JP3555012B2 - Phenolic resin foamable composition and method for producing foam using the composition - Google Patents

Phenolic resin foamable composition and method for producing foam using the composition Download PDF

Info

Publication number
JP3555012B2
JP3555012B2 JP37772798A JP37772798A JP3555012B2 JP 3555012 B2 JP3555012 B2 JP 3555012B2 JP 37772798 A JP37772798 A JP 37772798A JP 37772798 A JP37772798 A JP 37772798A JP 3555012 B2 JP3555012 B2 JP 3555012B2
Authority
JP
Japan
Prior art keywords
phenolic resin
cresol
meta
foam
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37772798A
Other languages
Japanese (ja)
Other versions
JP2000169616A (en
Inventor
正人 仲宗根
秀雄 佐藤
行正 長谷
昌巳 尾藤
Original Assignee
株式会社ホーネンコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ホーネンコーポレーション filed Critical 株式会社ホーネンコーポレーション
Priority to JP37772798A priority Critical patent/JP3555012B2/en
Publication of JP2000169616A publication Critical patent/JP2000169616A/en
Application granted granted Critical
Publication of JP3555012B2 publication Critical patent/JP3555012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、断熱材として建築その他各種産業分野に用いられるフェノール系樹脂発泡体の製造に適したフェノール系樹脂発泡性組成物に関するもので、より詳しくは、金属パネル、金属サイディングなど、表面及び裏面に鉄、ステンレス、アルミ、亜鉛などの金属板材を面材として使用した発泡体パネル、またはこれら金属板を補強材として使用したフェノール系樹脂発泡体を製造する場合に、生産性を低下させることなく、耐吸水性、耐脆性、機械的強度、各種面材との接着性などに優れたフェノール系樹脂発泡体を製造し得る組成物及び発泡体の製造方法に関する。
【0002】
【従来の技術】
フェノール系樹脂発泡体は、数多くの有機樹脂発泡体の中でも、特に耐熱性、低発煙性、寸法安定性、耐溶剤性、加工性に優れているため、耐火、防火軽量断熱材として、建築分野では、間仕切りパネル、クリーンルーム用パネルなどの内壁材、金属サイディングなどの外壁材、天井材、屋根下地材、床下断熱材、防火扉などに使用され、プラント分野では、メタン、プロパン、ブタンなどの貯蔵タンク、重油タンク、パイプ配管などの保冷保温用、冷凍冷蔵倉庫などの保冷材などに代表的な用途として使用されている。
【0003】
しかしながら、フェノール系樹脂発泡体製造時に硬化剤として使用する、パラトルエンスルホン酸、ベンゼンスルホン酸、硫酸などの強酸が、遊離の酸としてフェノール系樹脂発泡体に残存し、この残存する遊離酸と接触する鉄板やアルミ板などの金属を腐食させたり、フェノール系樹脂発泡体を形成しているセル膜がウレタンフォーム、ポリスチレンフォームなどに比較して脆くなり、そのため高吸水性になりやすく機械的強度などが低下する欠点がある。
【0004】
これらの問題点を解決するためにフェノール樹脂、酸性硬化剤、発泡剤及び整泡剤からなるフェノール系樹脂発泡性組成物に、中和剤として、酸化亜鉛、酸化アルミニウムなどの金属酸化物や亜鉛、アルミニウム、マグネシウムなどの金属粉末を配合する方法が試みられている。また、特公平3−29254号公報には酸性硬化剤として、ナフタレンスルホン酸ホルムアルデヒド縮合物をレゾール型フェノール系樹脂に混合するなどの方法が記載されている。しかし、酸化亜鉛や酸化アルミニウムなどの金属酸化物や亜鉛、アルミニウム、マグネシウムなどの金属粉末を配合する方法では、前記、金属酸化物や金属粉末などがフェノール樹脂と均一に混合することが難しいため、沈殿、凝集などを起こしやすく、フェノール系樹脂の粘度を増粘させたり、発泡注入機の配管を詰まらせたりする可能性がある。また発泡工程以前に酸性硬化剤と反応するため、フォームを形成するセルの不均一、吸水性、熱伝導率、強度などの物性低下をきたすため、品質の不安定なフェノール系樹脂発泡体しか得られない。また、金属粉末においてはレゾール型フェノール樹脂中に溶解することなく分散しているため、中和剤周辺部のみしか中和されず、フェノール系樹脂発泡体に残留する遊離酸を十分に中和し難い。そのため、耐腐食性を解決するのには不十分である。
【0005】
特公平3−29254号公報の、レゾール型フェノール系樹脂、発泡剤、整泡剤及び酸性硬化剤を混合してフェノール系樹脂発泡体を製造するにあたり、酸性硬化剤としてナフタレンスルホン酸ホルムアルデヒド縮合物を使用する方法は、耐吸水性を向上させる効果はあるが、経日的に粘度が上昇しやすく高粘度になることから、レゾール型フェノール樹脂との混合が不均一になり、フォームが均一に硬化されない。そのため部分的に硬化阻害を起こし、フォームを形成するセル膜が破壊されて経日的に吸水性の悪化をもたらしたり、機械的強度が低下する。また鉄、ステンレス、アルミ、亜鉛などの金属板材、無機質板などの各種面材との接着を阻害しやすく、常に品質の安定したフェノール系樹脂発泡体を製造しにくい問題がある。従って、金属粉末のような中和剤や経日的に粘度変化の大きい硬化剤などを用いることなく、生産性を低下させずに、経日的に安定した耐吸水性、耐脆性、強度、接着性を有し、かつ、金属に対して腐食のないフェノール系樹脂発泡体の開発が強く求められていた。
【0006】
【発明が解決しようとする課題】
本発明は、フェノール系樹脂発泡体製造における斯かる問題点に鑑み、金属粉末などの中和剤や高粘度で経日的な安定性に欠ける酸性硬化剤、更には、オゾン層破壊や地球温暖化を助長するフッ素系ハロゲン化炭化水素や変異原生物質に指定され発癌性が懸念される塩化メチレン等のハロゲン化炭化水素類を用いることなく、吸水性、脆性、強度及び低接着性などを大幅に改良したフェノール系樹脂発泡体を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは上記目的を達成するため鋭意検討を重ねた結果、フェノール系樹脂発泡体の主成分としてメタクレゾールを特定量共縮合させた特定反応モル比のフェノール系樹脂を用い、当該樹脂の数平均分子量、水分率、粘度などの使用範囲をさらに限定し、発泡剤として、特定沸点の非ハロゲン化炭化水素を配合することにより酸性硬化剤量を低減しても、生産性を低下させることなく短時間で発泡硬化させることができ、なおかつ鉄、ステンレス、アルミ、亜鉛等の金属板材、無機質板、紙などの各種面材との接着性にも優れ、低脆性で耐久性に優れたフェノール系樹脂発泡体が製造できることを見出し、本発明を完成した。
【0008】
即ち、本発明は、ホルムアルデヒドとフェノール及びメタクレゾールとの共縮合物から成り、ホルムアルデヒドに対するフェノールとメタクレゾールとの合計モル比が1:1.30〜1:2.50、メタクレゾールとフェノールのモル比率が1:1.5〜1:8.0、135℃のゲル化時間が180〜420秒であるフェノール系樹脂100重量部に対して、標準大気圧下における沸点が50〜120℃の非ハロゲン化炭化水素を2〜30重量部含有することを特徴とするメタクレゾール変性フェノール系樹脂発泡性組成物である。
更に本発明は、上記メタクレゾール変性フェノール系樹脂発泡性組成物を30〜50℃の範囲に加温し混合吐出させ、吐出後に加熱、発泡硬化させることを特徴とするフェノール系樹脂発泡体の製造方法に関するものである。
【0009】
本発明におけるフェノール系樹脂としては、ホルムアルデヒドとフェノール及びメタクレゾールとの共縮合物から成り、メタクレゾールとフェノールのモル比率が1:1.5〜1:8.0、好ましくは1:2.0〜1:7.0の割合で混合して得られる、メタクレゾール変性フェノール樹脂が用いられ、特に、数平均分子量が200〜400、好ましくは250〜350、水分率が5.0〜10.0%好ましくは6.0〜9.0%、40℃における粘度が3,000〜100,000mPa・s、好ましくは5,000〜80,000mPa・s、135℃のゲル化時間が180〜420秒、好ましくは210〜360秒のレゾール型フェノール樹脂を使用することが望ましい。
【0010】
発明の作用機構(効果を発揮するメカニズム)
本発明における発泡性樹脂組成物が優れた効果を発揮する理由は下記のごとく推測される。
即ち、メタクレゾールはフェノールに比べ、メタ位置がメチル基で置換されているため、オルト及びパラ位の電子密度が高くなり活性化されて、オルト及びパラ位におけるホルムアルデヒドとの架橋重合反応が促進され速硬化になっていること、また、発泡性樹脂組成物に高沸点発泡剤を用いて、吐出時の組成物温度を高くすることにより、少ない酸性硬化剤量でメタクレゾール変性フェノール樹脂との架橋密度を高めていることなどが、生産性や各種面材との接着性を低下することなく、発泡体中に残存する遊離酸を少なくし、かつセルの劣化や破壊を防止して耐吸水性、耐脆性、強度、耐腐食性などの性能を向上せしめるものと推測される。
【0011】
酸性硬化剤として、フェノールスルホン酸とo−クレゾール−4−スルホン酸の混合物を使用すると、フェノールスルホン酸はフェノール系樹脂の架橋密度を高め、得られる発泡体の機械的強度、寸法安定性などを向上させ、o−クレゾール−4−スルホン酸は、発泡体内部の急激な温度上昇を緩和させ、セルの劣化や破壊を防止する作用があると同時に、発泡体に可撓性を与え、耐脆性を向上させ且つ耐吸水性を改善する効果がある。
【0012】
フェノールスルホン酸とo−クレゾール−4−スルホン酸の混合比率は、重量比で9:1〜1:9、好ましくは8:2〜2:8である。
フェノールスルホン酸の混合比率が9より多いと、発泡硬化速度が速くなり過ぎて、不均一な硬化、ボイドの発生、セルの荒れや破壊を起こしやすく、良好な外観を有する発泡体が得られず、耐脆性が悪化して耐吸水性、機械的強度などが大幅に低下する。
o−クレゾール−4−スルホン酸の混合比率が9より多いと、速い生産速度に追随し得るための発泡速度と硬化速度のバランスが調整できず、硬化不足、収縮などを起こし、脆弱なセルしかえられない。そのため、各種面材との接着性、寸法安定性、耐吸水性、耐脆性、機械的強度が低下する。
【0013】
【発明の実施の形態】
本発明のフェノール系樹脂発泡体は、メタクレゾール変性フェノール系樹脂に発泡剤、整泡剤、難燃剤及び減粘剤、充填材、ホルムアルデヒド捕捉剤などからなる発泡樹脂組成物に酸性硬化剤を配合して製造する。
メタクレゾール変性フェノール系樹脂は、ホルムアルデヒドとフェノール及びメタクレゾールとの共縮合物から成り、かつメタクレゾールとフェノールをモル比率で1:1.5〜1:8.0、好ましくは1:2.0〜1:7.0の割合で混合した混合フェノール1モルに対し、ホルムアルデヒド1.3〜2.5モルをアルカリ金属の酸化物、又は水酸化物、アミン類、アンモニア等のアルカリ性触媒の単独又は混合物の存在下に、20〜150℃、好ましくは40〜135℃で30分〜6時間反応させた後、必要に応じて該触媒を硫酸、乳酸、蟻酸、パラトルエンスルホン酸等の無機酸、有機酸類などで中和し、減圧下で脱水濃縮して得られる40℃の粘度が3,000〜100,000mPa・s、好ましくは5,000〜80,000mPa・s、数平均分子量が200〜400、好ましくは250〜350、水分率が5.0〜10.0%、好ましくは6.0〜9.0%のものが好適である。
【0014】
本発明におけるメタクレゾールは純品でも良いが、経済的にはメタクレゾール60〜65%、パラクレゾール30〜35%、オルソクレゾール0.1〜0.5%、2,6−キシレノール2.0〜3.0%、オルソエチルフェノール0.1〜0.5%、2,4/2,5−キシレノール2.5〜4.5%を含有するメタクレゾール酸を使用することが好ましい。また、ホルムアルデヒドとしては、ホルマリンあるいはパラホルムアルデヒドのいずれも使用でき、これらの一部をアセトアルデヒド、グリオキザール等のアルデヒド類で置換しても良い。メタクレゾール変性フェノール系樹脂と発泡剤、整泡剤、難燃剤及び減粘剤、充填材、着色剤、ホルムアルデヒド捕捉剤などを混合して得られる発泡性樹脂組成物の40℃における粘度は1,000〜10,000mPa・s、好ましくは2,000〜8,000mPa・sである。また、亜鉛、鉛、マグネシウム、カルシウムなどの二価金属の酸化物、水酸化物又は酢酸塩を触媒として製造されるベンジリックエーテル型フェノール樹脂との混合樹脂も使用できる。
【0015】
本発明で使用される発泡剤としては、標準大気圧下における沸点が50〜120℃の非ハロゲン化炭化水素であり、シクロヘキサン(沸点80.7℃)、イソヘキサン(沸点86.1℃)、シクロヘキセン(沸点83.3℃)、n−ヘキサン(沸点69℃)、2,2−ジメチルブタン(沸点62℃)、2,3−ジメチルブタン(沸点62℃)、2−メチルペンタン(沸点62℃)、3−メチルペンタン(沸点62℃)、n−ヘプタン(沸点98.4℃),酢酸エチル(沸点77.1℃)等の脂肪族炭化水素類が例示でき、更に必要に応じて用いられる炭化水素誘導体としては特に限定されるものではないが、メチルエチルケトン(沸点79.6℃)等のケトン類、ジオキソラン(沸点101.3℃)等の環状エーテル化合物類等も使用することができる。
更に酸を作用させることで炭酸ガスや窒素等の気体を発生させるような重曹、炭酸カルシウム、炭酸バリウム、炭酸水素ナトリウム、炭酸ナトリウム、アゾジカルボンアミド、アゾビスイソブチロニトリル、パラトルエンスルホニルヒドラジッド等の化学的反応発泡剤の単独又は混合物等が好ましく、これら以外に液化炭酸ガス、空気、窒素、ブタン、アルゴン等の気体もこれらと混合して使用できる。その配合量は、メタクレゾール変性フェノール系樹脂100重量部に対して2〜30重量部で、好ましくは5〜25重量部である。

【0016】
本発明で使用される整泡剤としては、特に限定するものではなく、従来から使用されている非イオン系界面活性剤、例えばポリオキシエチレンラウリルエーテル、ポオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレートなどに代表されるソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノオレエレートなどに代表されるポリオキシエチレンソルビタン脂肪酸エステル類、ポリオキシエチレンジメチルシリコン、ひまし油エチレンオキサイド及びプロピレンオキサイド付加物、エチレンオキサイド−プロピレンオキサイドブロック共重合体、ジメチルポリシロキサン−ポリオキシアルキレン共重合体、エトキシ化ひまし油、エポキシ化大豆油エトキシ化物、シリコーン系界面活性剤等の単独又は混合物が好ましく、その配合量は、メタクレゾール変性フェノール系樹脂100重量部に対して0.2〜8.0重量部で、好ましくは0.5〜6.0重量部である。
【0017】
本発明で使用される酸性硬化剤は、特に限定するものではなく、従来から使用されているフェノールスルホン酸、トルエンスルホン酸、キシレンスルホン酸、ベンゼンスルホン酸、レゾルシンスルホン酸、メタキシレンスルホン酸、エチルベンゼンスルホン酸、ナフタレンスルホン酸、ナフトールスルホン酸、アントラセンスルホン酸、メタクレゾールスルホン酸、o−クレゾール−4−スルホン酸等の有機スルホン酸類及びこれらとホルマリンとの縮合物の他、γ−ブチロラクトン、トリエチレングリコールジアセテート、トリアセチン、ギ酸メチル等のカルボン酸エステル類、エチレンカーボネート、プロピレンカーボネート等の環状アルキレンカーボネート類、正リン酸、ポリリン酸、トリポリリン酸、メタリン酸、シュウ酸、塩酸等の無機酸類などを挙げることができ、これらは単独又は混合物として使用できる。その中で、フェノールスルホン酸とo−クレゾール−4−スルホン酸の混合物が特に好ましい。酸性硬化剤の配合量は、メタクレゾール変性フェノール系樹脂100重量部に対して3〜25重量部で、好ましくは5〜20重量部である。
【0018】
本発明に使用する難燃剤としては、特に限定するものではなく、従来から使用されているデカブロモジフェニルエーテル、ペンタブロモトルエン、ペンタブロモジフェニルエーテルなどの添加型臭素系難燃剤、テトラブロモ無水フタル酸、ジブロモフェノール、トリブロモフェノールのグリシジルエーテル等の反応型臭素系難燃剤、トリエチルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリフェニルホスフェート、トリブチルホスフェート、キシレルジフェニルホスフェート等のリン酸エステル類、トリス−(クロロエチル)ホスフェート、トリス−(β−クロロプロピル)ホスフェート、トリス−(ジブロモプロピル)ホスフェート、トリス−(2,3−ジブロモクロロプロピル)ホスフェートなどの含ハロゲンリン酸エステル類及び含ハロゲン縮合リン酸エステル類、トリフェニルホスファイトなどの亜リン酸エステル類、リン酸、ポリリン酸、トリポリリン酸、メタリン酸等の無機酸類、ホウ素化合物、水酸化アルミニウム、尿素、メラミン、ベンゾグアナミン等の単独又は混合物が好ましく、その使用量はメタクレゾール変性フェノール系樹脂100重量部に対して3〜30重量部、好ましくは5〜25重量部である。
【0019】
また、これら以外にフェノール系樹脂発泡体を製造するに際しては、各種の添加物を加えて発泡体の性能を改質することができる。例えば、フェノール繊維、炭素繊維、アラミド繊維、ガラス繊維、ロックウール繊維などに代表される繊維類による機械的強度や寸法精度の改善、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等の低分子ポリエチレン及びポリプロピレングリコール類、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル類などの脂肪族グリシジルエーテル化合物類、芳香族多価アルコールのジ又はトリグリシジルエーテル化合物類、ポリビニルアルコール、カルボキシメチルセルロース、メチルセルロース、スターチ類等の合成及び天然高分子、アクリル系エマルジョン類等による脆性の改質、アセトン、テトラヒドロフラン、1,3−ジオキソラン等による粘度の減粘、硝酸アンモニウム、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニム、炭酸アンモニウム、酢酸アンモニウム等のアンモニウム塩類、分子内にアミノ基、アミド基、イミノ基を有する尿素、尿素樹脂、メラミン、メラミン樹脂、チオ尿素、ジシアンジアミド、ベンゾグアナミン、亜硫酸ナトリウム、亜硫酸水素ナトリウム、亜硫酸アンモニウム、亜硫酸水素アンモニウム等の亜硫酸塩類、重亜硫酸塩類等のホルムアルデヒド捕捉剤、その他タルク、マイカ、ワラストナイト、カオリン、シリカ等の無機質充填剤、染料、顔料等の着色剤、紫外線吸収剤などと併用して用いることができる。その使用量はメタクレゾール変性フェノール系樹脂100重量部に対して0.1〜50重量部、好ましくは0.2〜40重量部である。
【0020】
次に、本発明において、フェノール系樹脂発泡体を製造する方法としては、前記の組成成分のメタクレゾール変性フェノール系樹脂に発泡剤、整泡剤、難燃剤、充填材及びその他の添加剤などを混合した発泡性樹脂組成物と酸性硬化剤を30〜50℃に加温、温調した後に、バッチ式による高速攪拌による方法、連続的な混合方式による方法など、従来公知の方法が利用できる。これらの各操作によって得られる混合物は、エンドレスコンベア上に流出させる成形方法、スポット的に流出させて部分的に発泡させる方法、ある大きさの空洞中に投入して発泡ブロックを作る方法、空洞中に圧入しながら充填発泡させる方法などに用いられる。これらの方法による発泡、硬化温度は60〜100℃、硬化時間は1〜15分の条件であり、得られたフェノール系樹脂発泡体は、生産性が低下することなく、機械的強度の高い、耐吸水性、耐脆性に優れた高品質の発泡体を形成するものであるから、主な用途としては、例えば鉄、ステンレス、アルミ、亜鉛等の金属板材、石膏ボード、ロックウールボードなどの無機質板、クラフト紙、アスベスト紙、合板等とを複合化して床下材、天井材、屋根下地材、外壁材、内壁材、防火扉などの建材用及びメタン、プロパン、ブタンなどの貯蔵タンクなどのプラント分野、重油タンク、パイプ配管などの保冷保温用、冷凍冷蔵倉庫などの保冷材などに幅広く応用される。
【0021】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0022】
実施例1
フェノール940kg、37%ホルマリン1,216kg(モル比2.40)を還流管、攪拌機付反応器中に仕込み、攪拌しながら、次いで25%苛性ソーダ46.5kgを投入して、常温から90℃になるまで約60分で上昇させ、同温度で60分間反応を継続させた後、M−クレゾール酸(住金ケミカル(株)製、フェノール:メタクレゾールのモル比率=3:1,モル比1.50)360kgを添加し、80℃まで冷却した。次いで、同温度で30分間反応を継続させ、75℃に冷却した。更に同温度で40分間反応を継続した時点で冷却を行い、蓚酸を加えてpH5.0に調整し、60mmHg減圧下で濃縮を行い、不揮発分81.8%、40℃における粘度15,000mPa・s、水分率8.5%、数平均分子量280、135℃ゲル化時間305秒のメタクレゾール変性フェノール樹脂を得た。
得られたメタクレゾール変性フェノール樹脂100重量部、整泡剤としてレジノールF−140(第一工業製薬(株)製)1.5重量部、発泡剤としてシクロヘキサン(試薬特級)8重量部、難燃剤としてトリクレジルホスフェート(大八化学工業(株)製)10重量部、減粘剤として1,3−ジオキソラン(東邦化学工業(株)製)3重量部を投入し、回転数3,000rpmのホモディスパーにて30秒間攪拌し、液温度40℃の発泡性樹脂組成物を調整した。次いで、63%フェノールスルホン酸水溶液(第一工業製薬(株)製)の液温度を40℃に調整した後、発泡性樹脂組成物100重量部に対して8重量部加え、該ホモディスパーにて20秒間攪拌し、直ちに上下面材をクラフト紙とし、80℃に加熱した300×300×25mmの金型に該原液を注入し、3分間80℃熱風循環乾燥器内に保持し、その後金型から脱型して、発泡硬化速度がクリームタイム22秒、ゲルタイム38秒のフェノール系樹脂発泡体を得た。
【0023】
この発泡体を常温で7日間放置後、密度、吸水量、圧縮強度、脆性及び面材との接着性をそれぞれJISK−7722、JISA−9411、JISK−7220、ASTMC−421により測定し、また、面材との接着性は、25×150mmの面材付き発泡体を切り出し、発泡体の長さ方向の表面材端部に5mmの穴を開けそこにバネばかりを掛けて引き上げ、表面材が発泡体から剥がれた時のバネばかりの指示値を該結合力(面材接着性:g/25mm)として表した。
得られたフェノール系発泡体は密度39.5kg/m 、吸水量1.8g/100cm 、脆性率11.8%、面材との接着性290g、圧縮強度1.7kg/cm で、30日経過後の吸水量は10.5g/100cm で、吸水量の変化が少なく、金属への腐食が認められない、非常に優れたフェノール系樹脂発泡体であった。その結果は第1表に示す通りであった。
【0024】
実施例2
ホルムアルデヒドに対するフェノールとメタクレゾールの合計モル比が1.50、フェノール対メタクレゾールのモル比率が5対1になるように配合調整し、実施例1と同様に反応操作を行い、不揮発分81.3%、40℃における粘度20,500mPa・s、水分率7.8%、数平均分子量320、135℃ゲル化時間276秒のメタクレゾール変性フェノール樹脂を得た。この変性フェノール樹脂を用いて実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム20秒、ゲルタイム45秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行い、その結果は第1表に示す通りであった。
【0025】
実施例3
実施例2で得たメタクレゾール変性フェノール樹脂100重量部に発泡剤としてシクロヘキサンを15重量部添加した以外は実施例1と同様の配合と発泡操作を行い、発泡硬化速度がクリームタイム27秒、ゲルタイム54秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行い、その結果は第1表に示す通りであった。
【0026】
実施例4
実施例2で得たメタクレゾール変性フェノール樹脂を使用し、酸性硬化剤である63%フェノールスルホン酸水溶液を4重量部添加した以外は実施例1と同様の配合と発泡操作を行い、発泡硬化速度がクリームタイム25秒、ゲルタイム54秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行い、その結果は第1表に示す通りであった。
【0027】
実施例5
ホルムアルデヒドに対するフェノールとメタクレゾールの合計モル比が1.50、フェノール対メタクレゾールのモル比率が7対1になるよう配合調整し、実施例1と同様に反応操作を行い、不揮発分82.7%、40℃における粘度55,000mPa・s、水分率6.3%、数平均分子量250、135℃ゲル化時間260秒のメタクレゾール変性フェノール樹脂を得た。この変性フェノール樹脂を用いて実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム17秒、ゲルタイム30秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行い、その結果は第1表に示す通りであった。
【0028】
実施例6
ホルムアルデヒドに対するフェノールとメタクレゾールの合計モル比が1.90、フェノール対メタクレゾールのモル比率が5対1になるよう配合調整し、実施例1と同様に反応操作を行い、不揮発分80.5%、40℃における粘度12,000mPa・s、水分率8.9%、数平均分子量310、135℃ゲル化時間315秒のメタクレゾール変性フェノール樹脂を得た。実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム24秒、ゲルタイム52秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行い、その結果は第2表に示す通りであった。
【0029】
実施例7
ホルムアルデヒドに対するフェノールとメタクレゾールの合計モル比が2.20、フェノール対メタクレゾールのモル比率が5対1になるよう配合調整し、80℃における反応時間を90分間行った以外は実施例1と同様な反応操作を行い、不揮発分80.7%、40℃における粘度20,000mPa・s、水分率8.2%、数平均分子量290、135℃ゲル化時間291秒のメタクレゾール変性フェノール樹脂を得た。実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム25秒、ゲルタイム48秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行い、その結果は第2表に示す通りであった。
【0030】
比較例1
ホルムアルデヒドに対するフェノールとメタクレゾールの合計モル比が1.20、フェノール対メタクレゾールのモル比率が5対1になるよう配合調整し、実施例1と同様に反応操作を行い、不揮発分80.3%、40℃における粘度11,500mPa・s、水分率8.2%、数平均分子量290、135℃ゲル化時間254秒のメタクレゾール変性フェノール樹脂を得た。実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム16秒、ゲルタイム68秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行った結果、発泡体のセルが脆く、吸水量の高い、圧縮強度の低いものであった。その結果は第3表に示す通りであった。
【0031】
比較例2
メタクレゾール1,080kg、37%ホルマリン1,216kg(モル比1.50)を還流管、攪拌機付反応器中に仕込み、攪拌しながら、次いで25%苛性ソーダ46.5kgを投入して、常温から90℃になるまで約60分で上昇させ、同温度で60分間反応を継続させた後、80℃まで冷却した。次いで、実施例1と同様の反応操作を行い、不揮発分82.5%、40℃における粘度62,000mPa・s、水分率6.2%、数平均分子量280、135℃ゲル化時間165秒のメタクレゾール変性フェノール樹脂を得た。実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム6秒、ゲルタイム25秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行った結果、セルが粗くなり脆性率が高く、圧縮強度の低い、30日経過後の吸水量が高いものであった。その他の結果は第3表に示す通りであった。
【0032】
比較例3
フェノール940kg、37%ホルマリン1,216kg(モル比1.50)を還流管、攪拌機付反応器中に仕込み、攪拌しながら、次いで25%苛性ソーダ46.5kgを投入して、常温から90℃になるまで約60分で上昇させ、同温度で60分間反応を継続させた後、80℃まで冷却し、次いで、実施例1と同様の反応操作を行い、不揮発分80.3%、40℃における粘度9,200mPa・s、水分率8.7%、数平均分子量250、135℃ゲル化時間320秒のレゾール型フェノール樹脂を得た。実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム25秒、ゲルタイム52秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行った結果、収縮が認められ、圧縮強度が低く、30日経過後の吸水量が高いものであった。その他の結果は第3表に示す通りであった。
【0033】
比較例4
実施例2で配合した発泡剤シクロヘキサンを35重量部、減粘剤1,3−ジオキソランを6重量部に変えた以外は、実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム45秒、ゲルタイム91秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行った結果、その他の結果は第3表に示す通りであった。
【0034】
比較例5
実施例2で配合した発泡剤シクロヘキサン8重量部を2重量部に変えた以外は、実施例1と同様の発泡操作を行ったが、十分に発泡せず、発泡体表面にガス抜け孔の多く点在するフェノール系樹脂発泡体しか得られなかった。第3表参照。
【0035】
比較例6
実施例2で配合した発泡剤シクロヘキサンをジクロロフルオロエタン(旭硝子(株)製 HCFC141b)に変えて、実施例1と同様の発泡操作を試みたが、発泡樹脂組成物の液温度を調整中に発泡剤の殆どが気化し、フェノール系樹脂発泡体を得ることが困難であった。
【0036】
比較例7
実施例2で得た発泡樹脂組成物及び酸性硬化剤の液温度を30℃とし、酸性硬化剤の添加量を30重量部に変えた以外は、実施例1と同様の発泡操作を行なったが、十分に発泡せず、発泡体表面にガス抜け孔の多く点在するフェノール系樹脂発泡体であった。
【0037】
比較例8
実施例2で得た発泡樹脂組成物及び酸性硬化剤の液温度を60℃とし、酸性硬化剤の添加量を4重量部に変えた以外は、実施例1と同様の発泡操作を行なったが、上面材と発泡体表面との界面にガス抜け孔が多く認められ、かつ中心部にボイドのある、セルの破壊されたフェノール系樹脂発泡体であった。
比較例6〜8の結果を第4表に記載した。
【0038】
比較例9
実施例2で得た発泡樹脂組成物及び酸性硬化剤の液温度を40℃から20℃に変えた以外は、実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム65秒、ゲルタイム105秒で反応性の遅い、収縮のあるフェノール系樹脂発泡体であった。得られた発泡体は実施例1と同様にテストを行なった結果、圧縮強度の低い、面材との接着性が悪いものであった。その他の結果は第4表に示す通りであった。
【0039】
比較例10
ホルムアルデヒドに対するフェノールとメタクレゾールの合計モル比が3.00、フェノール対メタクレゾールのモル比率が5対1になるよう配合調整し、実施例1と同様に反応操作を行い、不揮発分80.5%、40℃における粘度19,500mPa・s、水分率8.7%、数平均分子量320、135℃ゲル化時間324秒のメタクレゾール変性フェノール樹脂を得た。実施例1と同様の発泡操作を行い、発泡硬化速度がクリームタイム27秒、ゲルタイム60秒のフェノール系樹脂発泡体を得た。得られた発泡体は実施例1と同様にテストを行った結果、発泡体のセルが脆く、吸水量の高い、圧縮強度の低いものであった。また、ホルマリン臭気の強いものであった。その結果は第4表に示す通りであった。
【0040】
【表1】

Figure 0003555012
【0041】
【表2】
Figure 0003555012
【0042】
【表3】
Figure 0003555012
【0043】
【表4】
Figure 0003555012
【0044】
第1表ないし第4表中の注記及び測定方法を以下にまとめて示す。
注):
1) ひまし油のエチレンオキサイド付加物:(第一工業製薬(株)製 F−140)
2) シクロヘキサン(試薬特級)
2)*ジクロロフルオロエタン(旭硝子(株)製 HCFC−141b)
3) 1,3−ジオキソラン(東邦化学工業(株)製)
4) トリクレジルホスフェート(大八化学工業(株)製 TCP)
5) 63%フェノールスルホン酸水溶液(第一工業製薬(株)製PS−63)
発泡体の測定方法
密度 (kg/m): JISK−7722により測定した。
脆性率(%): ASTM−C421により測定した。
圧縮強度(kg/cm):JISK−7220により測定した。
吸水量(g/100cm):JISA−9411により測定した。
面材との接着性 :25×150mmの面材付き発泡体を作成し、表面材端部に5mmの穴を開け、そこにバネばかりを掛け引き上げ、表面材が発泡体から剥がれた時のバネばかり指示値を該結合力として表した。
フォームpH (メーター):約3mm角に切ったフェノール系発泡体0.5gを蒸留水100mlに加え、スターラーで30分間攪拌した後にろ過し、ロ液を測定した。
耐腐食性: JIS−SKH鋼板Aを脱脂して、フェノール系発泡体とフェノール系発泡体との間に鋏み、21℃、68%相対湿度の室温で金属表面の経日的変化を目視で観察した。
【0045】
実施例8〜11
実施例2で製造したメタクレゾール変性フェノール樹脂を使用して、酸性硬化剤を変えて、発泡体を製造した。結果を第5表に示す。
【0046】
【表5】
Figure 0003555012
【0047】
注1:1)〜4)は前記に同じ。
2:5)硬化剤の種類
(1)65%フェノールスルホン酸水溶液と75%o−クレゾール−4−スルホン酸水溶液を1:1の比率で混合した。
(2)75%o−クレゾール−4−スルホン酸水溶液
(3)65%キシレンスルホン酸水溶液
(4)65%p−トルエンスルホン酸水溶液
3:発泡性樹脂組成物の配合調整及び発泡体の測定方法は第4表に準じて行なった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a phenolic resin foamable composition suitable for producing a phenolic resin foam used as a heat insulating material in construction and other various industrial fields, and more specifically, a metal panel, a metal siding, etc. When manufacturing foam panels using metal plate materials such as iron, stainless steel, aluminum, and zinc as face materials, or phenolic resin foams using these metal plates as reinforcing materials, without reducing productivity The present invention relates to a composition capable of producing a phenolic resin foam excellent in water absorption resistance, brittle resistance, mechanical strength, adhesion to various face materials, and the like, and a method for producing the foam.
[0002]
[Prior art]
Phenolic resin foam is excellent in heat resistance, low smoke emission, dimensional stability, solvent resistance and workability among many organic resin foams. Is used for partition panels, inner wall materials such as clean room panels, outer wall materials such as metal siding, ceiling materials, roof base materials, underfloor insulation materials, fire doors, etc.In the plant field, storage of methane, propane, butane, etc. It is used as a typical application for cold insulation and warming of tanks, heavy oil tanks, pipe pipes and the like, and as a cold insulator for freezer and refrigerated warehouses.
[0003]
However, strong acids such as paratoluenesulfonic acid, benzenesulfonic acid, and sulfuric acid used as a curing agent during the production of the phenolic resin foam remain in the phenolic resin foam as a free acid and come into contact with the remaining free acid. Corrosion of metals such as iron plate and aluminum plate, and cell membranes forming phenolic resin foam become brittle compared to urethane foam, polystyrene foam, etc., so they tend to have high water absorption and mechanical strength etc. However, there is a disadvantage in that
[0004]
In order to solve these problems, a phenolic resin foamable composition comprising a phenolic resin, an acidic curing agent, a foaming agent and a foam stabilizer, a metal oxide such as zinc oxide and aluminum oxide as a neutralizing agent and zinc. Attempts have been made to blend metal powders such as aluminum, magnesium and the like. Japanese Patent Publication No. 3-29254 describes a method of mixing a naphthalenesulfonic acid formaldehyde condensate with a resol-type phenolic resin as an acidic curing agent. However, in the method of mixing metal oxides such as zinc oxide and aluminum oxide and metal powders such as zinc, aluminum and magnesium, it is difficult to uniformly mix the metal oxides and metal powders with the phenol resin, Precipitation and aggregation are likely to occur, which may increase the viscosity of the phenolic resin or clog the piping of the foam injection machine. In addition, it reacts with the acidic curing agent before the foaming process, resulting in non-uniformity of cells forming the foam, deterioration of physical properties such as water absorption, thermal conductivity, and strength. I can't. In addition, since the metal powder is dispersed without being dissolved in the resole type phenol resin, only the peripheral portion of the neutralizing agent is neutralized, and the free acid remaining in the phenol resin foam is sufficiently neutralized. hard. Therefore, it is not enough to solve the corrosion resistance.
[0005]
In producing a phenolic resin foam by mixing a resol-type phenolic resin, a foaming agent, a foam stabilizer and an acidic curing agent disclosed in JP-B-3-29254, a naphthalenesulfonic acid formaldehyde condensate is used as an acidic curing agent. The method used has the effect of improving the water absorption resistance, but since the viscosity tends to increase over time and becomes high viscosity, the mixing with the resole type phenol resin becomes uneven and the foam cures uniformly. Not done. For this reason, curing is partially inhibited, and the cell membrane forming the foam is destroyed, resulting in deterioration of water absorption over time and a decrease in mechanical strength. Further, there is a problem that adhesion to various surface materials such as a metal plate material such as iron, stainless steel, aluminum, and zinc, and an inorganic plate is easily inhibited, and it is difficult to produce a phenolic resin foam having stable quality at all times. Therefore, without using a neutralizing agent such as a metal powder or a hardening agent having a large change in viscosity over time, without reducing productivity, water resistance, brittleness, strength, strength, There has been a strong demand for the development of a phenolic resin foam that has adhesive properties and does not corrode metals.
[0006]
[Problems to be solved by the invention]
In view of such problems in the production of phenolic resin foams, the present invention provides a neutralizing agent such as a metal powder, an acidic curing agent having high viscosity and lacking stability over time, and furthermore, destruction of the ozone layer and global warming. Water absorption, brittleness, strength and low adhesiveness are greatly reduced without the use of halogenated hydrocarbons such as methylene chloride, which are designated as fluorinated halogenated hydrocarbons and mutagenic substances, which promote carcinogenesis and are carcinogenic. Another object of the present invention is to provide an improved phenolic resin foam.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, using a phenolic resin having a specific reaction molar ratio obtained by co-condensing a specific amount of metacresol as a main component of the phenolic resin foam, Further reduce the range of use such as number average molecular weight, moisture content, viscosity, etc., and reduce the productivity even if the amount of acidic curing agent is reduced by blending a non-halogenated hydrocarbon with a specific boiling point as a foaming agent. Phenol that can be foamed and cured in a short time without any problems, and has excellent adhesion to various surface materials such as metal plates such as iron, stainless steel, aluminum and zinc, inorganic plates and paper, and has low brittleness and excellent durability The present inventors have found that a system-based resin foam can be produced, and have completed the present invention.
[0008]
That is, the present invention comprises a cocondensate of formaldehyde, phenol and meta-cresol, wherein the total molar ratio of phenol and meta-cresol to formaldehyde is 1: 1.30 to 1: 2.50, and the molar ratio of meta-cresol and phenol is The ratio of 1: 1.5 to 1: 8.0, 135 parts of the phenolic resin having a gel time of 180 to 420 seconds is 100 parts by weight of the phenol resin having a boiling point of 50 to 120 ° C. under standard atmospheric pressure. A meta-cresol-modified phenolic resin foamable composition containing 2 to 30 parts by weight of a halogenated hydrocarbon.
Further, the present invention provides a method for producing a phenolic resin foam, wherein the meta-cresol-modified phenolic resin foamable composition is heated to a temperature in the range of 30 to 50 ° C., mixed and discharged, and heated and foamed and cured after the discharge. It is about the method.
[0009]
The phenolic resin in the present invention comprises a cocondensate of formaldehyde, phenol and meta-cresol, and has a molar ratio of meta-cresol to phenol of 1: 1.5 to 1: 8.0, preferably 1: 2.0. A meta-cresol-modified phenol resin obtained by mixing at a ratio of 1 : 1: 7.0 is used. In particular, the number average molecular weight is 200 to 400, preferably 250 to 350, and the water content is 5.0 to 10.0. %, Preferably 6.0 to 9.0%, and a viscosity at 40 ° C of 3,000 to 100,000 mPa · s, preferably 5,000 to 80,000 mPa · s, and a gelation time at 135 ° C of 180 to 420 seconds. It is desirable to use a resol type phenol resin for preferably 210 to 360 seconds.
[0010]
Action mechanism of the invention (mechanism that exerts its effect)
The reason why the foamable resin composition of the present invention exhibits excellent effects is presumed as follows.
That is, since meta-cresol is substituted with a methyl group at the meta position as compared with phenol, the electron density at the ortho and para positions is increased and activated, and the cross-linking polymerization reaction with formaldehyde at the ortho and para positions is promoted. By rapidly curing, and by using a high boiling point foaming agent in the foamable resin composition and raising the composition temperature at the time of ejection, crosslinking with a meta-cresol-modified phenolic resin with a small amount of acidic curing agent Increasing the density reduces the free acid remaining in the foam without lowering productivity and adhesion to various surface materials, and prevents cell deterioration and destruction, and absorbs water. It is presumed to improve performance such as brittleness, strength, and corrosion resistance.
[0011]
When a mixture of phenolsulfonic acid and o-cresol-4-sulfonic acid is used as an acidic curing agent, phenolsulfonic acid increases the crosslink density of the phenolic resin, and increases the mechanical strength and dimensional stability of the obtained foam. O-Cresol-4-sulfonic acid has the effect of alleviating the rapid rise in temperature inside the foam and preventing cell deterioration and destruction, and at the same time, imparts flexibility to the foam and provides brittle resistance. And improving water absorption resistance.
[0012]
The mixing ratio of phenolsulfonic acid and o-cresol-4-sulfonic acid is 9: 1 to 1: 9 by weight, preferably 8: 2 to 2: 8.
If the mixing ratio of phenolsulfonic acid is more than 9, the foam hardening rate becomes too fast, uneven curing, generation of voids, roughening and destruction of cells are liable to occur, and a foam having a good appearance cannot be obtained. In addition, the brittle resistance is deteriorated, and the water absorption resistance, mechanical strength, etc. are significantly reduced.
When the mixing ratio of o-cresol-4-sulfonic acid is more than 9, the balance between the foaming speed and the curing speed for following a high production speed cannot be adjusted, and insufficient curing, shrinkage, etc. occur, resulting in fragile cells. I can't change it. Therefore, the adhesiveness to various face materials, dimensional stability, water absorption resistance, brittleness resistance, and mechanical strength are reduced.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The phenolic resin foam of the present invention is obtained by mixing an acidic curing agent with a foamed resin composition comprising a foaming agent, a foam stabilizer, a flame retardant and a viscosity reducing agent, a filler, a formaldehyde scavenger, and the like in a meta-cresol-modified phenolic resin. To manufacture.
The meta-cresol-modified phenolic resin comprises a co-condensate of formaldehyde, phenol and meta-cresol, and has a molar ratio of meta-cresol and phenol of 1: 1.5 to 1: 8.0, preferably 1: 2.0. 1.3 to 2.5 moles of formaldehyde per mole of the mixed phenol mixed at a ratio of 1 : 1: 7.0 alone or in the form of an alkali catalyst such as an oxide or hydroxide of an alkali metal, an amine, or ammonia. After reacting at 20 to 150 ° C., preferably 40 to 135 ° C. for 30 minutes to 6 hours in the presence of the mixture, if necessary, the catalyst is sulfuric acid, lactic acid, formic acid, inorganic acids such as paratoluenesulfonic acid, It is neutralized with an organic acid or the like, and has a viscosity at 40 ° C. of 3,000 to 100,000 mPa · s, preferably 5,000 to 80,000 m, obtained by dehydrating and concentrating under reduced pressure. a · s, a number average molecular weight of 200 to 400, preferably 250 to 350, moisture content 5.0 to 10.0%, preferably preferably those from 6.0 to 9.0%.
[0014]
The meta-cresol in the present invention may be a pure product, but economically, meta-cresol 60-65%, para-cresol 30-35%, ortho-cresol 0.1-0.5%, 2,6-xylenol 2.0- It is preferred to use meta-cresylic acid containing 3.0%, orthoethylphenol 0.1-0.5%, 2,4 / 2,5-xylenol 2.5-4.5%. Further, as formaldehyde, either formalin or paraformaldehyde can be used, and a part of these may be replaced with aldehydes such as acetaldehyde and glyoxal. The viscosity at 40 ° C. of a foamable resin composition obtained by mixing a metacresol-modified phenolic resin with a foaming agent, a foam stabilizer, a flame retardant and a viscosity reducing agent, a filler, a coloring agent, a formaldehyde scavenger, and the like is 1, 000 to 10,000 mPa · s, preferably 2,000 to 8,000 mPa · s. Further, a mixed resin with a benzylic ether-type phenol resin produced using an oxide, hydroxide or acetate of a divalent metal such as zinc, lead, magnesium and calcium as a catalyst can also be used.
[0015]
The blowing agent used in the present invention is a non-halogenated hydrocarbon having a boiling point of 50 to 120 ° C. under standard atmospheric pressure, such as cyclohexane (boiling point 80.7 ° C.), isohexane (boiling point 86.1 ° C.), cyclohexene (Boiling point 83.3 ° C), n-hexane (boiling point 69 ° C), 2,2-dimethylbutane (boiling point 62 ° C), 2,3-dimethylbutane (boiling point 62 ° C), 2-methylpentane (boiling point 62 ° C) And aliphatic hydrocarbons such as 3-methylpentane (boiling point 62 ° C.), n-heptane (boiling point 98.4 ° C.), ethyl acetate (boiling point 77.1 ° C.) Kind Examples of the hydrocarbon derivative that may be used as needed are not particularly limited, but ketones such as methyl ethyl ketone (boiling point 79.6 ° C.) and cyclic ether compounds such as dioxolan (boiling point 101.3 ° C.) Kind Can also be used.
Baking soda, calcium carbonate, barium carbonate, sodium hydrogen carbonate, sodium carbonate, azodicarbonamide, azobisisobutyronitrile, p-toluenesulfonyl hydrazide that generate gas such as carbon dioxide and nitrogen by further action of acid And the like, or a mixture of chemical reaction foaming agents such as liquefied carbon dioxide, air, nitrogen, butane, argon and the like. The compounding amount is 2 to 30 parts by weight, preferably 5 to 25 parts by weight based on 100 parts by weight of the meta-cresol-modified phenolic resin.

[0016]
The foam stabilizer used in the present invention is not particularly limited, and nonionic surfactants conventionally used, for example, polyoxyethylene lauryl ether, pooxyethylene oleyl ether, polyoxyethylene octylphenyl Sorbitan fatty acid esters represented by ether, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monooleate Polyoxyethylene sorbitan fatty acid esters, polyoxyethylene dimethyl silicon, castor oil ethylene oxide and propylene oxide adducts, ethylene oxide propylene Oxide block copolymers, dimethylpolysiloxane-polyoxyalkylene copolymers, ethoxylated castor oil, epoxidized soybean oil ethoxylates, alone or in mixtures of silicone-based surfactants are preferred, and the blending amount is methacresol-modified phenol The amount is 0.2 to 8.0 parts by weight, preferably 0.5 to 6.0 parts by weight, based on 100 parts by weight of the system resin.
[0017]
The acidic curing agent used in the present invention is not particularly limited, and conventionally used phenol sulfonic acid, toluene sulfonic acid, xylene sulfonic acid, benzene sulfonic acid, resorcin sulfonic acid, meta-xylene sulfonic acid, ethylbenzene Sulfonic acid, naphthalene sulfonic acid, naphthol sulfonic acid, anthracene sulfonic acid, meta-cresol sulfonic acid , O-cresol-4-sulfonic acid Organic sulfonic acids and condensates thereof with formalin, carboxylic acid esters such as γ-butyrolactone, triethylene glycol diacetate, triacetin and methyl formate, cyclic alkylene carbonates such as ethylene carbonate and propylene carbonate, and the like. Examples thereof include inorganic acids such as phosphoric acid, polyphosphoric acid, tripolyphosphoric acid, metaphosphoric acid, oxalic acid, and hydrochloric acid, and these can be used alone or as a mixture. Among them, a mixture of phenolsulfonic acid and o-cresol-4-sulfonic acid is particularly preferred. The compounding amount of the acidic curing agent is 3 to 25 parts by weight, preferably 5 to 20 parts by weight, based on 100 parts by weight of the meta-cresol-modified phenolic resin.
[0018]
The flame retardant used in the present invention is not particularly limited, and conventionally used addition-type brominated flame retardants such as decabromodiphenyl ether, pentabromotoluene and pentabromodiphenyl ether, tetrabromophthalic anhydride, dibromophenol , Reactive bromine flame retardants such as glycidyl ether of tribromophenol, phosphate esters such as triethyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, triphenyl phosphate, tributyl phosphate, xyler diphenyl phosphate, and tris- ( Chloroethyl) phosphate, tris- (β-chloropropyl) phosphate, tris- (dibromopropyl) phosphate, tris- (2,3-dibromochloropropyl) phosphate, etc. Phosphorous esters such as halogen phosphate esters and halogen-containing condensed phosphate esters, triphenyl phosphite, inorganic acids such as phosphoric acid, polyphosphoric acid, tripolyphosphoric acid and metaphosphoric acid, boron compounds, aluminum hydroxide, urea Melamine, benzoguanamine, etc., alone or in a mixture, and the amount thereof is 3 to 30 parts by weight, preferably 5 to 25 parts by weight, based on 100 parts by weight of the metacresol-modified phenolic resin.
[0019]
In addition to the above, when producing a phenolic resin foam, various additives can be added to improve the performance of the foam. For example, phenol fiber, carbon fiber, aramid fiber, glass fiber, improvement in mechanical strength and dimensional accuracy by fibers such as rock wool fiber, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, etc. Aliphatic glycidyl ether compounds such as low molecular weight polyethylene and polypropylene glycols, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, dipropylene glycol diglycidyl ether, and di- or triglycidyl ether compounds of aromatic polyhydric alcohols , Polyvinyl alcohol, carboxymethylcellulose, methylcellulose, starches, etc. and natural polymers, brittleness due to acrylic emulsions, etc. Modification, viscosity reduction by acetone, tetrahydrofuran, 1,3-dioxolane, etc., ammonium salts such as ammonium nitrate, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate, ammonium acetate, amino group, amide group, imino in the molecule Urea having a group, urea resin, melamine, melamine resin, thiourea, dicyandiamide, benzoguanamine, sodium sulfite, sodium bisulfite, ammonium sulfite, sulfites such as ammonium bisulfite, formaldehyde scavengers such as bisulfite, other talc, It can be used in combination with inorganic fillers such as mica, wollastonite, kaolin, silica, etc., coloring agents such as dyes and pigments, and ultraviolet absorbers. The amount used is 0.1 to 50 parts by weight, preferably 0.2 to 40 parts by weight, based on 100 parts by weight of the meta-cresol-modified phenolic resin.
[0020]
Next, in the present invention, as a method of producing a phenolic resin foam, a foaming agent, a foam stabilizer, a flame retardant, a filler, other additives, and the like are added to the meta-cresol-modified phenolic resin of the above-described composition. After heating the mixed foamable resin composition and the acidic curing agent to 30 to 50 ° C. and controlling the temperature, a conventionally known method such as a method of high-speed stirring by a batch method or a method of a continuous mixing method can be used. The mixture obtained by each of these operations is subjected to a molding method in which the mixture is discharged onto an endless conveyor, a method in which the mixture is caused to flow out in a spot and partially foamed, a method in which the mixture is poured into a cavity of a certain size, and a foamed block is produced. It is used for a method of filling and foaming while press-fitting into a container. The foaming and curing temperature by these methods is 60 to 100 ° C., the curing time is 1 to 15 minutes, and the obtained phenolic resin foam has high mechanical strength without lowering the productivity. Since it forms a high-quality foam with excellent water absorption and brittle resistance, its main uses are, for example, metal plates such as iron, stainless steel, aluminum, and zinc, gypsum boards, and rock wool boards. Combined with board, kraft paper, asbestos paper, plywood, etc., it is used for building materials such as underfloor materials, ceiling materials, roof base materials, outer wall materials, inner wall materials, fire doors, and storage tanks for methane, propane, butane, etc. It is widely applied to the field, to keep cold and heat in heavy oil tanks, pipes, pipes, etc., and to keep cool in refrigerated warehouses.
[0021]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.
[0022]
Example 1
Into a reactor equipped with a reflux tube and a stirrer, 940 kg of phenol and 1,216 kg of 37% formalin (molar ratio: 2.40) are charged, and while stirring, 46.5 kg of 25% caustic soda is added. And the reaction was continued at the same temperature for 60 minutes, then M-cresylic acid (manufactured by Sumikin Chemical Co., Ltd., phenol: metacresol molar ratio = 3: 1, molar ratio 1.50) 360 kg were added and cooled to 80 ° C. Next, the reaction was continued at the same temperature for 30 minutes and cooled to 75 ° C. Further, when the reaction was continued at the same temperature for 40 minutes, cooling was carried out, the pH was adjusted to 5.0 by adding oxalic acid, and the mixture was concentrated under reduced pressure of 60 mmHg to obtain a nonvolatile matter of 81.8% and a viscosity at 40 ° C of 15,000 mPa · s. Thus, a meta-cresol-modified phenol resin having a water content of 8.5%, a number average molecular weight of 280 and a gel time of 135 ° C. of 305 seconds was obtained.
100 parts by weight of the obtained meta-cresol-modified phenol resin, 1.5 parts by weight of Resinol F-140 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a foam stabilizer, 8 parts by weight of cyclohexane (special grade reagent) as a foaming agent, and a flame retardant 10 parts by weight of tricresyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd.) and 3 parts by weight of 1,3-dioxolan (manufactured by Toho Chemical Industry Co., Ltd.) as a viscosity reducing agent were supplied at a rotation speed of 3,000 rpm. The mixture was stirred with a homodisper for 30 seconds to prepare a foamable resin composition having a liquid temperature of 40 ° C. Next, after adjusting the liquid temperature of a 63% phenolsulfonic acid aqueous solution (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) to 40 ° C., 8 parts by weight is added to 100 parts by weight of the foamable resin composition, and the homodisper is used. Stir for 20 seconds, immediately make the upper and lower surface materials kraft paper, inject the stock solution into a 300 × 300 × 25 mm mold heated to 80 ° C., hold in a hot air circulating dryer for 3 minutes at 80 ° C., and then mold To obtain a phenolic resin foam having a foam curing speed of 22 seconds for a cream time and 38 seconds for a gel time.
[0023]
After leaving the foam at room temperature for 7 days, the density, water absorption, compressive strength, brittleness and adhesion to the face material were measured according to JIS K-7722, JISA-9411, JIS K-7220, and ASTM C-421, respectively. For adhesion to the face material, cut out a foam with a face material of 25 x 150 mm, make a 5 mm hole in the end of the face material in the length direction of the foam, pull up with a spring only, and pull up the foam. The indicated value of the spring when peeled off from the body was expressed as the bonding force (face material adhesion: g / 25 mm).
The obtained phenolic foam had a density of 39.5 kg / m. 3 , Water absorption 1.8g / 100cm 2 , Brittleness 11.8%, adhesion to face material 290 g, compressive strength 1.7 kg / cm 2 And the water absorption after 30 days has passed is 10.5 g / 100 cm 2 This was a very excellent phenolic resin foam with little change in water absorption and no corrosion to metal. The results were as shown in Table 1.
[0024]
Example 2
The mixture was adjusted so that the total molar ratio of phenol and meta-cresol to formaldehyde was 1.50, and the molar ratio of phenol to meta-cresol was 5 to 1. The reaction operation was performed in the same manner as in Example 1, and the nonvolatile content was 81.3. %, A viscosity at 40 ° C. of 20,500 mPa · s, a water content of 7.8%, a number average molecular weight of 320, and a metacresol-modified phenol resin having a gel time of 135 ° C. of 276 seconds. Using this modified phenolic resin, the same foaming operation as in Example 1 was performed to obtain a phenolic resin foam having a foaming / curing speed of 20 seconds for a cream time and 45 seconds for a gel time. The obtained foam was tested in the same manner as in Example 1, and the results were as shown in Table 1.
[0025]
Example 3
Except that 15 parts by weight of cyclohexane was added as a foaming agent to 100 parts by weight of the meta-cresol-modified phenolic resin obtained in Example 2, the same blending and foaming operation as in Example 1 were carried out. A phenolic resin foam of 54 seconds was obtained. The obtained foam was tested in the same manner as in Example 1, and the results were as shown in Table 1.
[0026]
Example 4
Using the meta-cresol-modified phenolic resin obtained in Example 2 and adding 4 parts by weight of a 63% aqueous phenolsulfonic acid solution as an acidic curing agent, the same blending and foaming operation as in Example 1 was carried out, and the foaming curing rate Obtained a phenolic resin foam having a cream time of 25 seconds and a gel time of 54 seconds. The obtained foam was tested in the same manner as in Example 1, and the results were as shown in Table 1.
[0027]
Example 5
The mixture was adjusted so that the total molar ratio of phenol and meta-cresol to formaldehyde was 1.50 and the molar ratio of phenol to meta-cresol was 7: 1, and the reaction operation was performed in the same manner as in Example 1 to obtain a nonvolatile content of 82.7%. A meta-cresol-modified phenol resin having a viscosity at 40 ° C. of 55,000 mPa · s, a water content of 6.3%, a number average molecular weight of 250, and a gelation time of 260 seconds at 135 ° C. was obtained. Using this modified phenolic resin, the same foaming operation as in Example 1 was performed to obtain a phenolic resin foam having a foaming / curing speed of 17 seconds for a cream time and 30 seconds for a gel time. The obtained foam was tested in the same manner as in Example 1, and the results were as shown in Table 1.
[0028]
Example 6
The mixture was adjusted so that the total molar ratio of phenol and meta-cresol to formaldehyde was 1.90, and the molar ratio of phenol to meta-cresol was 5 to 1. The reaction operation was performed in the same manner as in Example 1, and the nonvolatile content was 80.5%. A metacresol-modified phenol resin having a viscosity at 40 ° C. of 12,000 mPa · s, a water content of 8.9%, a number average molecular weight of 310 and a gelation time of 135 ° C. of 315 seconds was obtained. The same foaming operation as in Example 1 was performed to obtain a phenolic resin foam having a foam hardening rate of 24 seconds for a cream time and 52 seconds for a gel time. The obtained foam was tested in the same manner as in Example 1, and the results were as shown in Table 2.
[0029]
Example 7
Same as Example 1, except that the total molar ratio of phenol and meta-cresol to formaldehyde was 2.20 and the molar ratio of phenol to meta-cresol was 5: 1 and the reaction time at 80 ° C. was 90 minutes. A non-volatile content of 80.7%, a viscosity at 40 ° C. of 20,000 mPa · s, a water content of 8.2%, a number-average molecular weight of 290, and a meta-cresol-modified phenol resin having a gelation time of 291 seconds at 135 ° C. are obtained. Was. The same foaming operation as in Example 1 was performed to obtain a phenolic resin foam having a foam hardening rate of cream time 25 seconds and gel time 48 seconds. The obtained foam was tested in the same manner as in Example 1, and the results were as shown in Table 2.
[0030]
Comparative Example 1
The mixture was adjusted so that the total molar ratio of phenol and meta-cresol to formaldehyde was 1.20, and the molar ratio of phenol to meta-cresol was 5 to 1. The reaction operation was carried out in the same manner as in Example 1, and the nonvolatile content was 80.3%. A metacresol-modified phenol resin having a viscosity at 40 ° C. of 11,500 mPa · s, a water content of 8.2%, a number average molecular weight of 290 and a gel time of 135 ° C. of 254 seconds was obtained. The same foaming operation as in Example 1 was performed to obtain a phenolic resin foam having a foam hardening rate of 16 seconds for a cream time and 68 seconds for a gel time. The obtained foam was tested in the same manner as in Example 1, and as a result, the cells of the foam were brittle, had high water absorption, and had low compressive strength. The results were as shown in Table 3.
[0031]
Comparative Example 2
1,080 kg of metacresol and 1,216 kg of 37% formalin (molar ratio: 1.50) were charged into a reactor equipped with a reflux tube and a stirrer, and while stirring, 46.5 kg of 25% caustic soda were added. The temperature was raised to about 60 ° C. in about 60 minutes, the reaction was continued at the same temperature for 60 minutes, and then cooled to 80 ° C. Then, the same reaction operation as in Example 1 was performed, and the nonvolatile content was 82.5%, the viscosity at 40 ° C was 62,000 mPa · s, the water content was 6.2%, the number average molecular weight was 280, and the gelation time was 135 ° C. A meta-cresol-modified phenol resin was obtained. The same foaming operation as in Example 1 was performed to obtain a phenolic resin foam having a foam hardening rate of cream time 6 seconds and gel time 25 seconds. The obtained foam was subjected to a test in the same manner as in Example 1. As a result, the foam was coarse, the brittleness was high, the compressive strength was low, and the water absorption after 30 days had passed was high. Other results are as shown in Table 3.
[0032]
Comparative Example 3
Into a reactor equipped with a reflux tube and a stirrer, 940 kg of phenol and 1,216 kg of 37% formalin (molar ratio: 1.50) are charged, and while stirring, 46.5 kg of 25% caustic soda is added. The reaction was continued at the same temperature for 60 minutes, cooled to 80 ° C., and then the same reaction procedure as in Example 1 was performed to obtain a nonvolatile content of 80.3% and a viscosity at 40 ° C. A resol type phenol resin having 9,200 mPa · s, a water content of 8.7%, a number average molecular weight of 250 and a gel time of 135 ° C. of 320 seconds was obtained. The same foaming operation as in Example 1 was performed to obtain a phenolic resin foam having a foaming curing speed of 25 seconds for a cream time and 52 seconds for a gel time. The obtained foam was tested in the same manner as in Example 1. As a result, shrinkage was observed, the compressive strength was low, and the water absorption after 30 days had passed was high. Other results are as shown in Table 3.
[0033]
Comparative Example 4
The same foaming operation as in Example 1 was carried out except that the blowing agent cyclohexane blended in Example 2 was changed to 35 parts by weight, and the viscosity reducing agent 1,3-dioxolan was changed to 6 parts by weight. A phenolic resin foam having a gel time of 91 seconds was obtained. The obtained foam was tested in the same manner as in Example 1, and the other results were as shown in Table 3.
[0034]
Comparative Example 5
The same foaming operation as in Example 1 was performed except that the foaming agent cyclohexane 8 parts by weight blended in Example 2 was changed to 2 parts by weight, but foaming was not sufficiently performed, and many gas vent holes were formed on the foam surface. Only dotted phenolic resin foams were obtained. See Table 3.
[0035]
Comparative Example 6
The same foaming operation as in Example 1 was attempted, except that the blowing agent cyclohexane blended in Example 2 was changed to dichlorofluoroethane (HCFC141b manufactured by Asahi Glass Co., Ltd.), but foaming was performed while adjusting the liquid temperature of the foamed resin composition. Most of the agent vaporized, and it was difficult to obtain a phenolic resin foam.
[0036]
Comparative Example 7
The same foaming operation as in Example 1 was performed except that the liquid temperature of the foamed resin composition and the acidic curing agent obtained in Example 2 was set to 30 ° C., and the addition amount of the acidic curing agent was changed to 30 parts by weight. It was a phenolic resin foam which did not foam sufficiently and had many gas vent holes scattered on the surface of the foam.
[0037]
Comparative Example 8
The same foaming operation as in Example 1 was performed except that the liquid temperature of the foamed resin composition and the acidic curing agent obtained in Example 2 was set to 60 ° C., and the addition amount of the acidic curing agent was changed to 4 parts by weight. A phenolic resin foam in which many cells were found at the interface between the upper surface material and the surface of the foam and voids were found in the center and the cells were broken, and the cells were broken.
Table 4 shows the results of Comparative Examples 6 to 8.
[0038]
Comparative Example 9
A foaming operation was performed in the same manner as in Example 1 except that the liquid temperatures of the foamed resin composition and the acidic curing agent obtained in Example 2 were changed from 40 ° C. to 20 ° C. It was a phenolic resin foam having a slow reactivity and shrinking in 105 seconds. The obtained foam was tested in the same manner as in Example 1. As a result, the foam had low compressive strength and poor adhesion to the face material. Other results are as shown in Table 4.
[0039]
Comparative Example 10
The mixture was adjusted so that the total molar ratio of phenol and meta-cresol to formaldehyde was 3.00, and the molar ratio of phenol to meta-cresol was 5 to 1. The reaction operation was carried out in the same manner as in Example 1, and the nonvolatile content was 80.5%. A meta-cresol-modified phenol resin having a viscosity at 40 ° C. of 19,500 mPa · s, a water content of 8.7%, a number average molecular weight of 320 and a gelation time of 324 seconds at 135 ° C. was obtained. The same foaming operation as in Example 1 was performed to obtain a phenolic resin foam having a foam hardening rate of a cream time of 27 seconds and a gel time of 60 seconds. The obtained foam was subjected to a test in the same manner as in Example 1. As a result, the cells of the foam were brittle, had high water absorption, and had low compressive strength. Further, it had a strong formalin odor. The results were as shown in Table 4.
[0040]
[Table 1]
Figure 0003555012
[0041]
[Table 2]
Figure 0003555012
[0042]
[Table 3]
Figure 0003555012
[0043]
[Table 4]
Figure 0003555012
[0044]
The notes and measurement methods in Tables 1 to 4 are summarized below.
note):
1) An ethylene oxide adduct of castor oil: (F-140 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.)
2) Cyclohexane (special grade reagent)
2) * Dichlorofluoroethane (HCFC-141b manufactured by Asahi Glass Co., Ltd.)
3) 1,3-dioxolan (manufactured by Toho Chemical Industry Co., Ltd.)
4) Tricresyl phosphate (TCP manufactured by Daihachi Chemical Industry Co., Ltd.)
5) 63% phenolsulfonic acid aqueous solution (Daiichi Kogyo Seiyaku Co., Ltd. PS-63)
Foam measurement method
Density (kg / m 3 ): Measured according to JIS K-7722.
Brittleness (%): Measured according to ASTM-C421.
Compressive strength (kg / cm 2 ): Measured according to JIS K-7220.
Water absorption (g / 100cm 2 ): Measured according to JISA-9411.
Adhesion to face material: Create a 25 × 150 mm foam with face material, make a 5 mm hole in the end of the face material, put a spring only on it, pull it up, and pull the spring when the surface material comes off the foam The indicated value was expressed as the binding force.
Foam pH (meter): 0.5 g of a phenolic foam cut into about 3 mm square was added to 100 ml of distilled water, stirred for 30 minutes with a stirrer, filtered, and the filtrate was measured.
Corrosion resistance: JIS-SKH steel sheet A is degreased and scissors are sandwiched between phenolic foams and phenolic foams, and visual observation of the daily change of the metal surface at room temperature of 21 ° C. and 68% relative humidity. did.
[0045]
Examples 8 to 11
Using the meta-cresol-modified phenolic resin produced in Example 2, the acidic curing agent was changed to produce a foam. The results are shown in Table 5.
[0046]
[Table 5]
Figure 0003555012
[0047]
Note 1: 1) to 4) are the same as above.
2: 5) Type of curing agent
(1) A 65% phenolsulfonic acid aqueous solution and a 75% o-cresol-4-sulfonic acid aqueous solution were mixed at a ratio of 1: 1.
(2) 75% o-cresol-4-sulfonic acid aqueous solution
(3) 65% xylene sulfonic acid aqueous solution
(4) 65% p-toluenesulfonic acid aqueous solution
3: The blending adjustment of the foamable resin composition and the method of measuring the foam were performed according to Table 4.

Claims (8)

ホルムアルデヒドとフェノール及びメタクレゾールとの共縮合物から成り、ホルムアルデヒドに対するフェノールとメタクレゾールとの合計モル比が1:1.30〜1:2.50、メタクレゾールとフェノールのモル比率が1:1.5〜1:8.0、135℃のゲル化時間が180〜420秒であるフェノール系樹脂100重量部に対して、標準大気圧下における沸点が50〜120℃の非ハロゲン化炭化水素を2〜30重量部含有することを特徴とするメタクレゾール変性フェノール系樹脂発泡性組成物。It consists of a co-condensate of formaldehyde, phenol and meta-cresol, and the total molar ratio of phenol and meta-cresol to formaldehyde is 1: 1.30 to 1: 2.50, and the molar ratio of meta-cresol to phenol is 1: 1. 5-1: 8.0, 100 parts by weight of a phenolic resin having a gel time of 135 to 180 seconds of 180 to 420 seconds are mixed with a non-halogenated hydrocarbon having a boiling point of 50 to 120 ° C. under standard atmospheric pressure. A meta-cresol-modified phenolic resin foamable composition, which is contained in an amount of from 30 to 30 parts by weight. フェノール系樹脂の数平均分子量が200〜400であることを特徴とする請求項1に記載のメタクレゾール変性フェノール系樹脂発泡性組成物。The phenolic resin foamable composition according to claim 1, wherein the phenolic resin has a number average molecular weight of 200 to 400. フェノール系樹脂の水分率が5.0〜10.0%であることを特徴とする請求項1又は2に記載のメタクレゾール変性フェノール系樹脂発泡性組成物。The phenolic resin foamable composition according to claim 1 or 2, wherein the phenolic resin has a moisture content of 5.0 to 10.0%. 酸性硬化剤として、フェノールスルホン酸とo−クレゾール−4−スルホン酸の混合物を用いることを特徴とする請求項1〜3のいずれか1項に記載のフェノール系樹脂発泡性組成物。The phenolic resin foamable composition according to any one of claims 1 to 3, wherein a mixture of phenolsulfonic acid and o-cresol-4-sulfonic acid is used as the acidic curing agent. ホルムアルデヒドとフェノール及びメタクレゾールとの共縮合物から成り、ホルムアルデヒドに対するフェノールとメタクレゾールとの合計モル比が1:1.30〜1:2.50、メタクレゾールとフェノールのモル比率が1:1.5〜1:8.0、135℃のゲル化時間が180〜420秒であるフェノール系樹脂100重量部に対して、標準大気圧下における沸点が50〜120℃の非ハロゲン化炭化水素を2〜30重量部含有せしめてなるメタクレゾール変性フェノール系樹脂発泡性組成物を30〜50℃の範囲に加温し混合吐出させ、吐出後に加熱、発泡硬化させることを特徴とするフェノール系樹脂発泡体の製造方法。It consists of a co-condensate of formaldehyde, phenol and meta-cresol, and the total molar ratio of phenol and meta-cresol to formaldehyde is 1: 1.30 to 1: 2.50, and the molar ratio of meta-cresol to phenol is 1: 1. 5-1: 8.0, 100 parts by weight of a phenolic resin having a gel time of 135 to 180 seconds of 180 to 420 seconds are mixed with a non-halogenated hydrocarbon having a boiling point of 50 to 120 ° C. under standard atmospheric pressure. A phenolic resin foam characterized in that a metacresol-modified phenolic resin foamable composition containing up to 30 parts by weight is heated to a temperature in the range of 30 to 50 ° C., mixed and discharged, and heated and foamed and hardened after the discharge. Manufacturing method. フェノール系樹脂の数平均分子量が200〜400であることを特徴とする請求項5に記載のフェノール系樹脂発泡体の製造方法。The method for producing a phenolic resin foam according to claim 5, wherein the number average molecular weight of the phenolic resin is 200 to 400. フェノール系樹脂の水分率が5.0〜10.0%であることを特徴とする請求項5又は6に記載のフェノール系樹脂発泡体の製造方法。The method for producing a phenolic resin foam according to claim 5 or 6, wherein the phenolic resin has a moisture content of 5.0 to 10.0%. 酸性硬化剤として、フェノールスルホン酸とo−クレゾール−4−スルホン酸の混合物を用いることを特徴とする請求項5〜7のいずれか1項に記載のフェノール系樹脂発泡体の製造方法。The method for producing a phenolic resin foam according to any one of claims 5 to 7, wherein a mixture of phenolsulfonic acid and o-cresol-4-sulfonic acid is used as the acidic curing agent.
JP37772798A 1998-09-30 1998-12-29 Phenolic resin foamable composition and method for producing foam using the composition Expired - Fee Related JP3555012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37772798A JP3555012B2 (en) 1998-09-30 1998-12-29 Phenolic resin foamable composition and method for producing foam using the composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-292813 1998-09-30
JP29281398 1998-09-30
JP37772798A JP3555012B2 (en) 1998-09-30 1998-12-29 Phenolic resin foamable composition and method for producing foam using the composition

Publications (2)

Publication Number Publication Date
JP2000169616A JP2000169616A (en) 2000-06-20
JP3555012B2 true JP3555012B2 (en) 2004-08-18

Family

ID=26559136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37772798A Expired - Fee Related JP3555012B2 (en) 1998-09-30 1998-12-29 Phenolic resin foamable composition and method for producing foam using the composition

Country Status (1)

Country Link
JP (1) JP3555012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069593A (en) * 2013-12-13 2015-06-24 (주)엘지하우시스 Adhesive composition with improved adherent property for heat insulator

Also Published As

Publication number Publication date
JP2000169616A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
EP1887032B1 (en) Expandable resol-type phenolic resin molding material and phenolic resin foam
JP6550415B2 (en) Phenolic resin foam laminate and method for producing the same
JP4889084B2 (en) Phenolic resin foam and method for producing the same
EP3868826A1 (en) Semi-noncombustible phenolic-resin composition and semi-noncombustible material obtained therefrom
JPWO2020031863A1 (en) Resin composition for producing phenol foam
WO2021002097A1 (en) Resin composition for manufacturing phenolic foam, and phenolic foam and method for manufacturing same
JP2007131859A (en) Acid-curable phenol resin foam and method for producing the same
JP2007070506A (en) Phenol resin-foamed article
JP7458587B2 (en) Phenol foam and its manufacturing method
JP4878672B2 (en) Foamable phenolic resole resin composition and method for producing the same
JPH07278339A (en) Production of predominantly closed-cell phenolic resin foam
JP3555012B2 (en) Phenolic resin foamable composition and method for producing foam using the composition
US20020198268A1 (en) Cellular plastic material based on phenolic resin
JP4939784B2 (en) Phenolic resin foam
JP2000094620A (en) Phenol resin foam
JP4060694B2 (en) Foamable resol-type phenolic resin composition and phenolic resin foam using the same
JP2007131803A (en) Method for producing phenolic resin foam
JP2005120337A (en) Acid-curable phenolic resin foam and its manufacturing method
JPH0532814A (en) Fabricable phenol resin foam
JP2514879B2 (en) Fireproof phenolic resin foamable composition and method for producing foam
KR100637926B1 (en) The composites containing the resol type phenol-melamine resin with fire retardant and the manufacture method of their foam
JPH036243A (en) Phenol resin composition for foaming
JPS6248978B2 (en)
EP1222228B1 (en) Cellular plastic material based on phenolic resin
JPS63179940A (en) Foamed phenolic resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090521

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090521

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090521

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100521

LAPS Cancellation because of no payment of annual fees