JPS60130456A - Nozzle for pouring molten metal - Google Patents

Nozzle for pouring molten metal

Info

Publication number
JPS60130456A
JPS60130456A JP23858183A JP23858183A JPS60130456A JP S60130456 A JPS60130456 A JP S60130456A JP 23858183 A JP23858183 A JP 23858183A JP 23858183 A JP23858183 A JP 23858183A JP S60130456 A JPS60130456 A JP S60130456A
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
resistance
flow
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23858183A
Other languages
Japanese (ja)
Inventor
Seiji Itoyama
誓司 糸山
Tsutomu Nozaki
野崎 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23858183A priority Critical patent/JPS60130456A/en
Publication of JPS60130456A publication Critical patent/JPS60130456A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent intrusion of non-metallic inclusions into the deep part of a molten metal and the disturbance of the molten metal surface by providing resistance parts to provide resistance to the flow of the molten metal into a nozzle to be passed therein with the molten metal. CONSTITUTION:An immersion nozzle 1 for high-speed continuous casting is formed to have a rectangular section and plural resistance parts 2 are provided in the nozzle 1 to be passed therein with a molten metal. A flange part 3 to be fixed to a tundish is formed to the top end thereof and the aperture at the bottom end is used as a discharge hole 4. The resistance parts 2 are formed of suitable refractories into a circular columnar shape and are fixed by directing the axial line in the thickness direction of the nozzle 1. The intrusion of non-metallic inclusions deep into the molten metal is thus prevented and at the same time the disturbance of the molten metal surface is eliminated, by which the billet having high cleanliness is obtd.

Description

【発明の詳細な説明】 この発明は例えば連続鋳造設備において鋳型に対して溶
鋼等の溶融金属を注湯する際に使用するノズルに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nozzle used, for example, when pouring molten metal such as molten steel into a mold in continuous casting equipment.

周知のように連続鋳造は、鋳型に注湯した溶融金属を冷
却し、その結果生じた凝固シェルを鋳型から引き抜きつ
つさらに冷却して鋳片を得る方法であり、その鋳型に注
湯する場合、酸化を防ぐために浸漬ノズルが一般に使用
され、また鋳型には酸化を防止しかつ鋳型と凝固シェル
との間の潤滑を行なうためにパウダを添加している。
As is well known, continuous casting is a method in which molten metal poured into a mold is cooled, and the resulting solidified shell is pulled out of the mold and further cooled to obtain a slab. Submerged nozzles are commonly used to prevent oxidation, and powder is added to the mold to prevent oxidation and provide lubrication between the mold and the solidified shell.

ところで最近では、生産性を向上するために、鋳造速度
を増加する傾向にあるが、それに伴って以下に述べるよ
うな問題が生じている。すなわち高速で鋳造を行なう場
合、鋳型に対する単位時間当りの注湯量を増大する必要
があるが、注湯の仕方によっては溶湯中にパウダを巻き
込んでしまい、これが原因となって鋳片の内部欠陥ある
いは表面欠陥が生じる場合がある。
Recently, there has been a trend to increase casting speed in order to improve productivity, but this has led to the following problems. In other words, when casting at high speed, it is necessary to increase the amount of metal poured into the mold per unit time, but depending on the pouring method, powder may be drawn into the molten metal, which may cause internal defects or Surface defects may occur.

浸漬ノズルを介して鋳型に注湯する場合、単位時間当り
の注湯量を多くするためには、溶湯の流速を速くし、あ
るいは浸漬ノズルの断面積を大きくすれば味いが、溶湯
の流速を速くした場合には、非金属介在物が鋳型内の溶
湯の深くまで侵入し、湯面に浮上分離しきらずに鋳片内
部に捕捉され、その結果鋳片の清浄度が悪化する問題な
どのが生じる。
When pouring metal into a mold through an immersion nozzle, increasing the flow rate of the molten metal or increasing the cross-sectional area of the immersion nozzle can increase the amount of molten metal poured per unit time. If the speed is increased, non-metallic inclusions may penetrate deep into the molten metal in the mold and become trapped inside the slab without floating to the surface of the molten metal, resulting in problems such as deterioration of the cleanliness of the slab. arise.

このような問題を解消するために、ノズル先端の吐出口
を上向きとすることにより、介在物の浮上分離を促進す
ることが考えられるが、そのにょうにした場合、鋳型内
の湯面の乱れが激しくなり、前述したようなパウダの巻
き込みやそれに伴う各種の問題が生じる。さらに注湯速
度を速めた場合、溶1i流が鋳型内で凝固シェルを直撃
し、その結果凝固シェルが再溶解して内部の溶湯が噴出
する所謂ブレークアウトが生じ、連続鋳造が不可能にな
る大事故につながるおそれがある。
In order to solve this problem, it is possible to promote the floating separation of inclusions by oriented the discharge port at the tip of the nozzle upward, but if this is done, the molten metal level in the mold will be disturbed. This causes the powder to become entangled and the various problems associated with it as described above. If the pouring speed is further increased, the molten metal flow directly hits the solidified shell in the mold, resulting in a so-called breakout in which the solidified shell remelts and the molten metal inside spouts out, making continuous casting impossible. It may lead to a serious accident.

他方、溶湯の流速を速くせずに単位時間当りの注湯量を
増大させる方法として、ノズルにおける溶湯吐出面積を
広くすることが考えられ、そのようなノズルが実開昭5
8−107245号によって提案されている。しかしな
がら、ノズルにおける溶湯吐出面積を広くしたノズルに
あっては、本来一様な溶wA流が好ましいにも拘わらず
、局所的な流れすなわち偏流が発生し易く、鋳片の均質
化を阻害するおそれがある。これに対し溶湯吐出面積を
広くするために、多数の吐出口を設けるとともに、各吐
出口の径を小さくすることが考えられるが、このような
ノズルでは、溶湯内の非金属介在物によるノズル粘りの
危険が大きく、また高速鋳造を行なうに充分な注湯量を
確保することが困難であった。
On the other hand, as a method of increasing the amount of molten metal poured per unit time without increasing the flow rate of the molten metal, it is possible to widen the molten metal discharge area of the nozzle, and such a nozzle
No. 8-107245. However, in the case of a nozzle with a wide molten metal discharge area, although a uniform molten wA flow is originally preferable, localized flow, that is, uneven flow, is likely to occur, which may impede the homogenization of the slab. There is. On the other hand, in order to widen the molten metal discharge area, it is possible to provide a large number of discharge ports and reduce the diameter of each discharge port. There was a great risk of this, and it was difficult to secure a sufficient amount of molten metal to perform high-speed casting.

いずれにしても従来のノズルでは、高速連続鋳造を行な
うに充分な注湯を行なうにあたり、非金属介在物の鋳型
内への侵入深さを浅くしてその浮上分離を容易にするこ
とと、鋳型内湯面の乱れを抑illすることとの両者を
充足することができず、いずれ一方をある程度犠牲にし
て注湯を行なわざるを得ないのが実情であった。
In any case, with conventional nozzles, in order to pour enough metal for high-speed continuous casting, it is necessary to reduce the penetration depth of non-metallic inclusions into the mold to facilitate their floating separation. The reality is that it has not been possible to satisfy both the problem of suppressing the disturbance of the surface of the hot water and pouring the hot water at the expense of one of them to some extent.

この発明は上記の事情に鑑みてなされたもので、非金属
介在物を鋳型内の溶湯内に深く侵入させず、また鋳型内
湯面を特に乱れさせずに注湯を行なうことので4きるノ
ズルを提供することを目的とするものであり、そしてこ
の発明の特徴とするところ3− は、溶融金属を流通させるべき内部に、溶融金属の流動
に対して抵抗となる抵抗部を設けた点にある。
This invention was made in view of the above circumstances, and it is possible to pour molten metal without causing non-metallic inclusions to penetrate deeply into the molten metal in the mold, and without disturbing the molten metal surface in the mold. The third feature of the present invention is that a resistance part is provided in the interior where the molten metal is to flow, providing resistance to the flow of the molten metal. .

以下この発明の実施例を添付の図面を参照して説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図ないし第3図はこの発明の一実施例を示す断面図
であって、ここに示す浸漬ノズル1は、矩形断面をなす
とともに、その内部に複数の抵抗部2を設け、さらに上
端部にタンディツシュ(図示せず)へ固定するためのフ
ランジ部3を形成するとともに、下端開口部を吐出口4
とした構成とされている。その抵抗部2は、鋳型(図示
せず)に注湯すべき溶湯の流動に対し抵抗となるもので
あって、適宜の耐火物によって図に示すよう円柱状に形
成されるとともに、浸漬ノズル1の厚さ方向に軸線を向
けて固定されている。そして各抵抗部2は第1図および
第4図に示すように、溶湯の流動方向(図中矢印A)に
対し直交する方向(すなわち水平方向)に沿って複数列
(図示の例では3列)に一定ピツチWで配列されるとと
もに、第4− 4図に示すように各列でのピッチWがW/2ずれており
、換言すれば抵抗部2は所謂3角錯列に配置されている
。ここで抵抗部2の、直径をdとし、また各列の間隔を
lとした場合、抵抗部2の直径dと前記ピッチWとの比
W/dを2〜3に設定し、かつ抵抗部2の直径dと各列
の間隔!との比1/dを2〜4に設定することが好まし
い。すなわちW/d<2でR/d<2の場合には、溶湯
に対する流動抵抗が大きくなりすぎ、また溶湯の凝固あ
るいは抵抗部2の周囲に対する非金属介在物の付着が生
じた場合にノズル詰りを発生し易く、その結果鋳込み流
量を確保できなくなる危険が多分にある。またW/d>
3でl/d>4の場合には、溶湯に対する流動抵抗が低
くなりすぎて注湯流を充分減速できず、その結果溶製中
の非金属介在物を鋳型内溶瀾に深く侵入させてしまう危
険が多分にある。
1 to 3 are cross-sectional views showing one embodiment of the present invention, and the immersion nozzle 1 shown here has a rectangular cross section, and has a plurality of resistor parts 2 provided therein, and further has an upper end portion. A flange portion 3 for fixing to a tundish (not shown) is formed on the flange portion 3, and a lower end opening is formed as a discharge port 4.
It is said that the structure is as follows. The resistance part 2 serves as a resistance to the flow of molten metal to be poured into a mold (not shown), and is formed into a cylindrical shape as shown in the figure by an appropriate refractory material, and is connected to the immersion nozzle 1. It is fixed with the axis oriented in the thickness direction. As shown in FIGS. 1 and 4, each resistance section 2 is arranged in multiple rows (three rows in the illustrated example) along a direction (i.e., horizontal direction) perpendicular to the flow direction of the molten metal (arrow A in the figure). ) with a constant pitch W, and the pitch W in each row is shifted by W/2 as shown in Figure 4-4.In other words, the resistor parts 2 are arranged in a so-called triangular array. There is. Here, if the diameter of the resistance section 2 is d and the interval between each row is l, the ratio W/d of the diameter d of the resistance section 2 and the pitch W is set to 2 to 3, and the resistance section Diameter d of 2 and spacing between each row! It is preferable to set the ratio 1/d to 2 to 4. In other words, when W/d<2 and R/d<2, the flow resistance to the molten metal becomes too large, and if the molten metal solidifies or nonmetallic inclusions adhere to the periphery of the resistance part 2, the nozzle may become clogged. This is likely to occur, and as a result, there is a high risk that the casting flow rate will not be secured. Also W/d>
If l/d > 4 in 3, the flow resistance to the molten metal becomes too low and the pouring flow cannot be slowed down sufficiently, resulting in non-metallic inclusions being made to penetrate deeply into the molten metal in the mold. There is a lot of danger of it getting lost.

しかして上記のように構成した浸漬ノズル1によって連
続鋳造設備におけるタンディツシュから鋳型に注湯を行
なうと、浸漬ノズル1内を流動する溶湯流は抵抗部2に
よる流動抵抗によって減速サレ、したがって溶湯流の鋳
型内における下向きノ運動エネルギが小さくなるから、
非金属介在物1!IC浮上分離させることができ、また
吐出口4ヲ下向きとしておくことができるから、鋳型内
湯面の乱れを防止することができる。さらに上記の浸漬
ノズル1では、吐出口4の面積を減じる要因が特にはな
いから、高速鋳造を行なう場合であっても、充分な量の
Imを鋳型に供給することができる。
However, when pouring metal into a mold from a tundish in continuous casting equipment using the immersion nozzle 1 configured as described above, the flow of molten metal flowing inside the immersion nozzle 1 is slowed down by the flow resistance of the resistance part 2, and therefore the flow of the molten metal is slowed down. Because the downward kinetic energy within the mold is reduced,
Non-metallic inclusion 1! Since the IC can be floated and separated, and the discharge port 4 can be directed downward, disturbance of the molten metal level in the mold can be prevented. Furthermore, in the above-mentioned immersion nozzle 1, since there is no particular factor that reduces the area of the discharge port 4, a sufficient amount of Im can be supplied to the mold even when performing high-speed casting.

なお、この発明のノズルは第1図ないし第3図に示−す
形状に限定されるものではなく、例えば第5図ないし第
7図に示す構成であってもよい。すなわち第5図ないし
第7図に示すノズル1Oは、フランジ部11を設けた上
端部から所定寸法の位置までの第1ゾーン12を円筒状
とするとともに、第1ゾーン12から下端の吐出口13
までの第2ゾーン14を中空矩形状とし、その第2ゾー
ン14の内部に前記抵抗部2を設けた構成である。この
ように構成したノズル1Oであっても、前記抵抗部2が
注湯流を減速するよう作用するから、第1図ないし第3
図に示す浸漬ノズル1と同様な効果を得ることができる
Note that the nozzle of the present invention is not limited to the shape shown in FIGS. 1 to 3, but may have the configuration shown in FIGS. 5 to 7, for example. That is, in the nozzle 1O shown in FIGS. 5 to 7, the first zone 12 from the upper end where the flange portion 11 is provided to a position of a predetermined dimension is cylindrical, and the discharge port 13 at the lower end from the first zone 12 is cylindrical.
The second zone 14 up to the second zone 14 has a hollow rectangular shape, and the resistance section 2 is provided inside the second zone 14. Even with the nozzle 1O configured in this way, the resistance portion 2 acts to decelerate the flow of the poured metal, so as shown in FIGS.
The same effects as the immersion nozzle 1 shown in the figure can be obtained.

つぎにこの発明の効果を確認するために行なった実験例
を比較例と共に記す。
Next, experimental examples conducted to confirm the effects of the present invention will be described together with comparative examples.

実験例■ 注入流に対する減速効果を確認した。Experimental example ■ The deceleration effect on the injection flow was confirmed.

第1図ないし第3図に示す形状の浸漬ノズル(長さ10
00IIi11吐出ロ断面積450X70mJ)を製作
し、その内部に円柱状の抵抗部(直径d−50111+
11)を3列で3角錐列に配置した。これに対し、比較
例として抵抗部のないノズルを用いた。
Immersion nozzle (length 10
00IIi11 (cross-sectional area: 450 x 70 mJ) was fabricated, and a cylindrical resistance section (diameter d-50111+
11) were arranged in three rows in a triangular pyramid row. On the other hand, a nozzle without a resistance part was used as a comparative example.

水を流して吐出流速を測定したところ、流量を8.61
/secとした場合、本発明列では、流速が70CI/
SeCであったのに対し、比較例では、25Qc+a、
/Secとなり、抵抗部を設けることにより、約7割の
減速効果があることが認められた。
When I measured the discharge flow rate by flowing water, the flow rate was 8.61.
/sec, in the present invention column, the flow rate is 70CI/sec.
SeC, whereas in the comparative example, 25Qc+a,
/Sec, and it was confirmed that the provision of the resistance section had a deceleration effect of about 70%.

実験例■ 本発明例として、第5図ないし第7図に示す形状のノズ
ルを用い、第1ゾーンの長さを5O01I1117− その内径を70Illlとし、また第2ゾーンの長さを
4001−とするとともに、吐出口断面寸法を70X4
00−とじた。さらに第2ゾーンの内部に設けた抵抗部
は円柱状とし、その直径d=50+u+、ピッチW−1
00u+、各列の間隔1−100nv+に設定するとと
もに1.3列の3角錐列配置とした。
Experimental Example ■ As an example of the present invention, a nozzle having the shape shown in Figs. 5 to 7 is used, the length of the first zone is 5O01I1117-, the inner diameter is 70Illl, and the length of the second zone is 4001- At the same time, the cross-sectional dimensions of the discharge port are set to 70X4.
00- Closed. Furthermore, the resistance part provided inside the second zone is cylindrical, its diameter d=50+u+, and the pitch W-1.
00u+, the interval between each row was set to 1-100nv+, and the triangular pyramid array was arranged in 1.3 rows.

比較例として、内径70111吐出ロ数2、吐出口径7
0i園、吐出口角度下向き159のノズルA1および第
1図ないし第3図に示す形状でかつ抵抗部の無いノズル
Bを用いた。
As a comparative example, the inner diameter is 70111, the discharge number is 2, and the discharge opening diameter is 7.
A nozzle A1 with a discharge opening angle of 159 downward and a nozzle B having a shape shown in FIGS. 1 to 3 and without a resistance portion were used.

JISM格でのSPCEImを230X1500−サイ
ズの鋳型に鋳造速度1.5 m/*で鋳込んだ。
SPCE Im with JISM rating was cast into a 230X1500-size mold at a casting speed of 1.5 m/*.

得られた鋳片について介在物の量をスライム電解抽出法
によって調べたところ、本発明例のノズルを用いた場合
には、直径50μ以上の介在物が、0.021(1/1
0 kQ −5teelであったのに対し、比較例のノ
ズルAを用いた場合には、0.30 m1ll/10 
kg・5t13e+であり、比較例のノズル8を用いた
場合には0,21 so/1o ko −5teelで
あった。
When the amount of inclusions in the obtained slab was investigated by the slime electrolytic extraction method, when the nozzle of the present invention example was used, the amount of inclusions with a diameter of 50μ or more was 0.021 (1/1
0 kQ -5teel, whereas when using nozzle A of the comparative example, it was 0.30 ml/10
kg・5t13e+, and when the nozzle 8 of the comparative example was used, it was 0.21 so/1o ko -5teel.

8− また鋳造中における鋳型内湯面の変動幅について測定し
たところ、本発明例のノズルを用いた場合には±6g+
mであり、これに対し比較例のノズル八を用いた場合に
は、±151111であった。
8- Also, when we measured the fluctuation range of the mold level during casting, when the nozzle of the present invention was used, it was ±6g+
m, and on the other hand, when nozzle 8 of the comparative example was used, it was ±151111.

これらの実験例から、この発明に係るノズルでは、注S
流の流速を充分減速でき、また非金属介在物の減少に効
果的であることが認められた。
From these experimental examples, it is clear that the nozzle according to the present invention
It was found that the flow rate of the flow could be sufficiently reduced, and that it was also effective in reducing nonmetallic inclusions.

以上の説明から明らかなようにこの発明によれば、抵抗
部により注1Ji流を減速する構成であるから、高fi
連続鋳造に充分な量の注湯を行なう場合であっても、非
金属介在物か溶湯の深くまで侵入することを防止できる
と同時に、湯面の乱れを防止でき、したがってこの発明
に係るノズルを用いて連続鋳造を行なった場合には、表
面欠陥や内部欠陥がなく、清浄度の高い鋳片を得ること
ができるなどの効果がある。
As is clear from the above description, according to the present invention, since the resistance section is configured to decelerate the flow, the high-fi
Even when a sufficient amount of molten metal is poured for continuous casting, it is possible to prevent non-metallic inclusions from penetrating deep into the molten metal, and at the same time prevent the molten metal surface from being disturbed. When continuous casting is performed using this method, there are advantages such as being able to obtain slabs with high cleanliness and no surface defects or internal defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3因はこの発明の一実施例を示す略解図
であって、第1図は縦断面図、第2図は第1図の■−■
線矢視図挽回3図は第1図の■−■線矢挽回であり、第
4図は抵抗部の配列を示す説明図、さらに第5図ないし
第7図はこの発明の他の実施例を示す略解図であって、
第5図は縦断面図、第6図は第5図のVI −Vl線矢
視挽回第7図は第5図のVl−Vl線矢視挽回ある。 1・・・浸漬ノズル、 2・・・抵抗部、 1O・・・
ノズル、d・・・抵抗部の直径、 !・・・抵抗部の列
の間隔、W・・・抵抗部のピッチ。 出願人 川崎製鉄株式会社 代理人 弁理士 豊田武久 (ばか1名) 11− へ
Figures 1 to 3 are schematic diagrams showing an embodiment of the present invention, in which Figure 1 is a longitudinal cross-sectional view, and Figure 2 is a cross-sectional view of Figure 1.
Figure 3 is a diagram showing the ■-■ line diagram in Figure 1, Figure 4 is an explanatory diagram showing the arrangement of the resistor parts, and Figures 5 to 7 are other embodiments of the present invention. It is a schematic diagram showing
5 is a vertical sectional view, FIG. 6 is a view taken along the line VI-Vl in FIG. 5, and FIG. 7 is a view taken along the line Vl-Vl in FIG. 1... Immersion nozzle, 2... Resistance part, 1O...
Nozzle, d...Diameter of resistance part, ! ... Spacing between rows of resistance sections, W... Pitch of resistance sections. Applicant Kawasaki Steel Co., Ltd. Agent Patent Attorney Takehisa Toyota (one idiot) 11- To

Claims (2)

【特許請求の範囲】[Claims] (1)溶融金属を流通させるべき内部に、溶融金属の流
動に対して抵抗となる抵抗部を設けたことを特徴とする
溶融金属注湯用ノズル。
(1) A nozzle for pouring molten metal, characterized in that a resistance portion that provides resistance to the flow of molten metal is provided inside the interior through which molten metal is to flow.
(2)円形断面の複数の前記抵抗部が、前記溶融金属の
流動方向に対して直交する方向に沿って一定ピッチで複
数列に配列させるとともに、隣接する各列相互における
抵抗部のピッチがずれており、さらに抵抗部の直径dと
各列における抵抗部のピッチWとの比W/dが2〜3で
、かつ抵抗部の直径dと各列相互の間隔lどの比l/d
が2〜4となるよう設定されていることを特徴とする特
許請求の範囲第1項記載の溶融金属注湯用ノズル。
(2) The plurality of resistance parts each having a circular cross section are arranged in a plurality of rows at a constant pitch along a direction perpendicular to the flow direction of the molten metal, and the pitches of the resistance parts in adjacent rows are shifted from each other. Furthermore, the ratio W/d of the diameter d of the resistance part and the pitch W of the resistance part in each row is 2 to 3, and the ratio l/d of the diameter d of the resistance part and the interval l between each row is
2. The molten metal pouring nozzle according to claim 1, wherein the molten metal pouring nozzle is set to be 2 to 4.
JP23858183A 1983-12-16 1983-12-16 Nozzle for pouring molten metal Pending JPS60130456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23858183A JPS60130456A (en) 1983-12-16 1983-12-16 Nozzle for pouring molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23858183A JPS60130456A (en) 1983-12-16 1983-12-16 Nozzle for pouring molten metal

Publications (1)

Publication Number Publication Date
JPS60130456A true JPS60130456A (en) 1985-07-11

Family

ID=17032332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23858183A Pending JPS60130456A (en) 1983-12-16 1983-12-16 Nozzle for pouring molten metal

Country Status (1)

Country Link
JP (1) JPS60130456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373890A (en) * 1991-09-06 1994-12-20 Mitsubishi Denki Kabushiki Kaisha Horizontal continuous casting method and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373890A (en) * 1991-09-06 1994-12-20 Mitsubishi Denki Kabushiki Kaisha Horizontal continuous casting method and its device

Similar Documents

Publication Publication Date Title
EP0265235B1 (en) Continuous casting of composite metal material
AU2007329897B2 (en) Molten metal continuous casting method
US6557623B2 (en) Production method for continuous casting cast billet
JPS60130456A (en) Nozzle for pouring molten metal
EP0186852B2 (en) Tundish for continuous casting of free cutting steel
JP3018960B2 (en) Continuous casting method and its straight immersion nozzle
JP2938323B2 (en) Inclusion removal method in tundish for continuous casting
JP2001347348A (en) Immersion nozzle for continuous casting
US3707439A (en) Device for charging a mold for continuous casting of a hollow ingot
JP4998705B2 (en) Steel continuous casting method
JPH0339780B2 (en)
SK166399A3 (en) Method and device for producing slabs
JPH08155593A (en) Method for continuously casting thin cast slab and immersion nozzle for continuous casting
CA1180532A (en) Tundish plate for stream shaped control
JPH01113159A (en) Submerged nozzle for continuous casting
JPS6325001Y2 (en)
EP0264809A1 (en) Refractory pouring tube
JPS6114051A (en) Immersion nozzle for continuous casting
RU2111081C1 (en) Method of continuous casting of steels of various grades and device for its realization
JP3139927B2 (en) Continuous casting of thin slabs
JPS62130752A (en) Continuous casting method for bloom or billet
JPH0238058B2 (en)
SU757246A1 (en) Apparatus for bottom pouring
JP3039821B2 (en) Immersion nozzle for continuous casting and method of pouring molten steel
JPH05285614A (en) Continuous casting method