JPS6013057B2 - Aluminum alloy material for heat exchangers with anti-corrosion properties - Google Patents

Aluminum alloy material for heat exchangers with anti-corrosion properties

Info

Publication number
JPS6013057B2
JPS6013057B2 JP8317878A JP8317878A JPS6013057B2 JP S6013057 B2 JPS6013057 B2 JP S6013057B2 JP 8317878 A JP8317878 A JP 8317878A JP 8317878 A JP8317878 A JP 8317878A JP S6013057 B2 JPS6013057 B2 JP S6013057B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
corrosion
grain size
heat exchangers
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8317878A
Other languages
Japanese (ja)
Other versions
JPS5511137A (en
Inventor
昌一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP8317878A priority Critical patent/JPS6013057B2/en
Publication of JPS5511137A publication Critical patent/JPS5511137A/en
Publication of JPS6013057B2 publication Critical patent/JPS6013057B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 本発明は防食特性を有する熱交換器用アルミニウム合金
材に係り、辰伸冷間加工に続く加熱再結晶処理後におい
て其の結晶粒度を500仏以上とすることによって熱交
換器用アルミニウム合金材に防食特性を賦与しようとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum alloy material for heat exchangers having anti-corrosion properties, which has a crystal grain size of 500 F or more after a heat recrystallization treatment following cold stretching. The aim is to impart anti-corrosion properties to aluminum alloy materials.

従来、アルミニウム合金は「一般的にその結晶粒度を出
来るだけ微細化して強度を向上させ、その用途に応じて
塗装、化成被膜処理、金属溶射、メッキ、あるいは金属
拡散被覆等の処置によって防食性を持たせた状態で使用
されるものであるが、結晶粒度を微細化した組織の結晶
粒界には転位、偏析等の金属組織学上の欠陥が多く存在
しそのため結晶粒界が腐食されやすく、その部分より孔
食が発生する。
Traditionally, aluminum alloys were generally made to have their grain size as fine as possible to improve their strength, and depending on the application, they were treated with coatings, chemical conversion coatings, metal spraying, plating, or metal diffusion coatings to provide anti-corrosion properties. However, there are many metallographic defects such as dislocations and segregation in the grain boundaries of the structure with fine grain size, and as a result, the grain boundaries are easily corroded. Pitting corrosion occurs from that part.

また、前述の防食性を持たせるための各種の処理は未だ
熱交換器用アルミニウム合金材の孔食を完全に防止する
に至っていないのが現状である。
Furthermore, the various treatments described above to impart corrosion resistance have not yet been able to completely prevent pitting corrosion in aluminum alloy materials for heat exchangers.

本発明はMg0.2〜2.0%,Feo.1〜1.0%
,Cuo.05〜0.4%,Mno.3〜2.0%のう
ちの1種または2種以上を含むアルミニウム合金で、辰
伸冷間加工に続く加熱再結晶処理後において其の結晶粒
度を500ム以上にすることによって上記のような結晶
粒界を減少させ、従って孔食発生の機会を減少し、.又
発生してもその進行を遅らせる防食特性をアルミニウム
合金組織自体に賦与することを目的とする。この様にア
ルミニウム合金の再結晶粒度を制御するには、アルミニ
ウム合金の次の様な性質を利用することにより簡単に得
られる。
The present invention contains Mg0.2-2.0%, Feo. 1-1.0%
, Cuo. 05-0.4%, Mno. An aluminum alloy containing one or more of 3 to 2.0% of the above crystals by increasing the crystal grain size to 500 μm or more after the heat recrystallization treatment following the cold stretching process. Reduces grain boundaries and thus reduces the chance of pitting corrosion occurring. Another purpose is to provide the aluminum alloy structure itself with anti-corrosion properties that will slow down the progress of corrosion even if it occurs. In this way, the recrystallized grain size of aluminum alloy can be easily controlled by utilizing the following properties of aluminum alloy.

一般的にアルミニウム合金は強度の圧延あるいは引き抜
き等の袷間加工を施した後、加熱して再結晶させると結
晶粒度は微細化し、冷間加工度が弱まる程、結晶粒度は
粗大化する。
In general, when an aluminum alloy is subjected to hard rolling or drawing, and then heated and recrystallized, the grain size becomes finer, and the lower the degree of cold working, the coarser the grain size becomes.

すなわち、大きな結晶粒度を得るには冷間加工度を少な
くし、小さな結晶粒度を得るには冷間加工度をきくすれ
ばよい。この様な簡単な方法によって結晶粒度が500
ム以外のアルミニウム合金を得ることができるが、50
0ム以下の結晶粒度のものは耐食性は改善されず、また
、その上限については、結晶粒度が大きければ大きい程
耐食性が改善されるため規定しない。
That is, to obtain a large grain size, the degree of cold working should be reduced, and to obtain a small grain size, the degree of cold working should be increased. With this simple method, the grain size can be reduced to 500.
Aluminum alloys other than aluminum can be obtained, but 50
Corrosion resistance is not improved if the grain size is 0.0 mm or less, and the upper limit is not specified because the larger the grain size is, the better the corrosion resistance is.

以上に説明した方法により製造された500仏以上の結
晶粒度を有するアルミニウム合金が、従釆より一般に使
用されている微細化された結晶粒度のものに比して顕著
な防食性を発揮することを実証するものとして、以下に
本発明者の行なった耐食性比較試験の結果を記載する。
It has been shown that the aluminum alloy with a grain size of 500 French or more produced by the method described above exhibits remarkable corrosion resistance compared to the aluminum alloy with a finer grain size that is commonly used. As proof, the results of a corrosion resistance comparison test conducted by the present inventor are described below.

比較試験の内容m 試験片 試験片Mnl.2%を含むアルミニウム合金製熱交換器
用のプレージングシートにフィンを真空ロウ付したもの
(フィンはロウフ部だけを残して切除)より“10仇協
×10仇吻×板厚”寸法に採取し、試験片の一方はその
結晶粒度がプレージングシートおよびフィンの両者共に
微細なもの、他方は両者共に粗大なものを選択した。
Contents of comparative test m Test piece Test piece Mnl. A plating sheet for an aluminum alloy heat exchanger containing 2% aluminum alloy was vacuum-brazed with fins (the fins were removed leaving only the loaf portion), and the dimensions were 10 x 10 x plate thickness. One of the test pieces had a fine grain size for both the plating sheet and the fins, and the other had a coarse grain size for both.

試験片詳細■ 腐食試験 腐食試験は、4000,CH3COO日にてP.日3に
調整したNaC〆中に30分浸溝、その後、液上に引き
揚げ5000温風にて30分乾燥すると云う繰返し操作
を1ケ月間継続した。
Test piece details ■ Corrosion test Corrosion test was conducted on P. 4000, CH3COO day. The groove was immersed for 30 minutes in the NaC paste prepared on Day 3, then pulled up to the top of the liquid and dried for 30 minutes with 5,000 yen warm air. This process was continued for one month.

‘3’ 試験結果 腐食試験終了後、各試験片より腐食が特に激しいと思わ
れる数箇所を選び試片として切り出し断面を研磨して顕
微鏡下でその腐食状況を調査した。
'3' Test Results After the corrosion test was completed, several locations where corrosion was considered to be particularly severe were selected from each test piece, cut out as test pieces, and the cross section was polished and the corrosion status was investigated under a microscope.

上表に関して、試験片1および2に夫々対応して第1図
および第2図の顕微鏡写真がその腐食状況を明瞭にあら
わしている。
Regarding the above table, the micrographs in FIGS. 1 and 2, which correspond to test specimens 1 and 2, respectively, clearly show the corrosion state.

上記の試験結果が示す様に、本発明の方法によって製造
された熱交換器用アルミニウム合金は、一般に使用され
ている結晶粒度が微細化された熱交換器用アルミニウム
合金に比して、顕著な防食特性を発揮するものである。
As shown by the above test results, the aluminum alloy for heat exchangers produced by the method of the present invention has remarkable anti-corrosion properties compared to commonly used aluminum alloys for heat exchangers with finer grain size. It is something that demonstrates the.

図面の簡単な説明第1図及び第2図は夫々腐食試験に使
用した試験片番号1及び2の断面の顕微鏡写真(倍率x
20)で、夫々の腐食状況を示すためのものである。
Brief explanation of the drawings Figures 1 and 2 are micrographs (magnification x
20) to show the respective corrosion conditions.

第1図 第2図Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 Mg0.2〜2.0%、Fe0.1〜1.0%,C
u0.05〜0.4%,Mn0.3〜2.0%のうちの
1種または2種以上を含むアルミニウム合金で、展伸冷
間加工に続く加熱再結晶処理後において其の結晶粒度が
500μ以上であることを特徴とする防食特性を有する
熱交換器用アルミニウム合金材。
1 Mg0.2-2.0%, Fe0.1-1.0%, C
It is an aluminum alloy containing one or more of u0.05~0.4% and Mn0.3~2.0%, and its crystal grain size is An aluminum alloy material for heat exchangers having anticorrosive properties characterized by a thickness of 500μ or more.
JP8317878A 1978-07-08 1978-07-08 Aluminum alloy material for heat exchangers with anti-corrosion properties Expired JPS6013057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8317878A JPS6013057B2 (en) 1978-07-08 1978-07-08 Aluminum alloy material for heat exchangers with anti-corrosion properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8317878A JPS6013057B2 (en) 1978-07-08 1978-07-08 Aluminum alloy material for heat exchangers with anti-corrosion properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3805886A Division JPS61243146A (en) 1986-02-22 1986-02-22 Heat exchanger having corrosion preventing property

Publications (2)

Publication Number Publication Date
JPS5511137A JPS5511137A (en) 1980-01-25
JPS6013057B2 true JPS6013057B2 (en) 1985-04-04

Family

ID=13795029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8317878A Expired JPS6013057B2 (en) 1978-07-08 1978-07-08 Aluminum alloy material for heat exchangers with anti-corrosion properties

Country Status (1)

Country Link
JP (1) JPS6013057B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148188U (en) * 1985-03-06 1986-09-12
JPS6230839U (en) * 1985-08-08 1987-02-24

Also Published As

Publication number Publication date
JPS5511137A (en) 1980-01-25

Similar Documents

Publication Publication Date Title
WO2015127805A1 (en) High temperature baking hardened aluminum alloy material used for automobile body and preparation method thereof
CN102732760B (en) Aluminum alloy plate for automobile bodies
KR20030087013A (en) Aluminum alloy with intergranular corrosion resistance, methods of manufacturing and its use
AU2011297250B2 (en) Heat exchanger aluminum alloy fin material and method for producing same
Engler et al. Influence of copper additions on materials properties and corrosion behaviour of Al–Mg alloy sheet
JPH0368745A (en) Corrosion resistant nickel-chrome-molybdenum alloy
CN109825748A (en) A method of improving Al-Cu-Mg line aluminium alloy corrosion among crystalline grains
US6328827B1 (en) Method of manufacturing sheets made of alloy 718 for the superplastic forming of parts therefrom
US5019188A (en) Process for forming an aluminum alloy thin sheet by hot and cold rolling
JPS6013057B2 (en) Aluminum alloy material for heat exchangers with anti-corrosion properties
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
US4830825A (en) Corrosion-resistant copper alloy
JPH01195263A (en) Manufacture of al-alloy fin material for heat exchanger
JPS6057496B2 (en) Aluminum alloy for brazing
JPH03287738A (en) Fin material for heat exchanger assembled by vacuum brazing method and its manufacture
JPS593531B2 (en) Corrosion-resistant copper alloy and heat exchanger using it
JPH0368732A (en) Manufacture of copper alloy and copper alloy material for radiator plate
JPS6058298B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with uniform formability
JPS6058299B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with excellent formability
CN113005375A (en) Preparation method of Al-Mg-Zn-Cu alloy plate applied after paint baking and used for improving surface quality and strength
Yamamoto et al. Grain refinement on AZ31 magnesium alloy by highly strained and annealed method
DE1758124C3 (en) Application of a heat treatment process to improve the erosion-corrosion resistance of ferrous copper alloys
NO814390L (en) PRODUCTS OF ALUMINUM ALLOY, AND PROCEDURES FOR PREPARING SUCH
WO2006004499A1 (en) Fuel box in a boiling water nuclear reactor
Himuro et al. Precipitation behaviour of zirconium compounds in Zr-bearing Al-Mg-Si alloy