JPS6013064A - Manufacture of heat treated aluminum alloy with superior workability - Google Patents
Manufacture of heat treated aluminum alloy with superior workabilityInfo
- Publication number
- JPS6013064A JPS6013064A JP12143683A JP12143683A JPS6013064A JP S6013064 A JPS6013064 A JP S6013064A JP 12143683 A JP12143683 A JP 12143683A JP 12143683 A JP12143683 A JP 12143683A JP S6013064 A JPS6013064 A JP S6013064A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- alloy
- aluminum alloy
- ingot
- heat treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は成形加工性の優れた熱処理型アルミニウム合金
の製造法に関し、さらに詳しくは、Al−Cu系、Al
−Mg−3i系、Al−ZnMg系、Al−7,n−M
g−Cu系の熱処理型アルミニウム合金の成形加工性を
改善したアルミニウム合金の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat-treatable aluminum alloy with excellent formability, and more specifically, to
-Mg-3i system, Al-ZnMg system, Al-7,n-M
The present invention relates to a method for producing an aluminum alloy with improved formability of a g-Cu-based heat-treatable aluminum alloy.
一般に熱処理型アルミニウム合金は、(晟械的性質が浸
れており、陸運車輌や航空機を初めと腰各種の構造用強
度部劇として多呈上使用されている。In general, heat-treated aluminum alloys have excellent mechanical properties and are used in a variety of ways, including land transportation vehicles and aircraft, as well as various structural strength components.
しかし、熱処理型アルミニウム合金は強度か高いjこめ
に比較的成形加工性に劣り、このため、一般に、軟質材
の状態で予(4i加工を施し、続いて溶体化・焼入れ処
理を行ない時効硬化が始まるまでの短時間に仕」二加工
を施し、最後に人工時効処理を行なう成形加工工程が採
用されている。However, heat-treatable aluminum alloys have relatively poor formability despite their high strength, and for this reason, they are generally subjected to pre-processing (4i processing) in a soft state, followed by solution heat treatment and quenching treatment to age harden them. A molding process is used in which the material is subjected to two treatments in a short period of time, and then artificial aging treatment is performed at the end.
しかしながら、この成形加工処理においては、予備加工
後の溶体化処理において再結晶か起るか、特に、20%
程度の加工を受けた部分で・は者しく粗大な再結晶組織
となり、続く仕上加工で肌荒れあるいは微小な割れが発
生し、成形加工を不可能にしたりあるいは製品の性能を
低下させる原因になる場合があった。However, in this molding process, recrystallization occurs in the solution treatment after preliminary processing, especially at 20%
In areas that have undergone a certain degree of processing, a particularly coarse recrystallized structure develops, and subsequent finishing processing may cause surface roughness or minute cracks, making molding impossible or reducing product performance. was there.
本発明は上記に説明したように、従来における熱処理型
アルミニウム合金の処理の問題点を解決したものであり
、即ち、軟質材の状態でも結晶粒が微細であり、かつ、
板材、管材および棒材などの軟質材に施される圧延、抽
伸、スウェージ、冷間鍛造などの全べての冷間加工率の
冷間加工後における溶体化・焼入れ後において、再結晶
粒が粗大にならない成形加工性の優れた熱処理型アルミ
ニウム合金の製造法を提供するものである。As explained above, the present invention solves the problems of conventional heat treatment aluminum alloy processing, namely, the crystal grains are fine even in the state of soft material, and
After solution treatment and quenching after cold working at all cold working rates such as rolling, drawing, swaging, and cold forging applied to soft materials such as plates, tubes, and bars, recrystallized grains are The present invention provides a method for producing a heat-treated aluminum alloy that does not become coarse and has excellent formability.
本発明に係る成形加工性の優れた熱処理型アルミニウム
合金の製造法の特徴とするところは、Al−Cu系、A
l−Mg−3i系、Al−Zn−Mg系、$3よ1/A
t−Zn−Mg Cu系の熱処理アルミニウム合金鋳塊
を均質化処理し、熱間加工あるいはさらに冷間加工を施
した後、400〜550℃の溶体化処理温度に加熱保持
した後、30℃/vli n以上の冷却速度で冷却する
ことにある。The manufacturing method of the heat-treatable aluminum alloy with excellent formability according to the present invention is characterized by Al-Cu system, A
l-Mg-3i system, Al-Zn-Mg system, $3 yo 1/A
After homogenizing the t-Zn-Mg Cu-based heat-treated aluminum alloy ingot and subjecting it to hot working or further cold working, it was heated and maintained at a solution treatment temperature of 400 to 550°C, and then heated to 30°C/ The objective is to cool at a cooling rate higher than vlin.
即ち、本発明に係る成形加工性の優れた熱処理型アルミ
ニウム合金の製造法は、Al−Cu系、Al−Mg−8
i系、Al−ZnMg系、AlZn−Mg−Cu系の熱
処理型アルミニウム合金鋳塊を、400〜550℃の温
度に4〜24Hrあるいは300〜450℃の温度に2
〜24Hr加熱した後、400−550℃の温度に2−
248r加熱して均質化処理を行ない、アルミニウム合
金のCu、Mg、Si、Znを充分に拡散固溶させてミ
クロ偏析を無くし、同時に再結晶粒を微細化させるMn
、 Cr、 Zr、 l’iを微細均一に析出させ、次
いで、熱間加工を行ない、あるいはさらに冷間加工を行
なって所定の形状寸法に加工する。この場合、冷間加工
を行なう前に熱間加工祠を350〜500℃の温度で軟
化処理を行なって再結晶組織とすれば、軟質材の状態で
結晶粒が微細となり更に成形性が優れるようになる。That is, the method for producing a heat-treatable aluminum alloy with excellent formability according to the present invention is based on Al-Cu series, Al-Mg-8
Heat-treated aluminum alloy ingots of i-type, Al-ZnMg-type, and AlZn-Mg-Cu-type are heated to a temperature of 400 to 550°C for 4 to 24 hours or to a temperature of 300 to 450°C for 2 hours.
After heating for ~24Hr, 2- to a temperature of 400-550℃
Homogenization treatment is performed by heating at 248r, and Cu, Mg, Si, and Zn in the aluminum alloy are sufficiently diffused into solid solution to eliminate micro-segregation, and at the same time Mn is refined to refine the recrystallized grains.
, Cr, Zr, and l'i are finely and uniformly precipitated, and then hot working or further cold working is performed to form a predetermined shape and size. In this case, if the hot-worked grain is softened at a temperature of 350 to 500°C to create a recrystallized structure before cold working, the crystal grains will be fine in the soft material state, and the formability will be even better. become.
この処理後に、400〜550℃の温度で溶融温度より
低い溶体化温度範囲に所定時間保持して、Cu、Mg、
5iSZnを固溶させた後、30℃/m ! 11以上
の冷却速度で室温まで冷却する。この場合、Al−Cu
系、AI Z++−Mg系、AI Z++ Mg−Cu
系ののアルミニウム合金では400〜500’C,Al
−Mg Si係のアルミニウム合金では450〜550
℃の温度範囲に加熱保持するのが望ましいが、夫々一般
の溶体化温度より20〜50℃程度低い温度が最適であ
る。After this treatment, Cu, Mg,
After solid solution of 5iSZn, 30℃/m2! Cool to room temperature at a cooling rate of 11 or higher. In this case, Al-Cu
system, AI Z++-Mg system, AI Z++ Mg-Cu
400-500'C, Al
-450-550 for Mg-Si aluminum alloys
Although it is desirable to maintain the temperature within the temperature range of 0.degree. C., the optimal temperature is about 20 to 50.degree. C. lower than the general solution temperature.
このような本発明に係る成形加工性の優れた熱処理型ア
ルミニウム合金の製造法により得られた熱処理型アルミ
ニウム合金は、成形加工にあたり冷間加工を行なうと微
細均一に析出したMn、 Cr、Z「、Tiの析出粒子
が、冷間加工によって導入された転位を微細均一なセル
組織として分散させ、続く溶体化・焼入れ処理によって
微細均一に分布されたセル組織を核として再結晶が起る
rめに、微細な再結晶組織が得られる。このため、従来
の製造法による材料では、粗大な再結晶組織となる20
%冷間加工部も本発明の製造法よる材料では微細な再結
晶1を繊となる。The heat-treatable aluminum alloy obtained by the method of producing a heat-treatable aluminum alloy with excellent formability according to the present invention has finely uniformly precipitated Mn, Cr, and Z" when cold working is performed during forming. , Ti precipitated particles disperse the dislocations introduced by cold working into a fine and uniform cell structure, and recrystallization occurs with the fine and uniformly distributed cell structure as nuclei during the subsequent solution treatment and quenching treatment. A fine recrystallized structure is obtained.For this reason, materials produced using conventional manufacturing methods have a coarse recrystallized structure.
% cold-worked portion also becomes fine recrystallized 1 fibers in the material produced by the manufacturing method of the present invention.
よって、本発明に係る成形加工性の優れた熱処理型アル
ミニウム合金の製造法は、如何なる加工率の冷間加工を
受けた材料も続く溶体此処・焼入れ処理において微細な
再結晶組織となる結果、仕上成形加工において割れや肌
荒れを発生することなく均一な成形加工が可能となるも
のである。Therefore, in the method of manufacturing a heat-treated aluminum alloy with excellent formability according to the present invention, the material subjected to cold working at any working rate becomes finely recrystallized during the subsequent solution and quenching treatment, resulting in a fine finish. This enables uniform molding without causing cracks or rough skin during molding.
本発明に係る成形加工性に優れた熱処理型アルミニウム
合金の製造法において、熱処理型アルミニウム合金鋳塊
を均質化処理して熱間加工あるいはさらに冷間加工した
後、4()0〜550℃の溶体化処理温度に加熱保持し
た後、30℃/’lfl j 11以上の冷却速度で冷
却を行なう理由について説明する。In the method for producing a heat-treated aluminum alloy with excellent formability according to the present invention, a heat-treated aluminum alloy ingot is homogenized and hot-worked or further cold-worked, and then heated at 4()0 to 550°C. The reason why cooling is performed at a cooling rate of 30° C./'lfl j 11 or more after heating and holding at the solution treatment temperature will be explained.
即ち、アルミニウム合金鋳塊を均質化処理して、結晶粒
の微細化効果を有するMu、 Cr、Zr、1’iの化
合物を微細均一に析出させる。この場合の加熱条件とし
ては、400〜550℃の温度で4〜24Hrあるいは
300−450℃の温度で2〜24Hr加熱後、400
−550℃の温度で2−24Hr加熱すれば微細化効果
の大きい析出状態が彷られる。That is, an aluminum alloy ingot is homogenized to finely and uniformly precipitate compounds of Mu, Cr, Zr, and 1'i, which have the effect of refining crystal grains. The heating conditions in this case are 4-24 hours at a temperature of 400-550°C or 2-24 hours at a temperature of 300-450°C, followed by 400
If heated for 2-24 hours at a temperature of -550°C, a precipitation state with a large refinement effect can be observed.
この均質化処理後、熱間加工あるいはさらに冷間加工を
した後に、400〜550℃の溶体化温度に加熱保持し
た後、30℃/m i n以上の冷却速度で冷却を行な
なう、しかして、アルミニウム合金鋳塊の均質化処理に
より析出するMu、 Cr、Zr、Tiの析出粒子が微
細化に効果を有し、比較的小さな粒子は効果がなく、粗
大な粒子は微細化には負の効果を有する。そのため、こ
の加熱処理は微細化に負の効果を有する粗大な析出粒子
を固溶させ、その影響を解消することにあるが、加熱温
度が400℃未満では充分な固溶ができず、また、AI
Cu系、Al−Zn−Mg−Cu系合金においては約
500℃を越える温度、および、Al−Zn−Mg系、
Al−Mg−Si系合金においては約550’Cを越え
る温度では部分的な溶融が起り健全な材料が得られない
。従って、加熱温度は400〜550℃の温度範囲とす
る。また、この加熱温度に保持する時間は、加熱温度が
高ければ数分程度でもよいが、低い加熱温度の場合は数
時間を必要とする。After this homogenization treatment, after hot working or further cold working, heating and holding at a solution temperature of 400 to 550°C, cooling is performed at a cooling rate of 30°C/min or more, Therefore, the precipitated particles of Mu, Cr, Zr, and Ti that are precipitated by the homogenization treatment of aluminum alloy ingots have an effect on refining, relatively small particles have no effect, and coarse particles have no effect on refining. Has a negative effect. Therefore, the purpose of this heat treatment is to dissolve coarse precipitated particles that have a negative effect on refinement into a solid solution and eliminate this effect, but if the heating temperature is less than 400°C, sufficient solid solution cannot be achieved. AI
For Cu-based and Al-Zn-Mg-Cu-based alloys, temperatures exceeding about 500°C, and for Al-Zn-Mg-based alloys,
In Al-Mg-Si alloys, partial melting occurs at temperatures exceeding about 550'C, making it impossible to obtain a sound material. Therefore, the heating temperature is in the range of 400 to 550°C. Further, the time to maintain this heating temperature may be about several minutes if the heating temperature is high, but several hours are required if the heating temperature is low.
この加熱後の冷却速度が30℃/+++in未満では、
Cu、 Mg、 Si、Znの粗大な析出物が発生して
微細化ができない。If the cooling rate after this heating is less than 30°C/+++in,
Coarse precipitates of Cu, Mg, Si, and Zn are generated, making it impossible to refine them.
本発明に係る成形加工性に優れた熱処理型アルミニウム
合金の製造法において対称となるアルミニウム合金につ
いて説明する。An aluminum alloy that is symmetrical in the method for producing a heat-treatable aluminum alloy with excellent formability according to the present invention will be described.
Al−Cu系合金: J T S A2000台に相当
する熱処理型アルミニウム合金であり、Cu2〜7wL
%、Mg 0.2〜2w1%を主成分とし必要に応じて
M nO,05−0,8u+L%、Cr 0105−0
.3wL%、Zr O,05=0、ht%、Ti 00
01−0.15WL%、V 00Of−0,15wL%
のうちから選んだ1種以」二を含有する。Al-Cu alloy: A heat-treated aluminum alloy equivalent to JTSA2000 units, Cu2~7wL
%, Mg 0.2~2w1% as main component, MnO, 05-0,8u+L%, Cr 0105-0 as necessary
.. 3wL%, Zr O, 05=0, ht%, Ti 00
01-0.15WL%, V 00Of-0,15wL%
Contains one or more selected from the following.
AlMg−Si系合金: J I S A6000台に
相当する熱処理型アルミニウム合金であり、M2O,3
〜1.5wt%、Si0.2〜1.5111t%を主成
分とし、その他Mn 0.05−1,0iut%、Cr
O,05−0,4wL%、Cu O,05−0,4+
ut%、Zr O,05−0,hL%、TiO,01−
0,15wt%、V O,01−0,15u+t%ノウ
チカラ選んだ1種以上を含有する。AlMg-Si alloy: A heat-treated aluminum alloy equivalent to JIS A6000, M2O,3
-1.5wt%, Si0.2-1.5111t% as main components, other Mn 0.05-1,0iut%, Cr
O,05-0,4wL%, Cu O,05-0,4+
ut%, ZrO,05-0,hL%, TiO,01-
0.15wt%, VO,01-0.15u+t% Contains one or more selected Nauchikara.
AlZn−Mg系合金: J I S 7N01.70
03相当およびこれに類似した熱処理型アルミニウム合
金であり、Zn 3.0−8.0+ut%、M2O,5
−3,OwL%を主成分とし、その他Cu 0003−
0.5ulL%、M no、05−0.4u+L%、C
r O,05−0,4wt%、Zr O,05−0,2
5wt%、l’i 0.005〜0.20u+t%、V
0001〜0.151%、B O,0005〜0.0
5wL%のうちがら選んだ1種以上を含有する。AlZn-Mg alloy: JIS 7N01.70
It is a heat-treated aluminum alloy equivalent to or similar to 03, Zn 3.0-8.0+ut%, M2O, 5
-3, OwL% as the main component, and other Cu 0003-
0.5ulL%, M no, 05-0.4u+L%, C
rO,05-0,4wt%, ZrO,05-0,2
5wt%, l'i 0.005-0.20u+t%, V
0001~0.151%, BO,0005~0.0
Contains one or more selected from among 5wL%.
AI−Zn−MS−Cu系合金: J I 57075
相当およびこれに類似した熱処理型アルミニウム合金で
あり、Zn 3−8wt%、Mg 1−3wL%、Cu
O,5−3wL%を主成分とし、ソノ他Mn 0.0
5−0.80wL%、Cr O,05−0,30wt%
、Zr O,05−0,30WL%、Ti O,01−
0,15wL%、V O,01−0,1!out%ノウ
チから選んだ1種以上を含有する。AI-Zn-MS-Cu alloy: J I 57075
It is a heat-treatable aluminum alloy equivalent to and similar to this, and contains 3-8wt% Zn, 1-3wL% Mg, Cu
The main component is O, 5-3 wL%, Sono and other Mn 0.0
5-0.80 wL%, CrO, 05-0,30 wt%
, ZrO,05-0,30WL%, TiO,01-
0,15wL%, VO,01-0,1! Contains one or more selected from out%.
。 以下、本発明に係る成形加工性に優れた熱処理型ア
ルミニウム合金の製造法の実施例を説明する。. Examples of the method for manufacturing a heat-treated aluminum alloy with excellent formability according to the present invention will be described below.
実施例
第1表に示す2025合金、7075合金、7050合
金および6061合金相当の含有成分、成分割合の鋳塊
を通常の溶製により鋳造し、熱処理型アルミニウム合金
の代表例とした。EXAMPLE Ingots having the components and proportions equivalent to the 2025 alloy, 7075 alloy, 7050 alloy, and 6061 alloy shown in Table 1 were cast by normal melting, and were used as representative examples of heat-treatable aluminum alloys.
各鋳塊を24Hrの均熱処理を行なった。囚に、202
4合金は470℃、7075合金は450℃、7050
合金は475℃、6061合金は500℃である。この
均熱処理後、450℃から300℃の開の温度で熱間圧
延を行ない板Q8mmの板材を製造し、続いて、45
(1’Cで4Hrの軟化処理を行なった後、冷間圧延を
行なって板1v3IIIIOの板材とし仁。Each ingot was soaked for 24 hours. Prisoner, 202
4 alloy is 470℃, 7075 alloy is 450℃, 7050
The temperature is 475°C for the alloy and 500°C for the 6061 alloy. After this soaking treatment, hot rolling was carried out at a temperature ranging from 450°C to 300°C to produce a plate with a thickness of 8 mm.
(After being softened for 4 hours at 1'C, cold rolling was performed to produce a 1v3IIIO plate.
これらの板材を本発明に係る成形加工性の優れた熱処理
型アルミニウム合金の製造法、本発明に係る製造法から
外れる熱処理条件(比較条件)および従来界ら行なわれ
ている焼鈍処理(O材)の熱処理条件(従来条件)を第
2表に示す。These plate materials were subjected to the manufacturing method of a heat-treatable aluminum alloy with excellent formability according to the present invention, heat treatment conditions that differ from the manufacturing method according to the present invention (comparative conditions), and annealing treatment performed conventionally (O material). The heat treatment conditions (conventional conditions) are shown in Table 2.
このようにして製造された熱処理板材の成形尻工性を調
査するために、各板材について次に示す成形加工と熱処
理を行なった。In order to investigate the moldability of the heat-treated plate materials produced in this way, each plate material was subjected to the following molding process and heat treatment.
1)予備冷開成形加工
冷間圧延イ)圧延せず(圧延率0% 板厚3+am)口
)圧延(圧延率20% 板厚2.4輪+o)ハ)圧延(
圧延率30% 板厚2.1m輸)2)溶体化・焼入れ処
理
処理条件 2024 : 495℃×30分WQ707
5 : 480℃X30分WQ
7050 : 475℃X30分WQ
6061 : 535°c×30分WQ3)冷開成形加
工
曲げ加工 I5方向4++++++R90°曲げ板厚2
.4m(20%圧延材)冷却直後に実施4)時効処理(
T6処理)
処理条件 2024 : 190℃X8Hr7075
: 120℃X24Hr
7050 : 120℃X24Hr−+150℃X12
Hr
6061 : 170℃X8Hr
第3表に、上記の予備冷開成形加工の後溶体化・焼入れ
処理を行なった材料の再結晶粒度(LT−3T面1/4
E部)、曲げ加工性(肌荒れ、割れ)および最終製品と
してT6材にした場合の機械的性質を示す。1) Preliminary cold open forming cold rolling a) No rolling (rolling rate 0% plate thickness 3+am) Rolling (rolling rate 20% plate thickness 2.4 wheels + o) c) Rolling (
Rolling rate: 30%, plate thickness: 2.1 m) 2) Solution treatment/quenching treatment conditions 2024: 495°C x 30 minutes WQ707
5: 480°C x 30 minutes WQ 7050: 475°C x 30 minutes WQ 6061: 535°c x 30 minutes WQ 3) Cold open forming bending I5 direction 4++++++R90° bending plate thickness 2
.. 4m (20% rolled material) Immediately after cooling 4) Aging treatment (
T6 treatment) Treatment conditions 2024: 190℃X8Hr7075
: 120℃×24Hr 7050 : 120℃×24Hr-+150℃×12
Hr 6061: 170℃X8Hr Table 3 shows the recrystallized grain size (LT-3T surface 1/4
Section E), bending workability (rough skin, cracks), and mechanical properties when made into a T6 material as a final product.
この第3表から明らかなように、本発明に係る成形加工
性の優れた熱処理アルミニウム合金の製造法により製造
された成形加工板材(No、1〜8)は、0〜30%の
冷間圧延の後溶体化・規入れを行なった時の再結晶粒が
微細で、曲げ加工を行なっても肌荒れおよび割れが発生
しない。また、最終製品のT6材の時効処理を行なった
場合、所期の優れた機械的性質を示す。As is clear from Table 3, the formed plate materials (Nos. 1 to 8) manufactured by the method for producing heat-treated aluminum alloys with excellent formability according to the present invention are cold-rolled by 0 to 30%. The recrystallized grains during post-solution treatment and sizing are fine, and roughness and cracking will not occur even when bending is performed. Furthermore, when the final product T6 material is subjected to aging treatment, it exhibits the desired excellent mechanical properties.
これに対して、比較条件および従来条件により製造した
材料(No、9〜20)は、0〜30%の冷間圧延の後
溶体化・焼入れを行なった時の再結晶粒が粗大で、曲げ
加工で割れが発生している。On the other hand, the materials manufactured under comparative conditions and conventional conditions (Nos. 9 to 20) had coarse recrystallized grains when subjected to solution treatment and quenching after 0 to 30% cold rolling, and Cracks occur during processing.
以上詳細に説明したように、本発明に係る成形加工性に
優れた熱処理型アルミニウム合金の製造法は上記の構成
を有しているものであるが呟製造された熱処理型アルミ
ニウム合金材は仕上冷開成形加工を施してもも肌荒れお
よび加工割れのない成形品を得ることができる。As explained in detail above, the method for producing a heat-treatable aluminum alloy with excellent formability according to the present invention has the above-mentioned structure, but the produced heat-treatable aluminum alloy material is finished by cooling. Even when subjected to open molding, a molded product without rough skin or processing cracks can be obtained.
Claims (1)
系およびAI Zn−Mg−Cu系の熱処理型アルミニ
ウム合*鋳iを均質化処理し、熱間加工あるいはさらに
冷間加工を施した後、400〜550 ’Cの溶体化処
理温度に加熱保持した後、30℃/Ill i n以」
−の冷力j速度で冷却することを特徴とする成形加工性
の優れた熱処理型アルミニウム合金の製造法。Al-Cu system, AlMg-8i system, AI-Zo-M) (
After homogenizing heat-treated aluminum alloys and AI Zn-Mg-Cu-based aluminum composites, hot working or further cold working, they were heated and held at a solution treatment temperature of 400 to 550'C. After that, 30℃/Ill in''
A method for producing a heat-treatable aluminum alloy with excellent formability, characterized by cooling at a cooling force j rate of -.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12143683A JPS6013064A (en) | 1983-07-04 | 1983-07-04 | Manufacture of heat treated aluminum alloy with superior workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12143683A JPS6013064A (en) | 1983-07-04 | 1983-07-04 | Manufacture of heat treated aluminum alloy with superior workability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6013064A true JPS6013064A (en) | 1985-01-23 |
Family
ID=14811088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12143683A Pending JPS6013064A (en) | 1983-07-04 | 1983-07-04 | Manufacture of heat treated aluminum alloy with superior workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6013064A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319117A (en) * | 1976-08-05 | 1978-02-22 | Aluminum Co Of America | Modified aluminium structure |
JPS5831054A (en) * | 1981-08-19 | 1983-02-23 | Sumitomo Light Metal Ind Ltd | Aluminum alloy having superior strength and corrosion resistance and its manufacture |
-
1983
- 1983-07-04 JP JP12143683A patent/JPS6013064A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319117A (en) * | 1976-08-05 | 1978-02-22 | Aluminum Co Of America | Modified aluminium structure |
JPS5831054A (en) * | 1981-08-19 | 1983-02-23 | Sumitomo Light Metal Ind Ltd | Aluminum alloy having superior strength and corrosion resistance and its manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6344096B1 (en) | Method of producing aluminum alloy sheet for automotive applications | |
JP2007031819A (en) | Method for producing aluminum alloy sheet | |
JPH05501588A (en) | Method for producing plate or strip material with improved cold rolling properties | |
JPS59126761A (en) | Production of heat treatment type aluminum alloy having excellent formability | |
JPS58213850A (en) | Manufacture of al-zn-mg-cu alloy material of superior formability | |
JPS61272342A (en) | Aluminum alloy sheet excelling in formability and baking hardening and its production | |
JPS5953347B2 (en) | Manufacturing method of aircraft stringer material | |
JPS6058298B2 (en) | Method for producing Al-Zn-Mg-Cu alloy material with uniform formability | |
JPS6136065B2 (en) | ||
JPH0547615B2 (en) | ||
JPS6013064A (en) | Manufacture of heat treated aluminum alloy with superior workability | |
JP3278119B2 (en) | Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability | |
JPH0480979B2 (en) | ||
KR960007633B1 (en) | Al-mg alloy & the preparation | |
JPS60238460A (en) | Manufacture of superplastic aluminum alloy | |
JPS6136064B2 (en) | ||
JPH07228957A (en) | Production of aluminum alloy sheet having excellent formability and quench-hardenability | |
JPH0588302B2 (en) | ||
JPS63169353A (en) | Aluminum alloy for forming and its production | |
JPS5941434A (en) | Material having fine crystal grain useful as stringer of airplane and its manufacture | |
JPS60238461A (en) | Manufacture of superplastic aluminum alloy | |
JPH0665696A (en) | Heat treatment method of al-mg-si aluminum alloy cast material | |
JPS62199755A (en) | Manufacture of aluminum alloy material for forming | |
JPH0665694A (en) | Heat treatment method of al-mg-si aluminum alloy extrusion material | |
JPS58113345A (en) | Alloy for stringer of aircraft |