JPS60130628A - Production of resol phenolic resin foam - Google Patents

Production of resol phenolic resin foam

Info

Publication number
JPS60130628A
JPS60130628A JP23877683A JP23877683A JPS60130628A JP S60130628 A JPS60130628 A JP S60130628A JP 23877683 A JP23877683 A JP 23877683A JP 23877683 A JP23877683 A JP 23877683A JP S60130628 A JPS60130628 A JP S60130628A
Authority
JP
Japan
Prior art keywords
resin
foam
phenolic resin
resol
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23877683A
Other languages
Japanese (ja)
Inventor
Mikio Kitahara
北原 幹夫
Kazuya Shinoda
新小田 一弥
Takayuki Kubo
久保 隆幸
Susumu Kato
進 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP23877683A priority Critical patent/JPS60130628A/en
Publication of JPS60130628A publication Critical patent/JPS60130628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled foam improved in moldability and decreased in heat conductivity, by foaming a specified resol phenolic resin by using an acid curing agent obtained by mixing p-phenolsulfonic acid with sulfuric acid. CONSTITUTION:A resol phenolic resin foam is obtained by foaming and curing a resol phenolic resin having reactivity in terms of the quantity of heat generated during curing of resin of 100 deg.C or below and a viscosity (25 deg.C)<=50P by using an acidic curing agent obtained by mixing p-phenolsulfonic acid with sulfuric acid at a weight ratio of 7:3-3:7. The resol resin used is obtained by condensing phenol with formaldehyde at a molar ratio of, usually, 1.4-1.8 in the presence of an alkali. In addition to the above acidic curing agent, a surfactant, blowing agent, plasticizer, flame retardant, etc., may be added to said phenolic resin.

Description

【発明の詳細な説明】 本発明は経時変化が小さく、低い熱伝導率、小さな線膨
張係数および自己接着性を有するレゾール型フェノール
樹脂発泡体(以下フェノールフオームという)成形物を
生産性良く得るための製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is aimed at obtaining a resol type phenolic resin foam (hereinafter referred to as phenol foam) molded product with high productivity, which has a small change over time, a low thermal conductivity, a small coefficient of linear expansion, and self-adhesion. Relating to a manufacturing method.

レゾール型フーノール樹脂を発泡して得られるフェノー
ルフオームについては、耐熱性および耐燃性において他
のプラスチックフオームよりも優れることか知られてい
る。一方、最近防火規制の見直しがなされ、法規制の強
化が検討されており、無機系の断熱材よりも断熱性能の
点で優れている有機系の断熱材においても、準不燃性で
低発煙性である事が要求されている。この要求を満足し
得るプラスチックフオームとしてフェノールフオームが
建築用、化学プラント用等の断熱材として注目されてい
る。特に化学プラント用の保冷材としては、現在ウレタ
ンフオームが主流であるが、ウレタンフオームに比べて
線膨張係数が小さく耐燃性に優れているという点でフェ
ノールフオームによるエチレン、L N G等の極低温
プラントの保冷工事が増えている。しかしながら従来の
フ・ノールフオームの熱伝導率は、ウレタンフオームの
熱伝導率に比べて大きく、また成形性および加工性の点
からも不利であった。
It is known that phenol foam obtained by foaming resol type phenol resin is superior to other plastic foams in terms of heat resistance and flame resistance. On the other hand, fire prevention regulations have recently been reviewed and stricter regulations are being considered, and even organic insulation materials, which have better insulation performance than inorganic insulation materials, are semi-nonflammable and have low smoke emission. is required to be. As a plastic foam that can satisfy this requirement, phenol foam is attracting attention as a heat insulating material for buildings, chemical plants, etc. In particular, urethane foam is currently the mainstream as a cold insulation material for chemical plants, but phenol foam has a lower linear expansion coefficient and superior flame resistance than urethane foam. Cold insulation work at plants is increasing. However, the thermal conductivity of conventional fluorocarbon foam is higher than that of urethane foam, and it is also disadvantageous in terms of moldability and processability.

本発明者はフェノールフオームの熱伝導率を小さくする
事と成形性を改良する事を主な目的として研究を重ねた
結果、特定のレゾール型のフェノール樹脂と特定の酸性
硬化剤とを使用することにより、これらの目的が解決さ
れる事を見出して本として100°C以下であり、かつ
25°Cにおける粘兜が50ボイズ以下であるレゾール
型フーノール樹脂と、p−ツーノールスルホン酸と硫酸
トを7=3〜3ニアの重景比率で混合した酸性硬化剤と
を用いることを特徴とするノーノールフオームの製造方
法である。
As a result of repeated research aimed at reducing the thermal conductivity of phenol foam and improving its moldability, the present inventor discovered that it is possible to use a specific resol type phenolic resin and a specific acidic curing agent. found that these objectives could be solved by using a resol-type funol resin that has a temperature of 100°C or less and a viscosity of 50 voids or less at 25°C, p-tunolsulfonic acid, and sulfuric acid. This is a method for producing a non-norl foam, characterized by using an acidic curing agent mixed with a ratio of 7=3 to 3 near.

フェノールフオームは一般的な方法として、アルカリ触
媒の存在下にフェノールとホルム7 /l/ fヒトと
を反応させて得られるレゾール型フェノール樹脂に、界
面活性剤、低沸点の有機液体、または酸の作用によりガ
スを発生する無機塩のような物質からなる発泡剤、及び
酸性硬化触媒を添加することにより、発熱を伴って硬化
が進行し、これと共に発泡剤による膨張によって形成さ
れる。
Phenol foam is generally produced by adding a surfactant, a low boiling point organic liquid, or an acid to a resol-type phenolic resin obtained by reacting phenol with form 7/l/f in the presence of an alkaline catalyst. By adding a blowing agent made of a substance such as an inorganic salt that generates gas when acting, and an acidic curing catalyst, curing proceeds with heat generation, and at the same time, the foam is formed by expansion due to the blowing agent.

従来のフ・ノールフオームは熱伝導率が大きく、これを
ウレタンフメ〜ム並みの熱伝導率にするためには、・・
ロゲン化炭化水素等の熱伝導度の小さい発泡剤を使用(
〜たり、特殊な界面活性剤および添加剤を用いる方法が
採用されて来たが、いずれも後述する25°Gにおける
粘度として100ボイズ以上である高粘度レゾール型フ
ーノール樹脂が使用されている。しかしながら、かか−
る樹脂は酸性硬化剤との混合の際に十分な混合が困難で
、部分的未硬化による大きな空隙がフオーム中に生ずる
Conventional foam foam has high thermal conductivity, and in order to make it as thermal conductive as urethane foam,...
Use a blowing agent with low thermal conductivity such as logenated hydrocarbons (
Methods using special surfactants and additives have been adopted, but in all cases, a high viscosity resol type Funol resin having a viscosity of 100 voids or more at 25°G, which will be described later, is used. However, whether
It is difficult to mix the resin sufficiently with the acidic curing agent, and large voids are created in the foam due to partial uncuring.

又十分な攪拌効果を得ようとすると高速攪拌が必要とな
り、攪拌時の機械的エイ・ルギーによる発熱が増大し気
泡に乱れを生ずる。また高速攪拌のための設備費も高価
なものとなる。本発明者は一1記した部分未硬化がなく
気泡構造が均一で安定したフェノールフオームを得るた
めには25℃におけるフェノール樹脂の粘度が50ポイ
ズ以「でなければならない事を見い出した。
In addition, in order to obtain a sufficient stirring effect, high-speed stirring is required, which increases heat generation due to mechanical energy during stirring and causes turbulence in the bubbles. Moreover, the equipment cost for high-speed stirring is also expensive. The present inventors have discovered that the viscosity of the phenol resin at 25° C. must be 50 poise or higher in order to obtain a stable phenol foam with a uniform cell structure and no partial uncuring as described in 11 above.

一方、本発明者ハ、フェノールフオームの熱伝導率を小
さくするためには、熱伝導率の悪いフェノールフオーム
は主として連通気泡構造であることから、十分な独立気
泡構造を与える事が必須条件であると考えて種々検討を
重ねた結果、ツーノール樹脂の反応性と酸性硬化剤の種
類が独立気泡の有無を大きく支配する事を見出した。す
なわちし1000Gであることが必要である。発熱が1
00℃でへ ある場合はいかなる種類の酸性硬化剤を使用しても気泡
が破壊され独立気泡が失なわれる。また発熱があまり低
すぎると硬化が完了するまでに長時間を要し生産性が低
下する。これを補なうために外部から多大な熱量を供給
しても成形品の表面付近の硬化を促進するだけで内部は
十分な硬化状態が得られず、この様にして得られた成形
品は表面伺近のセル荒れも激しく、この部分の物性及び
外観が悪化する。
On the other hand, the present inventor c. In order to reduce the thermal conductivity of phenol foam, since phenol foam with poor thermal conductivity mainly has an open cell structure, it is an essential condition to provide a sufficient closed cell structure. As a result of various studies with this in mind, we discovered that the reactivity of the Tuonol resin and the type of acidic curing agent greatly control the presence or absence of closed cells. In other words, it needs to be 1000G. fever is 1
If the temperature is 00°C, the cells will be destroyed and the closed cells will be lost no matter what kind of acidic curing agent is used. Furthermore, if the heat generation is too low, it will take a long time to complete curing and productivity will decrease. Even if a large amount of heat is supplied from the outside to compensate for this, it only accelerates the hardening near the surface of the molded product, but the interior is not sufficiently hardened, and the molded product obtained in this way Cell roughness near the surface is also severe, and the physical properties and appearance of this area deteriorate.

上記したレゾール型樹脂の硬化する際の発熱、即ち反応
性は、レゾール型フェノール樹脂100重量部を200
ミリリツトルの容器に脈数し、樹脂の温度を20°Cに
した後、測定に供する酸性硬化剤10重量部を加え高速
攪拌機にて約10秒間混合し、混合液中に温度計を挿入
したまま、全体を断熱した容器中に入れて硬化させ、そ
の際に到達した最高発熱温度で示される。
The heat generated during curing of the above resol type resin, that is, the reactivity, is as follows: 100 parts by weight of the resol type phenolic resin is
After stirring the resin into a milliliter container and bringing the temperature of the resin to 20°C, add 10 parts by weight of the acidic curing agent to be used for measurement and mix for about 10 seconds using a high-speed stirrer, leaving the thermometer inserted in the mixture. , the entire product is placed in an insulated container and cured, and is indicated by the maximum exothermic temperature reached at that time.

本発明に使用されるレゾール型フェノール樹脂は、通常
フェノールとホルムアルデヒドのモル比をフェノール1
モルに対してホルムアルデヒド1.4〜1.8モルの範
囲で用い、アルカリ性のもとで縮合反応させて得られる
。ホルムアルデヒドのフェノールに対するモル比が1.
4.lu下であると樹られたツーノール樹脂の反応性が
高すぎて、独立気泡を形成するという点で好ましくない
。これを100’C以下の反応性まで低下させようとし
た場合、ツーノール樹脂の縮合を更に進行させねばなら
ず、その結果としてツーノール樹脂の粘度が非常に高粘
度となり、前述した如く酸性硬化剤との混合の際の問題
が生じる。またモル比が1.8以上であると、得られる
ツーノール樹脂の反応性が低下して硬化に長時間を要し
、またツーノール樹脂中の遊離ホルムアルデヒド濃度が
高く、成形後、成形品を金型より取りはずす際にホルム
アルデヒド刺激臭が伴い作業性の面でも劣る。レゾール
型フーノ=−ル樹脂の粘度は25°Cにおける測定値で
50ポイズ以下が必要であり、好ましくは20〜50ポ
イズである。2Oボイズ以下の低粘度であると発泡の際
に気泡の膜強度が十分に得られず気泡膜が崩壊して連通
気泡になる傾向がある。また50ポイズ以上の高粘度と
なると前述した如く酸性硬化剤との混合の際の際拌の問
題が生じる。上記した樹脂の粘度はJISK−6838
(接着剤の粘度測定方法)に規定されている回転式粘度
計により測定されるものである。
The resol type phenolic resin used in the present invention usually has a molar ratio of phenol and formaldehyde of 1 to 1.
The formaldehyde is used in an amount of 1.4 to 1.8 moles per mole, and is obtained by condensation reaction under alkalinity. The molar ratio of formaldehyde to phenol is 1.
4. Under lu, the reactivity of the two-nor resin produced is too high, which is undesirable in that closed cells are formed. If an attempt is made to lower the reactivity to below 100'C, the condensation of the thunol resin must proceed further, and as a result, the viscosity of the thunol resin becomes extremely high, and as mentioned above, the viscosity of the thunol resin becomes extremely high. Problems arise when mixing. In addition, if the molar ratio is 1.8 or more, the reactivity of the resulting Tuonol resin will decrease and it will take a long time to cure, and the concentration of free formaldehyde in the Tuonol resin will be high, so that the molded product cannot be molded into the mold after molding. When removed, there is a pungent odor of formaldehyde and the workability is also poor. The viscosity of the resol-type Funol resin must be 50 poise or less, preferably 20 to 50 poise, as measured at 25°C. If the viscosity is as low as 2O voids or less, sufficient cell film strength cannot be obtained during foaming, and the cell film tends to collapse and become open cells. Furthermore, if the viscosity is high, such as 50 poise or more, problems arise when mixing with the acidic curing agent, as described above. The viscosity of the above resin is JISK-6838
It is measured using a rotational viscometer specified in (Method for Measuring Viscosity of Adhesives).

本発明者は上記したレゾール型フェノール樹脂に対して
通常フェノールフオームの製造に使用される各種酸性硬
化剤の使用を検討した結果、p −フェノールスルホン
酸、硫酸、またはこの2種の酸の混合物を酸性硬化剤と
して使用することによって85係以上の高い独立気泡率
を有するフェノールフオームを製造しうる事を確認した
。しかしながら、これらの高い独立気泡率を有するフェ
ノールフオームの独立気泡構造は、熱伝導率を低くする
ための必要条件ではあっても十分条件ではない ′事カ
ワカった。即ち、p−フェノールスルホン酸または硫酸
を単独で硬化剤として使用した1烏合、独立気泡率は8
5係以−にでも熱伝導率は必ずしも低くはならず、p−
ツーノールスルホン酸ど硫酸を特定割合に混合して使用
した場合においてのみ、p−フェノールスルホン酸と硫
酸の夫々の単独の場合の熱伝導率を結ぶ直線上の値より
も下回り、その混合割合が、重量比で5=5近辺に熱伝
導率の最小値を有する曲線となることが判明した。而し
てp−ツーノールスルホン酸と硫酸の混合比が重量比で
7=3〜3ニアの範囲で製造したフェノールフオームの
熱伝導率は、0.020 Kcal /mh’C以下と
、従来のフェノールフオームの熱伝導率よりも低いばか
りでな(、約1年の経過後もほとんど変化がなく安定し
たものであることが判明した。
As a result of investigating the use of various acidic curing agents normally used in the production of phenol foam for the resol-type phenolic resin described above, the present inventor found that p-phenolsulfonic acid, sulfuric acid, or a mixture of these two acids was used. It was confirmed that by using it as an acidic curing agent, it was possible to produce a phenol foam having a high closed cell ratio of 85 modulus or higher. However, although the closed cell structure of these phenolic foams having a high closed cell ratio is a necessary condition for lowering the thermal conductivity, it is not a sufficient condition. That is, in a case where p-phenolsulfonic acid or sulfuric acid was used alone as a curing agent, the closed cell ratio was 8.
Thermal conductivity does not necessarily decrease even after 5 p-
Only when tunolsulfonic acid and sulfuric acid are used in a mixture at a specific ratio, the thermal conductivity is lower than the value on the straight line connecting the individual thermal conductivities of p-phenolsulfonic acid and sulfuric acid, and the mixing ratio is It was found that the curve has a minimum value of thermal conductivity near 5=5 in terms of weight ratio. The thermal conductivity of the phenol foam produced at a mixing ratio of p-tunolsulfonic acid and sulfuric acid in the range of 7 = 3 to 3 nia by weight is 0.020 Kcal/mh'C or less, which is lower than the conventional one. Not only is the thermal conductivity lower than that of phenol foam, but it was also found to be stable with almost no change even after approximately one year.

本発明における酸性硬化剤の使用量はツーノール樹脂1
00重量部に対して8〜15重量部の範囲であることが
好ましく、少なすぎると硬化が遅く、また発泡が不十分
となり、一方多過ぎると発泡と硬化のタイミングがずれ
フオーム中に大きな応力が残り、脱型直後の成形品にク
ラックを生ずる。
The amount of acidic curing agent used in the present invention is 1
It is preferable that the amount is in the range of 8 to 15 parts by weight based on 0.00 parts by weight. If it is too small, curing will be slow and foaming will be insufficient, while if it is too large, the timing of foaming and curing will be different and a large stress will be generated in the foam. This will remain and cause cracks in the molded product immediately after demolding.

本発明において使用されるレゾール型フェノール樹脂は
、前記した酸性硬化剤および通常用いられる界面活性剤
、発泡剤、可塑剤、難燃剤等の添加剤を使用することが
出来る。而して界面活性剤の代表的なものとしては、エ
トキシル化ひまし油、ジメチルポリシロキサンポリエー
テルブロノク共重合体、オキシエチレンオキシブロピレ
ンプロノクポリマー等があげられる。また発泡剤として
は、熱伝導度の小さい)・ロゲン化炭化水素を使用する
ことが望ましく、特に1..1..2−)リクロロ−1
,2゜2−トリフロロエタンが作業性等の点から最適で
ある。
The resol type phenolic resin used in the present invention can contain the above-mentioned acidic curing agent and commonly used additives such as surfactants, blowing agents, plasticizers, and flame retardants. Typical examples of the surfactant include ethoxylated castor oil, dimethylpolysiloxane polyether bronok copolymer, oxyethylene oxypropylene bronok polymer, and the like. In addition, as a blowing agent, it is desirable to use rogenated hydrocarbons (with low thermal conductivity), especially 1. .. 1. .. 2-) Lichloro-1
, 2°2-trifluoroethane is optimal in terms of workability and the like.

本発明の方法においてレゾール型フェノール樹脂、酸性
硬化剤および上記した他の添加剤を用いてフェノール発
泡体を製造するには、通常用いられるレゾール型フーノ
ールフォームの成形方法力そのまま採用出来る。而して
その成形方法としては、あらかじめ添加剤を混合したレ
ゾール型フェノール樹脂と・酸性硬化剤とを攪拌混合し
、上面が開放された金型あるいは、密閉型の金型に注入
して発泡硬化させるバッチ式製造方法、または前記混合
物を、上下にベルトコンベアを有したダブルベルトプレ
スのベルトの間に注入し連続的に板状発泡体を製造する
連続式製造方法がある。この際、金型またはベルトはあ
らかじめ60〜80°Cに加温しておく事が好ましい。
In order to produce a phenol foam using a resol-type phenolic resin, an acidic curing agent, and the other additives mentioned above in the method of the present invention, a commonly used molding method for resol-type Founol foam can be used as is. The molding method is to stir and mix the resol-type phenolic resin with additives mixed in advance and the acidic curing agent, and then pour the mixture into a mold with an open top or a closed mold, and then foam and harden it. There is a batch-type production method in which the mixture is injected between the belts of a double-belt press having upper and lower belt conveyors, and a continuous production method in which plate-shaped foams are continuously produced. At this time, it is preferable to preheat the mold or belt to 60 to 80°C.

この温度が60°C1扶下であると、硬化が遅く、かつ
密閉金型またはダブルベルトプレスを使用して表面材と
の一体成形を行なつ鴨合に表面材との接着性も悪く、ま
た80°C以上であると気泡に乱れを生じ独立気泡率も
低下する傾向がある。本発明の方法により一体成形され
る場合にツーノールフオームが良効な接着性を示す表面
材としては、クラフト紙、アスファルトフェルト紙、不
燃加工紙等の紙類、ガラスクロス、不織布、綿帆布等の
布類がある。また、アルミの片面にポリエステルフィル
ム、他の面にポリエステル不織布を接着した防湿性面材
とも良効な接着性を示す。
If this temperature is below 60°C, curing will be slow and the adhesion to the surface material will be poor when integrally molded with the surface material using a closed mold or double belt press. If the temperature is 80°C or higher, the bubbles tend to be disturbed and the closed cell ratio tends to decrease. Examples of surface materials on which the two-nor foam exhibits good adhesive properties when integrally molded by the method of the present invention include papers such as kraft paper, asphalt felt paper, and non-combustible treated paper, glass cloth, nonwoven fabric, and cotton canvas. There are many kinds of cloth. It also exhibits good adhesion to moisture-proof surface materials made of aluminum with a polyester film adhered to one side and a polyester nonwoven fabric adhered to the other side.

本発明の方法によって製造されるフェノールフオ−ムの
特徴としては、第一に低い熱伝導率とともに、その経時
変化の小さいことが挙げられる。
The characteristics of the phenol foam produced by the method of the present invention include firstly its low thermal conductivity and its small change over time.

即ち、熱伝導率の経時変化は、従来のツーノールフオー
ムはもちろんプラスチックフオーム全般に渡って見られ
る現象であり、最も熱伝導率が小さいウレタンフオーム
でもそれが高い独立気泡構造を有しているにもかかわら
ず、この熱伝導率の経時変化が認められる。従って本発
明の方法により得られるフェノールフオームの前記した
低熱伝導率でかつ熱伝導率の経時変化が小さいことによ
る特性は、断熱性能の安定した信頼度の高い断熱材を提
供するものとして評価される。
In other words, changes in thermal conductivity over time are a phenomenon that can be observed not only in conventional two-north foam but also in plastic foam in general, and even urethane foam, which has the lowest thermal conductivity, has a high closed-cell structure. Nevertheless, changes in thermal conductivity over time are observed. Therefore, the above-mentioned characteristics of the phenolic foam obtained by the method of the present invention, such as low thermal conductivity and small change in thermal conductivity over time, are evaluated as providing a highly reliable heat insulating material with stable heat insulating performance. .

本発明の第2の特徴として、小さな線膨張係数を有する
事があげられる。
A second feature of the present invention is that it has a small coefficient of linear expansion.

即ち、低温化学プラントの保冷材の場合、保冷材の線膨
張係数はタンクや配管を構成する材料である金属の線膨
張係数に近い事が望ましい。従来高い独立気泡率を有す
るツーノールフオームの線膨張係数は、3,5X10 
/’C以上であったが、本発明によるツーノールフオー
ムの線膨張係数は、2.5X10 /°Gと小さく、保
冷工事の際の保冷材目止部への信頼性をあげる事が出来
る。
That is, in the case of a cold insulation material for a low-temperature chemical plant, it is desirable that the coefficient of linear expansion of the cold insulation material is close to the coefficient of linear expansion of the metal that is the material that constitutes the tank and piping. Conventionally, the coefficient of linear expansion of the Two Nord foam, which has a high closed cell ratio, is 3.5X10.
/'C or more, but the coefficient of linear expansion of the two-knoll form according to the present invention is as small as 2.5×10 /°G, which can improve the reliability of the sealing part of the cold insulation material during cold insulation work.

本発明の第3の特徴として、自己接着性を有し成形性が
長幼である事があげられる。即ち、従来のツーノールフ
オームによる保冷材の製造方゛法は、まずブロック状の
発泡体を成形したのち、板状あるいは半円筒状の保冷材
を切り出し、これに表面材を接着する方法が採用されて
来たが、この方法では切り出した面がフーノールフォー
ムil’?有17)モろさと粉つぽさを持つため表面材
との接着性が悪く、また、密閉型の金型中で発泡させる
表面材との一体成形においても、表面材との自己接着性
に乏しくあらかじめ表面材に接着剤を塗布する等、成形
性が劣っていた。しかしながら本発明によるレゾール型
フェノール樹脂と酸性硬化剤を使用して金型中で発泡さ
せる場合は、表面材との一体成形における自己接着性が
長幼であった。
A third feature of the present invention is that it has self-adhesive properties and has long moldability. In other words, the conventional method for manufacturing cold insulation materials using two-north foam is to first mold a block-shaped foam, then cut out plate-shaped or semi-cylindrical cold insulation materials, and then glue the surface material to this. However, with this method, the cut out surface becomes Founor foam il'? Yes 17) Due to its brittleness and powderiness, it has poor adhesion to the surface material, and even when integrally molded with the surface material that is foamed in a closed mold, it has poor self-adhesion with the surface material. The moldability was poor, such as the need to apply adhesive to the surface material in advance. However, when foaming in a mold using the resol type phenolic resin and acidic curing agent according to the present invention, self-adhesiveness during integral molding with the surface material was poor.

以下実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.

実施例 1 フェノール1モルに対してホルムアルデヒド1.6モル
を40重量%濃度の水酸化ナトリウムを触媒として80
〜90℃にて、縮合させレゾール型フ=ノール樹脂(以
下樹脂Aと略す)を得た。
Example 1 1.6 moles of formaldehyde per mole of phenol was mixed with 80% sodium hydroxide at a concentration of 40% by weight as a catalyst.
Condensation was performed at ~90°C to obtain a resol type phenolic resin (hereinafter abbreviated as resin A).

この樹脂の性質は表1に示した。The properties of this resin are shown in Table 1.

樹脂A100重量部に討してエトキシル化ひまし油2重
量部、1,1.2−)ジクロロ−1,,2,2−4リフ
ロロエ2フ10重量部をあらかじめ混合し、これに60
 重t%濃晩のp−フェノールスルホン酸と60重量係
濃度の硫酸とを重竜比5:5で混合した酸性硬化剤を1
0重量部加え、高速攪拌機で混合し、あらかじめ70°
Cに加温した30X30×10憚の密閉型の金型中に注
入し、7O0Cの硬化炉中で発泡硬化させた。20分後
に脱型し得られたフェノールフオーム成形品の性能を測
定し、表2に示した。
To 100 parts by weight of resin A, 2 parts by weight of ethoxylated castor oil and 10 parts by weight of 1,1,2-)dichloro-1,,2,2-4 refluoroe 2F were mixed in advance, and to this was added 60 parts by weight of resin A.
An acidic curing agent prepared by mixing p-phenolsulfonic acid at a concentration of 60% by weight and sulfuric acid at a concentration of 60% by weight at a ratio of 5:5.
Add 0 parts by weight, mix with a high-speed stirrer, and preheat to 70°.
The mixture was poured into a closed mold of 30×30×10 mm heated to 70°C, and foamed and hardened in a 700°C curing furnace. The performance of the phenol foam molded product obtained by demolding after 20 minutes was measured and shown in Table 2.

比較例 1 フェノール1モルに対してホルムアルデヒド1.2モル
を用い実施例1と同じ条件でレゾール型フーノール樹脂
(以下樹脂Bと略す)を得た。この樹脂の性質は−81
に示した。
Comparative Example 1 A resol type Funol resin (hereinafter abbreviated as Resin B) was obtained under the same conditions as in Example 1 using 1.2 mol of formaldehyde per 1 mol of phenol. The properties of this resin are -81
It was shown to.

樹脂Aを樹脂Bに変えた以外は実施列1と同じ・処方及
び方法によりフェノールフオーム成形品を得た。この成
形品の性能を表2に示したつ比較例 2 比較例1で得られた樹脂Bを80〜90’Gで更に縮合
を進め粘度の高いレゾール型フーノール樹脂(樹脂Cと
略す)を得た。この樹脂の性質は表1に示した。
A phenol foam molded article was obtained using the same recipe and method as in Example 1, except that resin A was changed to resin B. The performance of this molded product is shown in Table 2. Comparative Example 2 Resin B obtained in Comparative Example 1 was further condensed at 80 to 90'G to obtain a resol type Hunor resin (abbreviated as Resin C) with high viscosity. . The properties of this resin are shown in Table 1.

樹脂Aを樹脂Cに変えた以外は実施例1と同じ処方及び
方法によりフェノールフオーム成形品を得たが、成形品
内部全体に縞状の未硬化部分が認められ、性能を評価す
るための試料が得られなかった。
A phenol foam molded product was obtained using the same recipe and method as in Example 1, except that Resin A was changed to Resin C. However, striped uncured parts were observed throughout the interior of the molded product, and it was not a sample for evaluating performance. was not obtained.

実施例2〜4及び比較例3並びに4 樹脂A100重量部に対し、エトキシル化ひまし油2重
量部、1,1.2)ジクロロ−1,2,2−1−リフロ
ロエ2フ13重量部をあらかじめ混合し樹脂液とした。
Examples 2 to 4 and Comparative Examples 3 and 4 To 100 parts by weight of resin A, 2 parts by weight of ethoxylated castor oil and 13 parts by weight of 1,1.2) dichloro-1,2,2-1-lifluoroe 2F were mixed in advance. It was made into a resin liquid.

一方、60重世係・震度のp−フェノールスルホン酸と
60重量%濃度の硫酸とを重階比で10:0.7:3.
5:5 3ニア、0:10と比率を変えて混合し、酸性
硬化剤とした。上記樹脂液と酸性硬化剤との2液を樹脂
A、 100重量部に対して、酸性硬化剤10重量部に
なるよ5に発注(注入機(丸加化工機(東製、MEG−
MTNIIJ型)へ供給し、該発泡機にて混合された原
料液をあらかじめ表面材(配管側面材ガラスクロス、外
装側面材PETAL 100−25−N 日本バイリー
ン@)製)をセットし70°Cに加温しておいた半円筒
せ保冷材成形用金型(24インチ配管用保冷層160m
m)へ注入し、70’Cの硬化炉中で発泡硬化させた。
On the other hand, p-phenolsulfonic acid with a seismic intensity of 60% and sulfuric acid with a concentration of 60% by weight were mixed in a ratio of 10:0.7:3.
They were mixed at different ratios of 5:5 to 3near and 0:10 to obtain an acidic curing agent. We ordered the above two liquids, the resin liquid and the acidic curing agent, to 100 parts by weight of resin A and 10 parts by weight of the acidic curing agent.
The raw material liquid mixed in the foaming machine was supplied to the foaming machine (Model MTN IIJ), and the surface material (glass cloth for pipe side material, PETAL 100-25-N made by Nippon Vilene @) for exterior side material) was set in advance and heated to 70°C. Heated semi-cylindrical cold insulation mold (cold layer 160 m for 24 inch piping)
m) and foam-cured in a curing oven at 70'C.

得られた半円筒状成形品の諸性能は表3に示した。The various performances of the obtained semi-cylindrical molded product are shown in Table 3.

参考例 1〜5 60重量%濃度のp−ツーノールスルホン酸と60重量
q/2濃度の硫酸の混合比率5:5の酸性硬化剤を使用
し、樹脂液と酸性硬化剤の混合比を種々変更した以外は
実施例2〜4及び比較例3.4と同じ方法によりフェノ
ールフメームの半円筒状成形品を碍だ。樹脂液と酸性硬
化剤との混合比は樹脂Al00重量部に対qて酸性硬化
剤が6.8.10.15.18重量部になるように変え
て実施した。得られた成形品の諸性能を表4に示した、
工S 2) J林に−6838(接着剤の粘度測定方法)3)
 ASTM’D2856空気比較式比重計法4)JIS
A1412 平板比較法 5) A、STM r)696 6)翌日表面材のばくり発生 7)硬化が甘く表面がやわらかい。また若干発泡不足で
未充填個所があった 8)脱型時に成形品にクラックが発生した。
Reference Examples 1 to 5 Using an acidic curing agent with a mixing ratio of 5:5 of p-tunolsulfonic acid with a concentration of 60% by weight and sulfuric acid with a concentration of 60% by weight, the mixing ratio of the resin liquid and the acidic curing agent was varied. A semi-cylindrical molded product of phenolphimeme was prepared by the same method as in Examples 2 to 4 and Comparative Example 3.4 except for the following changes. The mixing ratio of the resin liquid and the acidic curing agent was changed so that the amount of the acidic curing agent was 6.8, 10, 15.18 parts by weight per 00 parts by weight of the resin Al. The various performances of the obtained molded product are shown in Table 4.
Engineering S 2) J Hayashi-6838 (Adhesive viscosity measurement method) 3)
ASTM'D2856 Air Comparison Hydrometer Method 4) JIS
A1412 Flat plate comparison method 5) A, STM r) 696 6) Surface material peels off the next day 7) Curing is slow and the surface is soft. There were also some unfilled areas due to insufficient foaming 8) Cracks occurred in the molded product during demolding.

特許出願人 三井東圧化学味式会社Patent applicant: Mitsui Toatsu Kagaku Taste Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 反応性が樹脂の硬化する際の発熱量として100°C以
下であり、かつ25℃における粘度が5oポイズ以下で
あるレゾール型フェノール樹脂と、p−フェノールスル
ホン酸と硫酸とを7:3〜3ニアの重量比率で混合した
酸性硬化剤とを用いることを特徴とするレゾール型フェ
ノール樹脂発泡体の製造方法。
A resol type phenolic resin whose reactivity is 100°C or less as a calorific value when the resin is cured and whose viscosity at 25°C is 5o poise or less, p-phenolsulfonic acid and sulfuric acid in a ratio of 7:3 to 3 to 3. A method for producing a resol-type phenolic resin foam, characterized by using an acidic curing agent mixed at a weight ratio of 1.
JP23877683A 1983-12-20 1983-12-20 Production of resol phenolic resin foam Pending JPS60130628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23877683A JPS60130628A (en) 1983-12-20 1983-12-20 Production of resol phenolic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23877683A JPS60130628A (en) 1983-12-20 1983-12-20 Production of resol phenolic resin foam

Publications (1)

Publication Number Publication Date
JPS60130628A true JPS60130628A (en) 1985-07-12

Family

ID=17035102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23877683A Pending JPS60130628A (en) 1983-12-20 1983-12-20 Production of resol phenolic resin foam

Country Status (1)

Country Link
JP (1) JPS60130628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662833A (en) * 1994-07-01 1997-09-02 Neste Oy Electrically conducting thermoset polymer compositions with hydroxy containing protonic acid dopant
JP2017020049A (en) * 2015-03-24 2017-01-26 積水化学工業株式会社 Phenol resin foam
CN106749944A (en) * 2016-12-22 2017-05-31 沈阳化工大学 A kind of phenolic foam resin of N trihydroxy methyls Methacrylamide etherificate and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662833A (en) * 1994-07-01 1997-09-02 Neste Oy Electrically conducting thermoset polymer compositions with hydroxy containing protonic acid dopant
JP2017020049A (en) * 2015-03-24 2017-01-26 積水化学工業株式会社 Phenol resin foam
CN106749944A (en) * 2016-12-22 2017-05-31 沈阳化工大学 A kind of phenolic foam resin of N trihydroxy methyls Methacrylamide etherificate and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2315810C (en) Fiber glass binder compositions and process therefor
US3389094A (en) Foaming phenol-formaldehyde resins with fluorocarbons
JP4756683B2 (en) Foamable resol-type phenolic resin molding material and phenolic resin foam
US4311541A (en) Panel and method for the preparation thereof
US4233361A (en) Panel and method for the preparation thereof
JPS5829814B2 (en) A composition comprising a phenolic polymer containing an alkyl group and a phenol, and a method for producing the same
KR102605769B1 (en) Semi-noncombustible phenolic-resin composition and semi-noncombustible material obtained therefrom
KR101403258B1 (en) Phenol resin foam
JP4889084B2 (en) Phenolic resin foam and method for producing the same
JPH03190938A (en) Improved closed-cell phenolic foam containing alkyl glucoside
US3968300A (en) Phenolic polymer, related products and processes thereof
US4001148A (en) Process for the production of flame-resistant phenolic resin foam plastics
US3953645A (en) Phenolic polymer, related products and processes thereof
JPS60130628A (en) Production of resol phenolic resin foam
US6013689A (en) Method for making a closed-cell phenolic resin foam, foamable composition, and closed-cell phenolic resin foam
US4036793A (en) Phenolic polymer, related products and processes thereof
EP0066968B1 (en) Partially cured phenolic resin foams
US4883824A (en) Modified phenolic foam catalysts and method
JPS6310642A (en) Modified catalyst for phenol resin foam
JPS6071647A (en) Manufacture of phenolic resin foam
JPS59124940A (en) Phenolic resin foam
US4945077A (en) Modified phenolic foam catalysts and method
JP3555012B2 (en) Phenolic resin foamable composition and method for producing foam using the composition
JP2514879B2 (en) Fireproof phenolic resin foamable composition and method for producing foam
JPS6289740A (en) Phenolic resin composition and flame-resistive phenolic resin foam made therefrom