from waste acid

Info

Publication number
JPS60131828A
JPS60131828A JP23623883A JP23623883A JPS60131828A JP S60131828 A JPS60131828 A JP S60131828A JP 23623883 A JP23623883 A JP 23623883A JP 23623883 A JP23623883 A JP 23623883A JP S60131828 A JPS60131828 A JP S60131828A
Authority
JP
Japan
Prior art keywords
rhenium
resin
waste acid
acid
elution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23623883A
Other languages
Japanese (ja)
Other versions
JPS6316340B2 (en
Inventor
Takashi Ogata
緒方 俊
Yuji Nishikawa
裕二 西川
Hiroshi Tazaki
博 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP23623883A priority Critical patent/JPS60131828A/en
Publication of JPS60131828A publication Critical patent/JPS60131828A/en
Publication of JPS6316340B2 publication Critical patent/JPS6316340B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To recover efficiently rhenium from a waste acid produced as a by- product in a stage for refining a nonferrous metal by treating the waste acid by specified systems in order. CONSTITUTION:Gaseous SO2 generated in a stage for refining a nonferrous metal such as copper is scrubbed with water, and part of produced sulfuric acid is periodically drawn as waste sulfuric acid. This waste acid contg. Re, Hg, Mo, Bi, As, etc. is treated with a resin having strong Hg adsorbing power such as ''VR-2200HT'' of UNICHIKA K.K. to remove the Hg, and it is treated with an anion exchange resin such as ''Dia Ion PA408'' of MITSUBISHI KASEI KOGYO K.K. to adsorb the Re, Mo, Bi and As. An aqueous NaOH soln. is passed through the resin to remove the Mo and As by elution, and about 3-9N hydrochloric acid is passed to elute the Re and Bi. The eluted Re is then recovered from the eluate as rhenium sulfide.

Description

【発明の詳細な説明】 本発明は、レニウムの回収方法に関するものであり、特
には廃酸中に含まれるレニウムをイオン交換樹脂塔を使
用して回収するに当ってイオン交換樹脂の反覆使用とレ
ニウムの効率的回収を実現したレニウムの回収方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering rhenium, and in particular, in recovering rhenium contained in waste acid using an ion exchange resin tower, the present invention involves repeated use of an ion exchange resin. This invention relates to a method for recovering rhenium that achieves efficient recovery of rhenium.

レニウムは、モリブデン原鉱の輝水鉛鉱や銅鉱石に僅か
に随伴する希少金属であるが、触媒の添加元嵩、熱電対
や超耐熱合金用添加元葉、高真空電子管材料等に用いら
れる重要な金属である。
Rhenium is a rare metal that is slightly associated with molybdenum ore molybdenite and copper ore, but it is an important additive used in catalyst bulk, thermocouples, super heat-resistant alloys, high vacuum electron tube materials, etc. It is a metal.

レニウムを工業的に回収する為の有望な原料の一つとし
て廃酸がある。廃酸は、銅等の非鉄金属の製錬工程から
発生する亜硫酸ガスを硫酸の製造に利用する場合に水洗
浄が為されるが、その際生成する硫酸を定期的に一部抜
出したものである。
Waste acid is one of the promising raw materials for industrially recovering rhenium. Waste acid is water-washed when sulfur dioxide gas generated in the smelting process of non-ferrous metals such as copper is used to produce sulfuric acid, and a portion of the sulfuric acid produced during that process is periodically extracted. be.

原鉱中に含まれていたレニウムがその他の不純物と共に
廃酸中に混入している。その他の不純物としてはHg−
%M(ISBl及びA1が代表的である。
The rhenium contained in the raw ore is mixed into the waste acid along with other impurities. Other impurities include Hg-
%M (ISBl and A1 are typical.

レニウムの工業的回収法についてはあまり系統的な研究
が為きれていないが、一つの有力な方法としてRe2O
3を含む原料を水溶液に溶解し、陰イオン交換樹脂を使
用してのイオン交換法に逼りレニウムを樹脂に吸着しそ
して吸着したレニウムを溶離する方法が提唱されている
Although not much systematic research has been conducted on industrial recovery methods for rhenium, one promising method is Re2O.
A method has been proposed in which a raw material containing 3 is dissolved in an aqueous solution, rhenium is adsorbed to the resin by an ion exchange method using an anion exchange resin, and the adsorbed rhenium is eluted.

本発明者等は、レニウム回収源として廃酸を対象として
、上記陰イオン交換樹脂を使用するしニウム回収法を基
本とするレニウム回収法について系統的研究を行った。
The present inventors conducted systematic research on a rhenium recovery method based on a rhenium recovery method using the above-mentioned anion exchange resin, targeting waste acid as a rhenium recovery source.

この方法においては、しニウム以外の随伴する不純物と
レニウムとの分離、樹脂の再生及び繰返し使用、樹脂か
らのレニウムの効率的溶離、溶離抜液からのレニウムの
効果的回収等解決すべき問題点は多いが、広範な研究の
結果、工業的に有用なレニウム回収法の確立に□成功し
た。
In this method, problems to be solved include separation of rhenium from accompanying impurities other than rhenium, regeneration and repeated use of the resin, efficient elution of rhenium from the resin, and effective recovery of rhenium from the eluate. However, as a result of extensive research, we succeeded in establishing an industrially useful rhenium recovery method.

廃酸中には、R・の外にHg SMo 、 B1及びA
mが不純物として含まれているが、廃酸をレニウム吸着
樹脂塔に通液した場合Reと共にこれら不純物も吸着さ
れる。吸着した不純物のうちHgは溶離が困難であり、
樹脂塔の繰返し使用中Re吸着率を悪化することが見出
された。従って、廃酸を吸着樹脂塔に通す前にHgをあ
らかじめ除去しておくことがレニウム回収系統を円滑に
操業する上できわめて有利であることが判明した。
In the waste acid, in addition to R, Hg SMo, B1 and A
m is included as an impurity, but when waste acid is passed through a rhenium adsorption resin column, these impurities are also adsorbed together with Re. Among the adsorbed impurities, Hg is difficult to elute;
It has been found that the Re adsorption rate deteriorates during repeated use of the resin tower. Therefore, it has been found that it is extremely advantageous for smooth operation of the rhenium recovery system to remove Hg before passing the waste acid through the adsorption resin tower.

−こうして脱Kgされた廃酸はRe 、 Mo 、 B
i及Asを含んでおり、これらが樹脂に吸着される。
-The waste acid thus dekgred contains Re, Mo, and B.
It contains i and As, and these are adsorbed by the resin.

このうちMe及びAsは水酸化ナトリウムを樹脂塔に通
液することによりきわめて効果的に樹脂から除去しうる
ことか見出された。このようにMo及びAsを先に樹脂
から脱着除去しておくことは後の操作を容易とするので
きわめて好都合である。
It has been found that Me and As can be removed from the resin very effectively by passing sodium hydroxide through the resin column. It is very convenient to first desorb and remove Mo and As from the resin in this way because it facilitates subsequent operations.

次いで、樹脂に吸着しているRe及びBi並びに残留す
る少量のMo及びAsが樹脂から溶離される。
Then, the Re and Bi adsorbed on the resin and the remaining small amounts of Mo and As are eluted from the resin.

陰イオン交換樹脂からRsを溶離するのに金属塩化物を
含む塩酸溶液を溶離液として使用することが本件出願人
により既に提案されており(特願昭58−82576号
)、本方法においても採用することが好ましい。得られ
る1mm液液はReとntが主体的に含まれ、少量のM
l及びAsが随伴する。
The applicant has already proposed the use of a hydrochloric acid solution containing a metal chloride as an eluent to elute Rs from an anion exchange resin (Japanese Patent Application No. 82576/1982), and this method is also adopted in the present method. It is preferable to do so. The resulting 1 mm liquid mainly contains Re and nt, with a small amount of M.
It is accompanied by l and As.

溶離抜液からのR・の回収にはReを硫化物として回収
するのが一番効果的であることが判明した。
It has been found that the most effective way to recover R from the eluate is to recover Re in the form of sulfide.

B・、Mo及びAsはほぼ全量硫化物となるが、B1は
ほぼ全量硫化液液に残るので、ReとBlとの効果的な
分離が可能となる。
Almost all of B., Mo, and As become sulfides, but almost all of B1 remains in the sulfide solution, making it possible to effectively separate Re and Bl.

溶離後の樹脂は次のサイクルに−(liftえて再生す
ることができる。
The resin after elution can be regenerated by a lift in the next cycle.

上述した脱Hg工程、吸着工編、不#H# (Mo’。The above-mentioned Hg removal process, adsorption process, and non-#H# (Mo').

Am)除去工程、溶離工程、硫化工8漏び再生工程の組
合せによって廃酸中のR・は硫化物の形で効率的に回収
することができると共に、樹脂の繰返し使用が可能とな
る。こうして、廃酸から′Reを回収する一貫プpセス
が斯界で始めて確立されたものである。
Am) By combining the removal process, elution process, and sulfurization process 8 leak regeneration process, R in the waste acid can be efficiently recovered in the form of sulfide, and the resin can be used repeatedly. In this way, an integrated process for recovering 'Re' from waste acid was established for the first time in the industry.

要約すると、本発明は、レニウム、水銀、モリブデン、
ビスマス及び砒素を含む廃酸からレニウムを硫化レニウ
ムとして回収する方法であって、(→ 脱水銀した廃酸
を陰イオン交換樹脂を含む樹脂塔に通液して、レニウム
、モリブデン、ビスマス及び砒素を該樹脂にV&着する
吸着工程と、(ハ)前記樹脂塔に水酸化ナトリウムを通
液して主としてモリブデン及び砒素を除去する不純物除
去工程と、 に)樹脂から主としてレニウム及びビスマスを溶離する
溶離工程と、 (ホ)溶離後液中に含まれるレニウムを硫化レニウムと
して回収する硫化工程と、 1 (へ)必要に応じ、樹脂を再生する再生工程とを包含す
る廃酸からのレニウムの回収法を提供する。
In summary, the present invention relates to rhenium, mercury, molybdenum,
This is a method for recovering rhenium as rhenium sulfide from waste acids containing bismuth and arsenic. (c) an impurity removal step in which sodium hydroxide is passed through the resin column to mainly remove molybdenum and arsenic; and (d) an elution step in which mainly rhenium and bismuth are eluted from the resin. (e) A sulfurization process for recovering rhenium contained in the elution solution as rhenium sulfide; (1) A regeneration process for regenerating the resin as necessary. provide.

以下、本発明について具体的に説明する。The present invention will be explained in detail below.

− 図面は本発明方法の7四−シートである。前述したよう
に、非鉄金属精錬工場において産出する廃酸は重要なレ
ニウム回収源であり、出所に応じて5〜6ottq/l
のレニウムを含んでいる。しかしながら、廃酸はReの
外にHg N Me 、 B1及び。、を主、す、不純
物や獣含有り、cお0、ユゎ。
- The drawing is a 74-sheet of the method according to the invention. As mentioned above, waste acid produced in non-ferrous metal smelting plants is an important source of rhenium recovery, with a rate of 5 to 6 ottq/l depending on the source.
Contains rhenium. However, in addition to Re, the waste acid also contains Hg N Me , B1 and B1. The main thing is that it contains impurities and beasts.

不純物がReの回収の障害となっている。Impurities are an obstacle to Re recovery.

本発明は基本的に陰イオン交換樹脂を使用してR・を吸
着するものであるが、R・と共に上記不純物も吸着され
る。不純物のうちMo、旧、AIは後に樹脂から除去し
うるが、H,に関しては除去がきわめて困難である。そ
の為、樹脂中にHgが累積し、R@の吸着効率を悪化す
る。そこで本発明に従えば、先ず廃酸からの脱水銀が計
られる。
The present invention basically uses an anion exchange resin to adsorb R. However, the above impurities are also adsorbed along with R. Among the impurities, Mo, old, and AI can be removed from the resin later, but H is extremely difficult to remove. Therefore, Hg accumulates in the resin, which deteriorates the adsorption efficiency of R@. Therefore, according to the present invention, mercury removal from waste acid is first measured.

脱水銀は、例えばユニチカ製U R−,220,OHT
のような午レート樹脂、Amb@rlite I RA
−400のようなIJI&#1基性陰イオン交換樹脂の
ような水銀に対する吸着力の強い樹脂に廃酸を通すこと
によりほぼ完全にもたらしうる。塩酸等の適当な除去剤
によりHgの除去が可能である。
For example, Unitika U R-, 220, OHT can be used to remove mercury.
Amb@rlite I RA, like Amb@rlite I RA
This can be achieved almost completely by passing the waste acid through a resin with strong adsorption power for mercury, such as an IJI &#1 based anion exchange resin such as -400. Hg can be removed using a suitable removal agent such as hydrochloric acid.

脱水銀廃酸は次いで陰イオン交換樹脂を収納した樹脂塔
に通流される。陰イオン交換樹脂としては、レニウムに
対して吸着性の強いことが当然に要求されるが、例えば
ダイヤイオンSA2・oA %ダイヤイオンP A S
 16 % Jl’イヤイオンPA40 B(三菱化成
工業(株)商品名)が効果的に使用しうる。レニウムは
陰イオン交換樹脂に10t/L樹脂までの量において強
力に吸着され、廃酸中のレニウムの90〜95%のもの
が吸着捕集される。
The mercury-depleted waste acid is then passed through a resin column containing an anion exchange resin. Anion exchange resins are naturally required to have strong adsorption properties for rhenium; for example, Diaion SA2・oA %Diaion PAS
16% Jl' Iaion PA40 B (trade name, manufactured by Mitsubishi Chemical Industries, Ltd.) can be effectively used. Rhenium is strongly adsorbed by the anion exchange resin in amounts up to 10 t/L resin, and 90 to 95% of the rhenium in the waste acid is adsorbed and collected.

レニウムの吸着と同時に、廃酸中のMoの一部とBi及
びAsの大部分が吸着される。
Simultaneously with the adsorption of rhenium, a portion of Mo and most of Bi and As in the waste acid are adsorbed.

廃酸の通流後、樹脂の洗浄の為例えば100f/L前後
の希硫酸を樹脂等に通し、続いて洗浄水にて洗浄を為す
ことが好ましい。
After flowing the waste acid, it is preferable to pass dilute sulfuric acid of about 100 f/L through the resin, for example, to wash the resin, and then wash the resin with washing water.

Re) Mo、 B 1及びAsを吸着した樹脂は次い
で不純物除去工程に切換えられ、ここで主としてMe及
び人lの除去が計られる。除去液としてはs 0〜20
0 f/lノ、好ましくは60〜150f/jf)Na
OH溶液が使用される。不純物除去後液への若干のレニ
ウム損失は避けられないが、実質上レニウムのほぼ全量
を樹脂に吸着したまま、吸着MOの95%以上が除去さ
れると共に吸着Asも90%近くまで除去される。吸着
Biも少量除去されるが実質量は吸着したままである。
Re) The resin that has adsorbed Mo, B1, and As is then switched to an impurity removal step, in which mainly Me and As are removed. As a removal liquid, s 0-20
0 f/l, preferably 60 to 150 f/jf) Na
An OH solution is used. Although some loss of rhenium to the liquid after impurity removal is unavoidable, more than 95% of the adsorbed MO is removed and nearly 90% of the adsorbed As is removed while virtually all of the rhenium remains adsorbed on the resin. . Although a small amount of adsorbed Bi is also removed, the substantial amount remains adsorbed.

不純物除去工程の終了に際し、て樹脂を水洗浄しておく
のがよい。
Upon completion of the impurity removal step, it is preferable to wash the resin with water.

次いで樹脂塔は吸着成分を樹脂から脱着する溶離工程に
切換えられる。溶111w1としては樹脂に強固に吸着
したレニウムその他の成分を容易に脱着ししかも樹脂を
破壊しないものが選定されねばならない。本発明におい
ては既にMo及びム−の大半が除去されているので溶離
工程の負担が軽減される。溶離液としては塩酸が使用し
うるが、本件出願人は金属塩化物を含む塩酸溶液を溶*
iとして用いる溶離法に先に開発し、好結果を得ている
The resin column is then switched to an elution step in which the adsorbed components are desorbed from the resin. As the melt 111w1, one must be selected that can easily desorb rhenium and other components strongly adsorbed to the resin, yet does not destroy the resin. In the present invention, since most of Mo and Mo have already been removed, the burden of the elution step is reduced. Although hydrochloric acid can be used as an eluent, the applicant has used a hydrochloric acid solution containing metal chlorides as an eluent*.
We have previously developed an elution method to be used as i, and have obtained good results.

従って、本方法においてもその採用が好ましい。Therefore, it is preferable to employ this method also in this method.

金属塩化物としては、銅、カドミウム或いは亜鉛の塩化
物が特に好ましく、中でも後工程の硫化処理を行なうこ
とを考慮すると亜鉛が特に好ましい。
As the metal chloride, chlorides of copper, cadmium, or zinc are particularly preferable, and zinc is particularly preferable in consideration of the sulfurization treatment in the subsequent step.

亜鉛であれば簡易に精製が可能となる。3〜9規定の塩
酸濃度が使用しうる。金属塩化物添加量は30〜150
t/L水準で十分である。溶離用の液量は樹脂の容量当
り3〜9倍量あれば十分である。金属塩化物の添加によ
って塩酸のみの溶離液に比べ、Aの液量で100%近く
の溶離が可能であり、高塩酸酸性としなくとも充分の溶
離が可能である。
Zinc can be easily purified. Hydrochloric acid concentrations of 3 to 9 normal can be used. The amount of metal chloride added is 30 to 150
The t/L level is sufficient. It is sufficient that the amount of liquid for elution is 3 to 9 times the volume of the resin. By adding a metal chloride, nearly 100% elution is possible with the amount of solution A compared to an eluent using only hydrochloric acid, and sufficient elution is possible even without highly acidic hydrochloric acid.

溶離工程において樹脂に吸着されていたRe及びBiは
実質量溶離接液に入り、残留していたMO及び五Bは完
全に溶11i後液に入る。従って、Re及びBlを主体
としそしてMe及びAIを随伴した溶W!1後鹸が得ら
れる。
A substantial amount of Re and Bi adsorbed on the resin in the elution step enters the elution contact solution, and the remaining MO and B completely enter the solution after dissolution 11i. Therefore, the melt W which is mainly composed of Re and Bl and accompanied by Me and AI! After 1 day, soap is obtained.

溶離後のイオン交換樹脂は塩酸の使用によりC1fiと
なっているので、繰返し使用の為にはOH型に戻す再生
工程が必要となる。再生は水酸化ナトリウム等の通流に
より簡易に実施しうる。その後、充分に水洗浄を行い次
のサイクルが開始される。
Since the ion exchange resin after elution has become C1fi due to the use of hydrochloric acid, a regeneration step is required to return it to an OH type for repeated use. Regeneration can be easily carried out by flowing sodium hydroxide or the like. Thereafter, the next cycle is started after thorough water washing.

溶離後筬からのレニウムの回収の為には硫化処理を行っ
てレニウムを硫イリとして回収するのが有利である。溶
離後筬を攪拌しながら例えば硫化水素ガスを吹込むこと
により、R・、Mo及びABはほぼ全量硫化物となるが
%Bii、tはぼ全jt硫化抜液に残留する。塩酸濃度
が3N以上の時特に旧は液中辷残留する。こうして、レ
ニウムとビスマスの分離が可能となる。生成する硫化レ
ニウムは生成物の品位からS /Reモル比を計算して
みると、R@ 1 Sγに近い硫化物と考えられる。
In order to recover rhenium from the reed after elution, it is advantageous to carry out a sulfurization treatment to recover rhenium as sulfur. After elution, by blowing in hydrogen sulfide gas while stirring the reed, almost all of R., Mo and AB become sulfides, but almost all of %Bii and t remain in the sulfiding liquid. When the concentration of hydrochloric acid is 3N or more, especially the old one remains in the liquid. In this way, rhenium and bismuth can be separated. When the S 2 /Re molar ratio of the generated rhenium sulfide is calculated from the grade of the product, it is considered to be a sulfide close to R@ 1 Sγ.

硫化液液は液中の■2Sを空気で脱却して溶離液として
再使用可能であるが、Blの蓄積が考えられるので許容
濃度を把握しておく必要がある。
The sulfide liquid can be reused as an eluent by removing the 2S in the liquid with air, but since Bl may accumulate, it is necessary to know the permissible concentration.

以上で全工程サイクルが完結する。樹脂塔を複数基設置
することにより連続操業が可能である。
The entire process cycle is thus completed. Continuous operation is possible by installing multiple resin towers.

実施例 以下の組成の廃酸を本発明に従い処理した。Example A waste acid having the following composition was treated according to the present invention.

先ず、ユニチカ製キレート樹脂UR−2200HTによ
りHgを全量除去した。その後、150Lの陰イオン交
換樹脂(ダイヤイオンPA408 )を収納する樹脂塔
3基を使用して吸着工程以降を実施した。各工程条件及
び分析結果を示す。
First, all Hg was removed using a chelate resin UR-2200HT manufactured by Unitika. Thereafter, the adsorption step and subsequent steps were carried out using three resin towers containing 150 L of anion exchange resin (Diaion PA408). Each process condition and analysis result are shown.

吸着工程 樹脂量: 1501 廃酸通液量+5ml 洗浄:1oot/を硫酸 761 その後洗浄水 5oot 吸着樹脂 吸着接液 除去液:2.5NNaOH150j 洗浄水=3oot 不純物除去後液 溶離工程 溶1ijl液: HCI(6N)+ZnC1* (10
09/A)180 を 洗浄水: 5004 溶離樹脂 溶離抜液 硫化工程 吹込ガス”H3S 450を 吹込時間= 30分 攪拌 : 500 rpm 回収硫化物(230F) 再生工程 再生液?2.5NNa0H6001 洗浄水: 3oot コラして、出発廃酸中の15Ofのレニウムのうち13
8tを硫化物の形で高い純度において回収することに成
功した。
Adsorption step resin amount: 1501 Waste acid flow amount + 5 ml Washing: 1 oot / sulfuric acid 761 Then washing water 5 oot Adsorption resin adsorption wet liquid removal solution: 2.5N NaOH 150j Washing water = 3 oot After impurity removal solution Elution step solution 1ijl solution: HCI ( 6N)+ZnC1* (10
09/A) 180 Washing water: 5004 Elution resin elution extraction Sulfurization process Blow in gas ``H3S 450 Time = 30 minutes Stirring: 500 rpm Recovered sulfide (230F) Regeneration process regenerated liquid?2.5N Na0H6001 Washing water: 3oot In total, 13 of the 15Of rhenium in the starting waste acid
8t was successfully recovered in high purity in the form of sulfide.

以上、本発明は斯界で始めて廃酸中からのしニウム回収
の為の効率的な一貫プロセスを確立したものであり、希
少物質のレニウム製造にきわめて有益な貢献を為すもの
である。
As described above, the present invention is the first in the industry to establish an efficient integrated process for recovering rhenium from waste acid, and makes an extremely useful contribution to the production of rhenium, a rare substance.

【図面の簡単な説明】[Brief explanation of drawings]

11 、 代理人の氏名 倉 内 基 弘1・゛・5−手続補正謬 昭和59年 3月 2日 特許庁長官 若 彰 相 夫 殿 事件の表示 昭和58年特 願第256238号発明の
名称 廃酸からのレニウムの回収法補正をする者 事件との関係 特許出願人 名称 日本鉱業株式会社 代理人 一弁害の譲りIi搗虜JJl龜= 明細書の −efFJ−5−プ明の詳細な説明の欄補正
の内容 別紙の通り 特願昭58−236238号明細書を以下の通り補正し
ます。 1 第7頁、8行及び第11頁、下から8行に「UR−
2200HT」とあるをいずれもli’UR−2200
HJlと訂正します。 2 第13頁、4行(不純物除去後液を表す表の量(9
)の欄)に「五B」とあるを「12. OJlにそして
同「5.0」とあるをli” 15.9 Jlに訂正し
、そして同7行(溶離工程の2行目)「180j!Jと
あるを「12ooz」と訂正します。 手続補正式 昭和59年6 月1911 特許廠官若杉和夫 殿 事件の表示 昭和58年 特願第236268 ぢ゛発
明の名称 廃酸からのレニウムの回収法補正をする者 事件との関係 特許11漕1人 名 称 日本鉱業株式会社 代理人 〒103 住 所 東京都中央区日本橋3」°目13番11号油脂
」ニ業会館−叩;銘;−背563)−弁理す1午−=−
一暎一=−補正の対象 一俯H1の発明者−@願頬」弧 明細書の発明つ各除椅H(へ)耐着の範冊−発明の詳細
な説明の欄補正の内容 別紙の通り 特願昭’58−256238号明細書を以下の通り補正
します。 t 第4頁、下から1行17M1Jとあるを「Mo」と
訂正します。 2 第9頁、8行「溶離法に」とあるを「溶離法を」と
訂正します。
11. Name of agent: Motohiro Kurauchi 1.゛.5 - Procedural amendment March 2, 1980 Waka Akio, Commissioner of the Patent Office Indication of the case Patent Application No. 256238 of 1980 Name of the invention Waste acid Relationship with the case of the person amending the method for recovering rhenium from Contents of column amendments The specification of Japanese Patent Application No. 58-236238 is amended as follows, as shown in the attached sheet. 1 On page 7, line 8 and page 11, line 8 from the bottom, “UR-
2200HT" are all li'UR-2200
I will correct it as HJl. 2 Page 13, line 4 (the amount of the liquid after removing impurities (9)
) in the column ``5B'' was corrected to ``12. 180j!J will be corrected to "12ooz". Procedural amendment formula June 1980 1911 Patent Office Officer Kazuo Wakasugi Indication of the case 1982 Patent application No. 236268 Name of the invention Relationship with the case of the person amending the method for recovering rhenium from waste acid Patent 11 Co. 1 Name: Agent of Nippon Mining Co., Ltd. 103 Address: 3 Nihonbashi, Chuo-ku, Tokyo No. 13-11 Oils and Fats Ni-gyo Kaikan - 563 on the back - 1 o'clock - = -
1 = - Subject of amendment 1 Inventor of H1 - @Ganjo' arc Specification of the invention and each removal chair H (to) proof book - Detailed description of invention column Contents of amendment The specification of Patent Application No. 1987-256238 is amended as follows. t On page 4, the first line from the bottom that says 17M1J should be corrected to "Mo". 2. On page 9, line 8, ``In the elution method'' should be corrected to ``In the elution method.''

Claims (1)

【特許請求の範囲】 1) レニウム、水銀、そりプアン、ビスマス及び砒素
を含む廃酸からしニウムを硫化レニウムとして回収する
方法であって、 (へ)廃酸から水銀を除去する脱水銀工程と、(→ 脱
水銀した廃酸を陰イオン交換樹脂を含む樹脂塔に通液し
て、レニウム、モリブデン、ビスマス及び砒素を該樹脂
に吸着する吸着工程と、(ハ) 前記樹脂塔に水酸化ナ
トリウムを通液して主としてモリプでン及び砒素を除去
する不純物除去工程と、 に)樹脂から主としてレニウム及びビスマスを溶離する
溶離工程と、 (ホ)溶離抜液中に含まれるレニウムを硫化レニウムと
して回収する硫化工程と、 (へ)必要に応じ、樹脂を再生する再生工程とを包含す
る廃酸からのレニウムの回収法。
[Scope of Claims] 1) A method for recovering mustardium waste acid containing rhenium, mercury, sorptan, bismuth, and arsenic as rhenium sulfide, comprising: (f) a demercury step for removing mercury from the waste acid; , (→ an adsorption step in which the mercury-depleted waste acid is passed through a resin column containing an anion exchange resin to adsorb rhenium, molybdenum, bismuth, and arsenic to the resin, and (c) sodium hydroxide is added to the resin column. an impurity removal step in which a liquid is passed through to remove mainly molyptomine and arsenic; (2) an elution step in which mainly rhenium and bismuth are eluted from the resin; and (e) rhenium contained in the eluate is recovered as rhenium sulfide. A method for recovering rhenium from waste acid, which includes a sulfurization step to regenerate the resin, and (f) a regeneration step to regenerate the resin, if necessary.
JP23623883A 1983-12-16 1983-12-16 Method for recovering rhenium from waste acid Granted JPS60131828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23623883A JPS60131828A (en) 1983-12-16 1983-12-16 Method for recovering rhenium from waste acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23623883A JPS60131828A (en) 1983-12-16 1983-12-16 Method for recovering rhenium from waste acid

Publications (2)

Publication Number Publication Date
JPS60131828A true JPS60131828A (en) 1985-07-13
JPS6316340B2 JPS6316340B2 (en) 1988-04-08

Family

ID=16997826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23623883A Granted JPS60131828A (en) 1983-12-16 1983-12-16 Method for recovering rhenium from waste acid

Country Status (1)

Country Link
JP (1) JPS60131828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703737A (en) * 2012-06-28 2012-10-03 青岛阿库卡稀有金属有限公司 Method for extracting and separating rhenium from rhenium-containing slag
JP2016014167A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution and potassium perrhenate obtained by using the same, and method for producing ammonium perrhenate and rhenium metal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284378B2 (en) * 2011-01-17 2013-09-11 パンパシフィック・カッパー株式会社 Method and system for recovering rhenium from spent acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703737A (en) * 2012-06-28 2012-10-03 青岛阿库卡稀有金属有限公司 Method for extracting and separating rhenium from rhenium-containing slag
JP2016014167A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution and potassium perrhenate obtained by using the same, and method for producing ammonium perrhenate and rhenium metal

Also Published As

Publication number Publication date
JPS6316340B2 (en) 1988-04-08

Similar Documents

Publication Publication Date Title
US9845539B2 (en) Treatment of hydrogen sulfide
JPH08503165A (en) Method for removing NO x x x / SO x x x oxide from gas
JPS59162108A (en) Washing of solution of sulfuric acid
JP2632576B2 (en) Desorption method of gold iodine complex from ion exchange resin
CN105238933B (en) It is a kind of from the method containing removing and reclaiming element mercury in sulfur dioxide flue gas
CN110734169A (en) Method for removing chlorine from acidic solutions
CN100366326C (en) Method for removing mercury from gas
JP2005523992A (en) Gold collection method
JPH08206452A (en) Continuously processing method for simultaneously scavengingand precipitating mercury in mercury-containing gas
JPS63197521A (en) Method of removing gaseous mercury from gas
JPS60131828A (en) Method for recovering rhenium from waste acid
HU213383B (en) Method for producing aqueous sodium chloride solution and crystalline sodium chloride
JPH11286797A (en) Method for purifying copper electrolyte
JPS6316341B2 (en)
JP2007092124A (en) Method for treating copper converter dust
JP2938285B2 (en) Chelate resin solution for copper electrolyte
JP5624705B2 (en) Method for producing ammonium tungstate solution
JP3226475B2 (en) A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper
US1085944A (en) Process for the recovery of bromin.
JP3762047B2 (en) Method for treating and recovering liquid containing cadmium and zinc
JPS6035290B2 (en) Palladium purification and recovery method
US5015458A (en) Method for purifying sulfuric acid solutions
JPS6050192A (en) Purifying method of copper electrolyte
JP2960876B2 (en) Copper electrolyte cleaning method
JPS6160130B2 (en)