JPS60130950A - Signal demodulating system - Google Patents

Signal demodulating system

Info

Publication number
JPS60130950A
JPS60130950A JP23950383A JP23950383A JPS60130950A JP S60130950 A JPS60130950 A JP S60130950A JP 23950383 A JP23950383 A JP 23950383A JP 23950383 A JP23950383 A JP 23950383A JP S60130950 A JPS60130950 A JP S60130950A
Authority
JP
Japan
Prior art keywords
signal
voltage
circuit
level
duobinary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23950383A
Other languages
Japanese (ja)
Inventor
Yasuo Toi
戸井 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23950383A priority Critical patent/JPS60130950A/en
Publication of JPS60130950A publication Critical patent/JPS60130950A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/497Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems by correlative coding, e.g. partial response coding or echo modulation coding transmitters and receivers for partial response systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • H04L25/062Setting decision thresholds using feedforward techniques only

Abstract

PURPOSE:To decrease the margin of a signal at the demodulation of a reception signal by extracting a DC component of a reception signal, and changing the threshold voltage of an identification circuit in response to the fluctuation of a DC level. CONSTITUTION:When the DC balance of an optical modulation signal (c) is unbalanced and a signal (e) at the output side of a coupling capacitor 10 goes to small, this signal (e) passes through a diode 12, a capacitor 13 and an amplifier 14 and an analog voltage in response to the change in the peak voltage is detected at points D and E. This voltage is set to a prescribed value by resistors 15, 16 and 17 and formed into the threshold voltage of identification circuits 11, 11'. When the DC level of the signal (e) is lowered, the threshold voltage is also lowered.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は信号復調方式に係り、詳しくは、光通信等にお
いて、伝送符号にDMI符号を用い、デュオバイナリ成
形方式により受信信号を復調するに際し、信号識別の閾
値電圧を自動調整する方式〔発明の背景〕 周知のように、光通信は送信側で電気信号を光信号に変
換して送信し、受信側で光信号を電気信号に変換するこ
とによりデータを送受信する。この光通信に用いられる
変復調方式には多くの方式があるが、タイミング信号の
抽出が容易であること、直流平衡がよいこと、さらには
変調回路、復調回路の規模が比較的小さくて済むことな
どから。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a signal demodulation method, and more specifically, in optical communication, etc., when a DMI code is used as a transmission code and a received signal is demodulated by a duobinary shaping method, A method for automatically adjusting the threshold voltage for signal identification [Background of the invention] As is well known, optical communication involves converting an electrical signal into an optical signal on the transmitting side and transmitting it, and converting the optical signal into an electrical signal on the receiving side. Send and receive data. There are many types of modulation and demodulation methods used in optical communications, but they are easy to extract timing signals, have good DC balance, and require relatively small scale modulation and demodulation circuits. from.

DMIデュオバイナリ成形方式が注目されている。The DMI duobinary molding method is attracting attention.

第1.図に従来のD M、 Iデュオバイナリ成形方式
を用いた光送受信回路のブロック図を示す。第1図にお
いて、送信側の変調回路1に続く最終出力段の回路は発
光素子2と抵抗3により構成される。
1st. The figure shows a block diagram of an optical transmitter/receiver circuit using the conventional DM, I duobinary forming method. In FIG. 1, the final output stage circuit following the modulation circuit 1 on the transmitting side is composed of a light emitting element 2 and a resistor 3.

一方、受信側は受光、素子4、前置増幅回路5、主増幅
回路7、デュオバイナリ成形回路9、識別回路11.1
1’および結合コンデンサ6.8.10により構成され
る。第2図は第1図の各部の信号波形を示す。
On the other hand, the receiving side includes a light receiving element 4, a preamplifier circuit 5, a main amplifying circuit 7, a duobinary forming circuit 9, and an identification circuit 11.1.
1' and a coupling capacitor 6.8.10. FIG. 2 shows signal waveforms at various parts in FIG. 1.

今、第2図(a)に示すNRZ形式の信号aがA端子に
入力されたとする。第2図中、tr Huは論理# l
 II 、 II LIIは論理″0′″の領域である
。変調回路1はNRZ信号を第2図(b)に示すDMI
信号すに変調する。この変調回路1の出力信号が発光素
子2により光信号Cに変換される。第2図(e)は発光
素子2より送出される光変調信号である。受信側では、
受光素子4で光変調信号Cを電気信号に変換した後、前
置増幅器5、結合コンデンサ6、主増幅器7により増幅
して、結合コンデンサ8の出力側に第2図(d)に示す
信号dを得る。この信号dをデュオバイナリ成形回路9
を通すことにより、結合コンデンサ10の出力側には第
2図(e)に示すAMI信号eが現われる。このAMI
信号eを識別回路11において一定の閾値電圧■9゜と
比較することにより第2図(f)に示す信号fをB端子
に得、同様に識別回路11′において一定の閾値電圧;
1と比較することにより第2図(g)に示す信号gをC
端子に得る。第1図では省略したが、信号gを反転して
第2図(h)に示す信号を作り、これを第2図(f)の
信号fとの論理和をとることにより、第2図(a)に示
す信号aが再生される。
Now, assume that the NRZ format signal a shown in FIG. 2(a) is input to the A terminal. In Figure 2, tr Hu is logic #l
II, II LII are areas of logic "0". The modulation circuit 1 converts the NRZ signal into a DMI signal as shown in FIG. 2(b).
Modulates the signal. The output signal of this modulation circuit 1 is converted into an optical signal C by a light emitting element 2. FIG. 2(e) shows an optical modulation signal sent out from the light emitting element 2. On the receiving side,
After the optical modulation signal C is converted into an electrical signal by the light receiving element 4, it is amplified by the preamplifier 5, the coupling capacitor 6, and the main amplifier 7, and the signal d shown in FIG. 2(d) is sent to the output side of the coupling capacitor 8. get. This signal d is converted into a duobinary forming circuit 9
AMI signal e shown in FIG. 2(e) appears on the output side of the coupling capacitor 10. This AMI
By comparing the signal e with a constant threshold voltage ■9° in the discrimination circuit 11, a signal f shown in FIG.
By comparing the signal g shown in FIG. 2(g) with C
Get to the terminal. Although omitted in FIG. 1, the signal shown in FIG. Signal a shown in a) is reproduced.

ところで、第1図のような構成において1発光素子2の
応答特性や伝送路の特性などにより、光変調信号Cの直
流平衡がくずれると、受信側の前置増幅器5の出力にわ
ずかな直流レベルの変動が呪われる。この直流レベルの
変動は、結合コンデンサ6.8による過渡応答、主増幅
器7の特性などによりデュオバイナリ成形回路9の出力
側では大きなレベル変動となる。このような場合の第1
図における各部の信号波形の一例を第3図に示す。
By the way, in the configuration shown in FIG. 1, if the DC balance of the optical modulation signal C is disrupted due to the response characteristics of one light-emitting element 2 or the characteristics of the transmission path, a slight DC level will appear in the output of the preamplifier 5 on the receiving side. The fluctuation of is cursed. This DC level fluctuation results in a large level fluctuation on the output side of the duobinary forming circuit 9 due to the transient response caused by the coupling capacitor 6.8, the characteristics of the main amplifier 7, and the like. In such a case, the first
An example of the signal waveform of each part in the figure is shown in FIG.

第3図(a)と(b)は第2図(a)と(b)の波形と
同じであるが、第3図(c)に示す光変調信号Cはその
正方向成分が減少している。この場合、結合コンデンサ
8,10の出力側の波形は第3図(d)、第3図(e)
のようになる。即ち、デュオバイナリ成形回路9の出力
側で直流レベルが大きく変動し、これが識別回路11.
11’における信号識別のマージンの減少、ひいては信
号識別の誤りを発生せしめる。さらに、光変調信号入力
の符号列の状態によって、結合コンデンサ6の出力側の
直流レベルの変動が長い周期にわたって繰り返された場
合には、増幅回路系の低域特性の影響を受け、デュオバ
イナリ成形回路9の出力側の直流レベル変動は複雑なも
のとなり、やはり正常な信号識別が鼾しくなる。
Figures 3(a) and (b) are the same as the waveforms in Figures 2(a) and (b), but the optical modulation signal C shown in Figure 3(c) has a decreased positive direction component. There is. In this case, the waveforms on the output side of the coupling capacitors 8 and 10 are shown in Fig. 3(d) and Fig. 3(e).
become that way. That is, the DC level fluctuates greatly on the output side of the duobinary forming circuit 9, which causes the discrimination circuit 11.
This reduces the margin of signal identification in 11' and causes errors in signal identification. Furthermore, if fluctuations in the DC level on the output side of the coupling capacitor 6 are repeated over a long period due to the state of the code string of the optical modulation signal input, it will be affected by the low-frequency characteristics of the amplifier circuit system, resulting in duobinary formation. DC level fluctuations on the output side of the circuit 9 become complicated, and normal signal identification becomes difficult.

また、このような直流レベルの変動は、光変調信号のな
い状態から光変調信号が入力された場合にも問題となる
。第4図はそれを説明する図で、第4図(a)に示すよ
うに光変調信号が入力されない状態から光変調信号が入
力されると、結合コンデンサ6の出力側は第4図(b)
に示すように、光変調信号の受信直後に最大の例えば+
2vとなり、その後、結合コンデンサ6の過渡応答を経
て、信号の上端電圧が+V、下端電圧が一■となって定
常状態に達する。即ち、光変調信号のもっている直流レ
ベル変動が過渡的に現われ、これが主増幅器7、結合コ
ンデンサ8などにより、デュオバイナリ成形回路9の出
力側では大きな直流レベル変動となる。このため、信号
受信開始時点から所定経過するまでは、正常な信号伝送
が不可能である。
Further, such fluctuations in the DC level also become a problem when an optical modulation signal is input from a state where no optical modulation signal is present. FIG. 4 is a diagram explaining this. When an optical modulation signal is input from a state where no optical modulation signal is input as shown in FIG. 4(a), the output side of the coupling capacitor 6 is )
As shown in , immediately after receiving the optical modulation signal, the maximum
2V, and thereafter, through a transient response of the coupling capacitor 6, the upper end voltage of the signal becomes +V and the lower end voltage becomes 1.5V, and a steady state is reached. That is, the DC level fluctuation of the optical modulation signal appears transiently, and this becomes a large DC level fluctuation on the output side of the duobinary shaping circuit 9 due to the main amplifier 7, coupling capacitor 8, etc. For this reason, normal signal transmission is impossible until a predetermined period of time has elapsed from the start of signal reception.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、光通信等において、伝送符号にDMI
符号を用い、デュオバイナリ成形方式により受信信号を
復調する際の信号識別のマージンの減少、信号識別の誤
り発生を防止することにある。
An object of the present invention is to add DMI to a transmission code in optical communications, etc.
The purpose of this invention is to prevent a reduction in signal identification margin and occurrence of signal identification errors when demodulating a received signal using a duobinary shaping method using a code.

〔発明の概要〕[Summary of the invention]

本発明の要点は、受信信号の持っている直流成分を抽出
し、受信信号の直流レベルの変動に応じて識別回路の閾
値電圧を変化させるものである6〔発明の実施例〕 第5図は本発明の一実施例であり、第1図との相違は、
デュオバイナリ成形回路9と識別回路11.11′の間
に、ダイオード12.12’、コンデンサ13.13’
、増幅器14.14’、抵抗15,16.17よりなる
自動閾値調整回路18を付加したことである。
The gist of the present invention is to extract the DC component of the received signal and change the threshold voltage of the identification circuit in accordance with fluctuations in the DC level of the received signal.6 [Embodiment of the Invention] Figure 5 shows This is an embodiment of the present invention, and the differences from FIG. 1 are as follows.
A diode 12.12' and a capacitor 13.13' are connected between the duobinary forming circuit 9 and the identification circuit 11.11'.
, an amplifier 14.14', and an automatic threshold value adjustment circuit 18 consisting of resistors 15 and 16.17.

DMI光変光変調信号量光素子4で電気信号に変換した
後、前置増幅器5、結合コンデンサ6、主増幅器7によ
り増幅する。この増幅されたDM■変調信号を結合コン
デンサ8を介し、デュオバイナリ成形回路9を通すこと
により、結合コンデンサ10の出力側にAMI信号eを
得る。ここまでの動作は第1図と同じである。
After the DMI optical variable modulation signal is converted into an electrical signal by the optical element 4, it is amplified by the preamplifier 5, the coupling capacitor 6, and the main amplifier 7. By passing this amplified DM■ modulation signal through a coupling capacitor 8 and a duobinary forming circuit 9, an AMI signal e is obtained at the output side of the coupling capacitor 10. The operation up to this point is the same as in FIG.

さて、光変調信号Cの直流平衡がくずれ、結合コンデン
サ10の出力側の信号eが第3図(、e)のようになっ
たとする。この信号eがダイオード12、コンデンサ1
3、増幅器14を通ることにより、第3図の波形のV。
Now, suppose that the DC balance of the optical modulation signal C is disrupted and the signal e on the output side of the coupling capacitor 10 becomes as shown in FIG. 3 (,e). This signal e is connected to diode 12 and capacitor 1.
3. V of the waveform of FIG. 3 by passing through the amplifier 14.

を中心とした片側のピーク電圧V+の変化に応じたアナ
ログ電圧がD点に検出される。同様に信号eがダイオー
ド12′、コンデンサ13′、増幅器14′を通ること
によ圧を抵抗15,16.17により、それぞれv十十
V、、/2.V−+V、/2に設定し、これらを識51
114811、11 ’(7)閾値電圧V* z 、V
R2として信号eと比較する。
An analog voltage corresponding to a change in the peak voltage V+ on one side centered on is detected at point D. Similarly, the signal e passes through the diode 12', the capacitor 13', and the amplifier 14', so that the voltage is increased by the resistors 15, 16, and 17, respectively, to v10 V, /2. V-+V, /2, and identify these 51
114811, 11' (7) Threshold voltage V* z , V
It is compared with signal e as R2.

第6図に信号eと閾値電圧VR2、vn 2の関係を示
す。即ち、信号eの直流レベルが低くなると、それに応
じてv:z、v;zも低くなる。したがって、識別回路
11.11’における信号識別のマージンの減少、信号
識別の誤り発生を防止できる。
FIG. 6 shows the relationship between the signal e and the threshold voltages VR2 and vn2. That is, when the DC level of the signal e decreases, v:z, v;z also decrease accordingly. Therefore, it is possible to prevent a reduction in the signal identification margin in the identification circuits 11, 11' and to prevent signal identification errors from occurring.

以上、光通信について説明したが、本発明は、伝送符号
にDMI符号を用い、デュオバイナリ成形方式により受
信信号を復調するものであれば、光通信以外にも適用可
能であることは云うまでもない。
Although optical communication has been described above, it goes without saying that the present invention can be applied to other applications besides optical communication as long as the DMI code is used as the transmission code and the received signal is demodulated by the duobinary shaping method. do not have.

〔発明の効果] 以上のように、本発明によれば、受信信号の持っている
直流レベルが変動しても、それに応じて閾値電圧が変化
するので、信号識別のマージンが減少することはない。
[Effects of the Invention] As described above, according to the present invention, even if the DC level of the received signal changes, the threshold voltage changes accordingly, so the margin for signal identification does not decrease. .

また、変調信号のない状態から、変調信号が入力された
場合でも、信号受信開始時点直後から、直流レベルの過
渡的な変動の影響を受けることなく、正常に受信できる
効果がある。
Further, even if a modulated signal is input from a state where there is no modulated signal, there is an effect that the signal can be received normally immediately after the start of signal reception without being affected by transient fluctuations in the DC level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の信号復調方式の構成例を示す図。 第2図は直流レベル変動がない場合の第1図の各部の信
号波形図、第3図は直流レベル変動がある場合の第1図
の各部の信号波形図、第4図は受信信号の入力過渡期の
状態を説明する図、第5図は本発明の一実施例を示す図
、第6図は第5図におけるデュオバイナリ成形回路の出
力信号と闇値電圧の関係を示す図である。 1・・・2値AMI変調回路、 2・・・発光素子、4
・・・受光素子、 5・・・前置増幅器、 7・・・主
増幅器、 9・・・デュオバイナリ成形回路、11゜1
1′・・・識別回路、18・・・自動閾値調整回路。
FIG. 1 is a diagram showing a configuration example of a conventional signal demodulation method. Figure 2 is a signal waveform diagram of each part in Figure 1 when there is no DC level fluctuation, Figure 3 is a signal waveform diagram of each part in Figure 1 when there is DC level fluctuation, and Figure 4 is the input of the received signal. FIG. 5 is a diagram illustrating an embodiment of the present invention, and FIG. 6 is a diagram illustrating the relationship between the output signal of the duobinary shaping circuit and the dark value voltage in FIG. 5. 1... Binary AMI modulation circuit, 2... Light emitting element, 4
...Photodetector, 5.Preamplifier, 7.Main amplifier, 9.Duobinary forming circuit, 11゜1
1'...Identification circuit, 18...Automatic threshold adjustment circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)伝送符号にDMI符号を用い、受信信号をデュオ
バイナリ成形方式により復調する方式において、前記受
信信号に含まれている直流成分を抽出し、この直流成分
に応じて変化する電圧を得、該電圧を閾値としてデュオ
バイナリ成形信号の識別を行うことを特徴とする信号復
調方式。
(1) In a method in which a DMI code is used as a transmission code and a received signal is demodulated by a duobinary shaping method, a DC component included in the received signal is extracted and a voltage that changes according to this DC component is obtained, A signal demodulation method characterized in that a duobinary shaped signal is identified using the voltage as a threshold.
JP23950383A 1983-12-19 1983-12-19 Signal demodulating system Pending JPS60130950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23950383A JPS60130950A (en) 1983-12-19 1983-12-19 Signal demodulating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23950383A JPS60130950A (en) 1983-12-19 1983-12-19 Signal demodulating system

Publications (1)

Publication Number Publication Date
JPS60130950A true JPS60130950A (en) 1985-07-12

Family

ID=17045752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23950383A Pending JPS60130950A (en) 1983-12-19 1983-12-19 Signal demodulating system

Country Status (1)

Country Link
JP (1) JPS60130950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732447A (en) * 1985-03-21 1988-03-22 Stc Plc Homodyne optical coherent receiver for digital optical signals
EP0742661A1 (en) * 1995-05-11 1996-11-13 Constructions Et Etudes En Electronique Et Systemes (C2Es) Selective detection of wake-up signals, particularly for alarm systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732447A (en) * 1985-03-21 1988-03-22 Stc Plc Homodyne optical coherent receiver for digital optical signals
EP0742661A1 (en) * 1995-05-11 1996-11-13 Constructions Et Etudes En Electronique Et Systemes (C2Es) Selective detection of wake-up signals, particularly for alarm systems
FR2734112A1 (en) * 1995-05-11 1996-11-15 C2Es DIGITAL TRANSMISSION WITH SELECTIVE SIGNAL DETECTION

Similar Documents

Publication Publication Date Title
CA1077170A (en) Apparatus and method for transmitting binary-coded information
US4363977A (en) Device for discriminating between two values of a signal with DC offset compensation
GB2095064A (en) Level-crossing point detection circuit
SE432859B (en) PROCEDURE TO TRANSFER AN EXTRA INFORMATION CHANNEL OVER A TRANSMISSION MEDIUM
US5838731A (en) Burst-mode digital receiver
US6882944B2 (en) Threshold setting apparatus for adjustably setting a threshold for use in identifying serial data from a baseband signal
US4847865A (en) Automatic threshold adjustment circuit for digital data communication
US5801552A (en) Voltage detector circuit
JPS60130950A (en) Signal demodulating system
US4039959A (en) Two-tone decoder having high noise immunity
JPS623625B2 (en)
US5712475A (en) Light receiving circuit with variable threshold circuit
US6768373B2 (en) Circuit configuration for demodulating a voltage which is ASK modulated by altering the amplitude between a low level and a high level
US5058131A (en) Transmitting high-bandwidth signals on coaxial cable
JP2536178B2 (en) Optical transceiver
JPH07135453A (en) Signal converter
US7119610B2 (en) Circuit arrangement
JPS5829028B2 (en) Optical signal transmission method
GB2083727A (en) Optical communications system
JPS6258717A (en) Receiving circuit for optical binary signal
JPH114265A (en) Amplifier, identification device, optical receiver and burst optical transmission system
JPH1075217A (en) Current input type receiver
JPS59148441A (en) System for detecting optical input level
JPH05259752A (en) Optical receiver
JPH1022933A (en) Light reception circuit