JPS6013017Y2 - Absorption chiller with heating/cooling switching and automatic concentration adjustment mechanism - Google Patents

Absorption chiller with heating/cooling switching and automatic concentration adjustment mechanism

Info

Publication number
JPS6013017Y2
JPS6013017Y2 JP1980169399U JP16939980U JPS6013017Y2 JP S6013017 Y2 JPS6013017 Y2 JP S6013017Y2 JP 1980169399 U JP1980169399 U JP 1980169399U JP 16939980 U JP16939980 U JP 16939980U JP S6013017 Y2 JPS6013017 Y2 JP S6013017Y2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
cooling
concentration
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980169399U
Other languages
Japanese (ja)
Other versions
JPS5690665U (en
Inventor
悦夫 藤田
博幸 原
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP1980169399U priority Critical patent/JPS6013017Y2/en
Publication of JPS5690665U publication Critical patent/JPS5690665U/ja
Application granted granted Critical
Publication of JPS6013017Y2 publication Critical patent/JPS6013017Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、冷暖房の切替と循環溶液濃度の自動調節とを
兼ねる機構を備えた吸収冷凍機に関する。
[Detailed Description of the Invention] The present invention relates to an absorption refrigerator equipped with a mechanism that switches between heating and cooling modes and automatically adjusts the concentration of a circulating solution.

一般に、吸収冷凍機を冷暖房に用いる場合、その冷暖房
の切替機構と、冷房運転時の変動条件において循環溶液
を結晶させないようにその濃度を自動的に変化させる機
構とが必要とされるが、従来のものではこれらの機構が
別個に設けられることになるので、構造が複雑化し、製
作コストが上昇するという問題点がある。
Generally, when an absorption refrigerator is used for cooling and heating, it requires a switching mechanism for heating and cooling, and a mechanism that automatically changes the concentration of the circulating solution to prevent it from crystallizing under fluctuating conditions during cooling operation. Since these mechanisms are provided separately, the structure becomes complicated and the manufacturing cost increases.

本考案は、このような問題点を解決しようとするもので
、吸収冷凍機に冷暖房の切替と循環溶液濃度の自動調節
とを兼ねる機構を備えて、その機能の充実と構造の簡素
化をはかることを目的とする。
The present invention aims to solve these problems by equipping the absorption refrigerator with a mechanism that switches between heating and cooling modes and automatically adjusts the concentration of the circulating solution, thereby enhancing its functionality and simplifying its structure. The purpose is to

・このため本考案の冷暖房切替兼濃度自動
調節機構を有する吸収冷凍機は、再生器9分離器、@縮
器、蒸発器、吸収器、熱交換器からなる吸収冷凍機にお
いて、上記凝縮器の下部から導かれた太い流路を、一定
の液面高さを保つためのオーバーフロ一部および溜り部
と、これよりオーバーフローした液を上記蒸発器へ噂び
くための第1の導管の開口部とを有する定液面装置に接
続するとともに、この定障面装置の溜り部と第2の導管
で連通された冷媒抽を設けて、この冷媒溜の上部側面か
ら太い流路婆″上記蒸発器へ接続し、上記第1め導管を
細いU$状導管として形成するとともに、上記第2の
を太いU字状導管として形成したこと て
いる。
・For this reason, the absorption refrigerator having the cooling/heating switching and concentration automatic adjustment mechanism of the present invention is composed of a regenerator, 9 separators, @ condenser, evaporator, absorber, and heat exchanger. A thick flow path led from the bottom includes an overflow part and a reservoir part for maintaining a constant liquid level height, and an opening of a first conduit for discharging the overflowing liquid from this to the evaporator. A refrigerant bleeder is connected to a constant liquid level device having a constant liquid level device, and a refrigerant bleeder is connected to the reservoir portion of the constant liquid level device through a second conduit, and a thick flow path is connected to the evaporator from the upper side of the refrigerant reservoir. The first conduit is formed as a thin U$-shaped conduit, and the second conduit is connected to the second conduit.
The pipe is formed as a thick U-shaped conduit.

上述の 吸収冷凍機では、オーバーフロ一部およ
び り部を持った定液面装置を設けてそ、め溜り部と冷
媒溜とが太いU字状導管で連結されている
に対しても上記U字状導管内の け
ることはなく、上記定液面装置 に定液面
が保たれて、運転状態に応じた溶液の濃度調整を確実に
行なうことができるのであり、また運転停止時でも冷媒
を保有できるので、省エネルギーに寄与しうるほか、運
転の再開を容易に且つ円滑に行なえる利点がある。
In the above-mentioned absorption refrigerator, a constant liquid level device with an overflow section and a refrigerant section is provided, and the reservoir section and the refrigerant reservoir are connected by a thick U-shaped conduit.
Therefore, the liquid level in the U-shaped conduit is not exceeded, and a constant liquid level is maintained in the constant liquid level device, making it possible to reliably adjust the concentration of the solution according to the operating conditions. Since the refrigerant can be retained even when the operation is stopped, it not only contributes to energy saving but also has the advantage that the operation can be restarted easily and smoothly.

特に冷媒溜の上部側面から太い流路を蒸発器に接続して
いるので、冷媒溜に溜った液が上記流路に達すると、冷
媒は蒸発器にバイパスし、これにより循環溶液の過濃縮
がなく、結晶析出による運転不能は起こらない。
In particular, a thick flow path is connected to the evaporator from the upper side of the refrigerant reservoir, so when the liquid accumulated in the refrigerant reservoir reaches the flow path, the refrigerant bypasses the evaporator, thereby preventing overconcentration of the circulating solution. There is no possibility of operation failure due to crystal precipitation.

更に凝縮器の下部から定液面装置へ接続された太い流路
、前述の太いU字状導管および冷媒溜の上部側面から蒸
発器へ至る太い流路、の作用により、暖房切替時に冷媒
を循環溶液に返して暖房時の濃度を薄めるへともに、暖
房時の冷媒蒸気の通路を形成しうるのであり、次のよう
な作用が得られる。
Furthermore, the refrigerant is circulated during heating switching by the action of the thick flow path connected from the bottom of the condenser to the constant liquid level device, the aforementioned thick U-shaped conduit, and the thick flow path from the upper side of the refrigerant reservoir to the evaporator. By returning it to a solution, the concentration during heating can be diluted, and at the same time it can form a path for refrigerant vapor during heating, resulting in the following effects.

(1)冷暖房の自動切替機能が得られる。(1) Automatic switching function for heating and cooling can be obtained.

(2)循環溶液濃度の自動調節機能が、冷房時および暖
房時に次のように発揮される。
(2) The automatic adjustment function of the circulating solution concentration is performed as follows during cooling and heating.

冷房時 定格点からの冷却水温の変化に対応し、次のように作動
する。
It operates as follows in response to changes in cooling water temperature from the cooling rated point.

a 冷却水温が高くなると、自動的に循環溶液の濃度を
上げて、:冷房能力の低下を防止するが、溶液には濃度
と温度により結晶が析出する性質があり、晶出による運
転不能を防止するため、許容最大濃度より濃くならない
ように冷媒溜19の側面に接続された前述の太い流路に
より、冷媒液面が過上昇した場合にオーバーフローが行
なわれる。
a When the cooling water temperature rises, the concentration of the circulating solution is automatically increased to prevent a drop in cooling capacity, but the solution has the property of precipitating crystals depending on the concentration and temperature, so it prevents operation failure due to crystallization. Therefore, if the refrigerant liquid level rises excessively, overflow occurs due to the above-mentioned thick flow path connected to the side surface of the refrigerant reservoir 19 to prevent the refrigerant concentration from becoming more concentrated than the maximum allowable concentration.

また、運転停止時にも、前述の太いU字状導管&く冷媒
を保有することができる。
Further, even when the operation is stopped, the refrigerant can be retained in the thick U-shaped conduit described above.

b 冷却水温が低くなると、自動的に循環溶液の濃度を
下げて、・吸収能力の過大増加による蒸発器での冷媒の
凍結によ、る運転不能が防止される。
b. When the cooling water temperature becomes low, the concentration of the circulating solution is automatically lowered to prevent operation failure due to freezing of the refrigerant in the evaporator due to an excessive increase in absorption capacity.

暖房時 循環溶液の濃度を大幅に下げて、効率の向上がはかられ
るとともに、外気温の低下に伴う溶液の晶出による運転
不能が防止される。
By significantly lowering the concentration of the circulating solution during heating, efficiency is improved, and operation failure due to crystallization of the solution due to a drop in outside temperature is prevented.

また、定液面装置でオーバーフローした液を蒸発器4へ
導く導管17は、細いU字状導管として形成されている
ので、凝縮器3側のスペースと蒸発器4との間に十分な
圧力差が保たれ、蒸発器4における液の蒸発が効率よく
行なわれる。
In addition, since the conduit 17 that guides the liquid overflowing from the constant liquid level device to the evaporator 4 is formed as a thin U-shaped conduit, there is a sufficient pressure difference between the space on the condenser 3 side and the evaporator 4. is maintained, and the liquid in the evaporator 4 is efficiently evaporated.

次に、図面により本考案の実施例について説明すると、
第1図11冷暖房切替兼濃度自動調節機構を組込む前の
状態を示す系統−FJつモ、再生器1、分離器2.凝縮
器3.蒸発器4.吸収器5゜熱交口器6か98す、これ
らは配管で連結され、所要量の溶液が充填されている。
Next, an example of the present invention will be explained with reference to the drawings.
Fig. 11 shows the system before installing the heating/cooling switching/concentration automatic adjustment mechanism - FJ tube, regenerator 1, separator 2. Condenser 3. Evaporator 4. The absorber 5° and the heat exchanger 6 or 98 are connected by piping and filled with the required amount of solution.

また吸収器5および凝縮器3内の冷却管7.8は、冷却
塔9に冷却水循環ポンプ10を介して連結され、蒸発器
4内の冷温水管11はファンコイル等の空調装置12に
冷温水循環ポンプ13を介して連結されている。
Cooling pipes 7.8 in the absorber 5 and condenser 3 are connected to a cooling tower 9 via a cooling water circulation pump 10, and a cold and hot water pipe 11 in the evaporator 4 circulates cold and hot water to an air conditioner 12 such as a fan coil. They are connected via a pump 13.

なお、再生器1の加熱器14は、外燃式のガス、油等を
用いるバーナまたは内部加熱式の蒸気管、温水管等のい
ずれでもよいが、ここではバーナが示されている。
The heater 14 of the regenerator 1 may be an external combustion type burner using gas, oil, etc. or an internal heating type steam pipe, hot water pipe, etc., but a burner is shown here.

この吸収式冷凍機に使用される溶液としてはアンモニア
水(冷媒:アンモニア、吸収剤:水)臭化リチウム水溶
液(冷媒:水、吸収剤:臭化リチウム)等が実用化され
ているが、本考案の装置は、臭化リチウム水溶液を使用
する場合のごとく、再生器1.凝縮器3の高圧側圧力と
、吸収器5、蒸発器4の低圧側圧力との圧力差(以下、
単に圧力差という。
Aqueous ammonia (refrigerant: ammonia, absorbent: water), lithium bromide aqueous solution (refrigerant: water, absorbent: lithium bromide), etc. have been put into practical use as solutions used in this absorption refrigerator, but in this paper, The device of the invention has a regenerator 1. The pressure difference between the high pressure side pressure of the condenser 3 and the low pressure side pressure of the absorber 5 and evaporator 4 (hereinafter referred to as
It's simply called pressure difference.

)が比較的小さい場合に適用して効を奏するものであり
、以下、臭化リチウム水溶液を使用する場合比ついて説
明する。
) is relatively small, and the case where a lithium bromide aqueous solution is used will be explained below.

吸収冷凍機の冷房作用の場合、加熱器14にて再生器1
内の溶液を加熱沸騰させると、水蒸気の気泡とともに、
溶液が上昇し、分離器2にて、水蒸気と濃溶液とに分離
される=・そして水蒸気は凝縮器3にて凝縮して水とな
り(蒸発器4にて冷温水管11から熱を奪って蒸発する
In the case of the cooling action of an absorption refrigerator, the regenerator 1 is used in the heater 14.
When the solution inside is heated to boiling, along with water vapor bubbles,
The solution rises and is separated into water vapor and concentrated solution in the separator 2. The water vapor then condenses into water in the condenser 3 (evaporator 4 removes heat from the hot and cold water pipe 11 and evaporates. do.

このとき、冷温水管11内に冷水が作られる。At this time, cold water is created in the hot and cold water pipe 11.

一方、濃溶液は分離器2から下降し、熱交換器6を経て
吸収器5に入り、蒸発器4を出た水蒸気を吸収して、蒸
発器4内での蒸発を促進させるとともに自らは希溶液と
なって熱交換器6を経て再生器1にもどり、同じサイク
ルを繰り返す。
On the other hand, the concentrated solution descends from the separator 2, passes through the heat exchanger 6, enters the absorber 5, absorbs the water vapor exiting the evaporator 4, accelerates evaporation in the evaporator 4, and becomes diluted by itself. It becomes a solution and returns to the regenerator 1 via the heat exchanger 6, where the same cycle is repeated.

暖房作用の場合は冷却管7,1に冷却水を通さず、分離
器2を出た水蒸気が凝縮器3で凝縮しないま、ま蒸発器
4に入り冷温水管11で凝縮熱を放出して凝縮する。
In the case of heating, cooling water is not passed through the cooling pipes 7 and 1, and the water vapor leaving the separator 2 does not condense in the condenser 3, but instead enters the evaporator 4 and releases the heat of condensation in the hot and cold water pipe 11, where it is condensed. do.

この時、冷温水管11内に温水が作られる。At this time, hot water is created in the cold/hot water pipe 11.

その他は、□冷房作用と同じ故、説明を省略する。The rest is the same as □ Cooling action, so the explanation will be omitted.

この種の冷凍機は冷媒を低温で蒸発させるため、機内は
高真空に保たれており、冷房運転時で再生器1.凝縮器
3の圧力は60〜70園Hgabs 、蒸発器4.吸収
器5の圧力は6〜7WIHgabS程度となっている。
This type of refrigerator evaporates the refrigerant at a low temperature, so the inside of the refrigerator is kept at a high vacuum, and the regenerator 1. The pressure of the condenser 3 is 60-70 Hgabs, the pressure of the evaporator 4. The pressure in the absorber 5 is about 6 to 7 WIHgabS.

−□第2図に本考案の冷暖房切替兼濃度自動調節機構を
組込んだフローを示す。
-□ Fig. 2 shows the flow of incorporating the heating/cooling switching and automatic concentration adjustment mechanism of the present invention.

冷暖房切替兼濃度自動調節機構は、前述の吸収冷凍機に
おいで、導入管15を介して凝縮器3に接続きれた定液
面装置16と、これを蒸発器4に接続するU字状導管と
しての蒸発器Uシール17と、U字状導管としての冷媒
溜Uシール18を介し定液面装置16に接続された冷媒
溜19と、この冷媒溜1−9を蒸発器4に接続する連結
管20とより構成されている。
The heating/cooling switching and automatic concentration adjustment mechanism is provided in the above-mentioned absorption refrigerator by using a constant liquid level device 16 that is connected to the condenser 3 via the introduction pipe 15 and a U-shaped conduit that connects this to the evaporator 4. evaporator U seal 17, a refrigerant reservoir 19 connected to the constant liquid level device 16 via a refrigerant reservoir U seal 18 as a U-shaped conduit, and a connecting pipe connecting this refrigerant reservoir 1-9 to the evaporator 4. It consists of 20.

この冷暖房切替兼濃度自動調節機構は濃度自動調節と冷
暖房切替の2つの機能をもうているので、まず濃度自動
調節から説明する。
Since this cooling/heating switching/concentration automatic adjustment mechanism has two functions: automatic concentration adjustment and cooling/heating switching, the automatic concentration adjustment will be explained first.

臭化リチウム水溶液を吸収剤として用いる吸収冷凍機で
は、溶液濃度が薄すぎると吸収器6での吸収能力が減少
して、冷凍能力が減少してじまうし、濃度が濃くなりす
ぎると溶液結晶や冷媒凍結を起こして、運転が不能とな
るので、冷却水量の変動、冷却水温度の変動、冷温水量
の変動、冷温水温度の変動、冷凍負荷め変動などの条件
に対応して常時溶液濃度を適正に調節する必要がある。
In an absorption refrigerator that uses an aqueous lithium bromide solution as an absorbent, if the concentration of the solution is too low, the absorption capacity of the absorber 6 will decrease and the refrigeration capacity will decrease, and if the concentration is too high, the solution will crystallize. Refrigerant freezing may occur, making operation impossible. Therefore, the solution concentration must be constantly adjusted in response to conditions such as fluctuations in the amount of cooling water, fluctuations in the temperature of the cooling water, fluctuations in the amount of cold and hot water, fluctuations in the temperature of cold and hot water, and fluctuations in the refrigeration load. It is necessary to adjust it appropriately.

凝縮器3に入る冷却水温度によつで決定される高圧側圧
力と低圧側圧力との圧力差が上記変動条件に対応して変
動することを利用して、循環溶液中に含まれる冷媒を冷
媒溜19に自動的に分離して溜めることにより圧力差が
少ない場合には溜める量を少なくして循環溶液濃度を薄
くし、圧力差が大きい場合には溜める量を多くして循環
溶液濃度を濃くすると同時に、許容される最大濃度を設
定し、圧力差が大きくなりすぎた場合でも、循環溶液濃
度が最大濃度より以上に濃くならないようにすることに
より、あらゆる運転条件においても循環溶液濃度を適正
にし、これにより・結晶の1威を防止することができる
By utilizing the fact that the pressure difference between the high-pressure side pressure and the low-pressure side pressure, which is determined by the temperature of the cooling water entering the condenser 3, changes in response to the above fluctuation conditions, the refrigerant contained in the circulating solution is By automatically separating and storing the refrigerant in the refrigerant reservoir 19, when the pressure difference is small, the amount stored is reduced to dilute the concentration of the circulating solution, and when the pressure difference is large, the amount stored is increased to reduce the concentration of the circulating solution. At the same time, by setting the maximum allowable concentration and preventing the circulating solution concentration from becoming thicker than the maximum concentration even if the pressure difference becomes too large, the circulating solution concentration can be maintained at an appropriate level under all operating conditions. By doing so, it is possible to prevent the power of crystals.

冷暖房切替兼濃度自動調節機構の一例としての詳細構造
を第3図に示す。
FIG. 3 shows a detailed structure of an example of a heating/cooling switching/concentration automatic adjustment mechanism.

第3図において、凝縮器3で凝縮した冷媒は導入管15
で定液面装置16に導入される。
In FIG. 3, the refrigerant condensed in the condenser 3 is transferred to the inlet pipe 15.
The liquid is then introduced into the constant liquid level device 16.

定液面装置16には、オーバーフロ一部16aおよび溜
り部16bがあり、凝縮器3からの冷媒はこの溜り部1
′6b側1こ流し込まれることにより、□運転条件が変
動しても、溜り部16bの液面は常に一定になっている
The constant liquid level device 16 has an overflow part 16a and a reservoir part 16b, and the refrigerant from the condenser 3 flows into this reservoir part 1.
By pouring the liquid into the side 16b, the liquid level in the reservoir 16b remains constant even if the operating conditions change.

そしてオーバーフローした冷媒は細いU字状導管として
の蒸発器Uシール17により蒸発器4へ入る。
The overflowing refrigerant then enters the evaporator 4 through the evaporator U-seal 17 as a narrow U-shaped conduit.

このようにして、凝縮器3側のスペースと蒸発器4とは
、細いU字状導管で連結されるので、両者間に十分な圧
力差が保たれ、蒸発器4における蒸発は効率よく行なわ
れる。
In this way, the space on the condenser 3 side and the evaporator 4 are connected through a thin U-shaped conduit, so a sufficient pressure difference is maintained between the two, and evaporation in the evaporator 4 is performed efficiently. .

また溜り部16bの冷媒は太いU字状導管としての冷媒
溜Uシール18を通じて冷媒溜19に入り、圧力差に相
当する高さHまで冷媒溜19に溜まる。
Further, the refrigerant in the reservoir 16b enters the refrigerant reservoir 19 through the refrigerant reservoir U seal 18, which is a thick U-shaped conduit, and accumulates in the refrigerant reservoir 19 to a height H corresponding to the pressure difference.

こめ圧力差に相当する高さHが、圧力差の変動により変
動し、その結果、溜まる冷媒量が変動することにより循
環溶液濃度が変動する。
The height H corresponding to the pressure difference changes as the pressure difference changes, and as a result, the circulating solution concentration changes as the amount of refrigerant that accumulates changes.

冷媒溜19の上部側面から蒸発器4に通じる連結管20
は、第3図に示すようiと冷媒溜19との接続点で最も
高くなっていて、これにより冷媒溜19のオーバーフロ
ーの位置を決定し、循環溶液の最大濃度を決める。
A connecting pipe 20 leading from the upper side of the refrigerant reservoir 19 to the evaporator 4
is highest at the connection point between i and the refrigerant reservoir 19, as shown in FIG. 3, thereby determining the location of the overflow of the refrigerant reservoir 19 and determining the maximum concentration of the circulating solution.

この具体例として、第5図に、濃度自動調節の場合のサ
イクルM、 Nを示す。
As a specific example of this, FIG. 5 shows cycles M and N in the case of automatic concentration adjustment.

冷却水温度が上昇した場合や高負荷の場合、あるいは冷
却水量が減少した場合には、圧力差力状きくなり、・前
記の高さHが大きくなって、循環溶液濃度が濃くなる。
When the temperature of the cooling water increases, when the load is high, or when the amount of cooling water decreases, the pressure difference increases, and the above-mentioned height H increases and the concentration of the circulating solution increases.

また冷却水塩度が下降した場合や低負荷の場合、あるい
は冷却水量が増加した場合は、圧力差が小さくなり、前
記の高さHが小さくなって、循環溶液濃度が薄くなり、
このようにして常に適正な濃度となる。
In addition, when the salinity of the cooling water decreases, when the load is low, or when the amount of cooling water increases, the pressure difference becomes smaller, the above-mentioned height H becomes smaller, and the circulating solution concentration becomes thinner.
In this way, the appropriate concentration is always achieved.

以上の冷房運転中における濃度自動調節において、定液
面装置1.6と冷媒溜19とは太いU字状導管としての
冷媒溜Uシール18を介して連結されているため、濃度
調節を確実に行なうことができるとともに、安定した運
転および省エネルギー運転を行なうととができる。
In the above automatic concentration adjustment during cooling operation, the constant liquid level device 1.6 and the refrigerant reservoir 19 are connected via the refrigerant reservoir U seal 18, which is a thick U-shaped conduit, so that the concentration can be adjusted reliably. In addition, stable operation and energy-saving operation can be achieved.

すなわち、上述のごとく定液面装置16と冷媒溜19と
を連結する管18が太いU字状導管になっているので、
凝縮器3と蒸発器4との圧力差に相当する高さH相当量
の冷媒の他に、常に一定量の冷媒をU字状導管内に保有
することができる。
That is, as mentioned above, since the pipe 18 connecting the constant liquid level device 16 and the refrigerant reservoir 19 is a thick U-shaped conduit,
In addition to the amount of refrigerant corresponding to the height H corresponding to the pressure difference between the condenser 3 and the evaporator 4, a constant amount of refrigerant can always be held in the U-shaped conduit.

このため例えば、□゛冷却水温の急激な上昇により圧力
差が大きくなる等の運転条件の急文カ゛あっても、との
圧力差が増す遠度に見合)高さHめ冷媒を確実に保持す
ることができるので、蒸発器4への冷媒の吹抜けが防止
され、安定した運転が行なえるようになるとともに、無
効冷媒(冷房に寄与しない冷媒)の発生をなくして省エ
ネルギー化を図ることができる。
For this reason, for example, □ Even if there is an urgent change in operating conditions such as a sudden increase in the pressure difference due to a sudden rise in the cooling water temperature, the refrigerant can be reliably held at a height H (commensurate with the distance where the pressure difference increases). This prevents the refrigerant from blowing into the evaporator 4, allowing stable operation, and also helps save energy by eliminating the generation of ineffective refrigerant (refrigerant that does not contribute to cooling). .

また、冷房運転時に冷房負荷の状態によっては運転、停
止を繰返し、停止すると凝縮器と蒸発器との間に圧力差
がなくなるため、高さHの差がなくなるまで冷媒溜19
側から定液面装置16側へ冷媒が移動するが1、冷媒溜
Uシール1,8.定液面装置16および冷媒溜19の内
部には常に冷媒を保有しておくことができるので再起動
時にスムーズに定常運転へ移行することが可能になると
ともに、再起動のつと冷媒を溜めるステップ(この間は
冷房に寄与しない。
In addition, during cooling operation, depending on the state of the cooling load, the operation and stop may be repeated, and when it is stopped, there will be no pressure difference between the condenser and evaporator, so the refrigerant reservoir 19 will be closed until the difference in height H disappears.
The refrigerant moves from the side to the constant liquid level device 16 side, but the refrigerant reservoir U seals 1, 8. Since refrigerant can always be kept inside the constant liquid level device 16 and the refrigerant reservoir 19, it is possible to smoothly transition to steady operation at the time of restart, and the step of storing refrigerant ( During this time, it does not contribute to cooling.

)の必要がなく、効率のよい運転を行なうことができる
), allowing efficient operation.

次に冷暖房切替の作用を説明すると、冷房運転時に第3
図の蒸発器Uシール17および冷媒溜Uシール18は、
冷媒により液体封鎖されて圧力差を保っている。
Next, to explain the effect of cooling/heating switching, the third
The evaporator U seal 17 and refrigerant reservoir U seal 18 shown in the figure are as follows:
The pressure difference is maintained by liquid sealing with refrigerant.

暖房運転に入ると、前述のとおり冷却管7,8に冷却水
が通されないので、暖房運転開始時の圧力差は冷房運転
時の圧力差よりも大きくなり、蒸発器Uシール17およ
び冷媒溜Uシール18は冷媒封鎖しなく5なり、冷媒は
蒸発器4へ追い出され、蒸発器Uシール17および冷媒
溜Uシール18は蒸気回路となる。
When the heating operation starts, the cooling water is not passed through the cooling pipes 7 and 8 as described above, so the pressure difference at the start of the heating operation is larger than the pressure difference during the cooling operation, and the evaporator U seal 17 and the refrigerant reservoir U The seal 18 no longer blocks the refrigerant, and the refrigerant is expelled to the evaporator 4, and the evaporator U seal 17 and the refrigerant reservoir U seal 18 form a vapor circuit.

液体封鎖がなくなると、凝縮器3と蒸発器4の圧力はほ
とんど同じになる。
When the liquid blockage is removed, the pressures in the condenser 3 and evaporator 4 become almost the same.

また暖房時に冷媒溜19の冷媒をすべて循環溶液にもど
すため、導入管15.冷媒溜Uシール18および連結管
20を蒸気の通りやすい太さにし、蒸発器Uシール17
は前述のごとく比較的細い管として、蒸発器4における
液の蒸発が効率よく行なわれるようにする。
In addition, in order to return all the refrigerant in the refrigerant reservoir 19 to the circulating solution during heating, the inlet pipe 15. The refrigerant reservoir U seal 18 and the connecting pipe 20 are made thick enough to allow steam to pass through, and the evaporator U seal 17
As mentioned above, the tube is relatively thin so that the liquid in the evaporator 4 can be efficiently evaporated.

冷媒溜19に溜った冷媒を積極的に追い出すようにした
具体例を第4図に示す。
A specific example in which the refrigerant accumulated in the refrigerant reservoir 19 is actively expelled is shown in FIG.

すなわち、冷媒溜Uシール18ど連結管20とを連通し
、その連通部に冷媒もどし管21および均圧穴22を設
けることにより、暖房時に冷媒溜Uシール18および連
結管20を流れている蒸気が、冷媒もどし管21より来
る冷媒を小滴にして、エゼクタ−効果で蒸発器4′へ運
ぶようになり、これにより冷媒溜19のすべての冷媒が
循環溶液へ帰る。
That is, by communicating the refrigerant reservoir U seal 18 with the connecting pipe 20 and providing the refrigerant return pipe 21 and pressure equalization hole 22 in the communication portion, the steam flowing through the refrigerant reservoir U seal 18 and the connecting pipe 20 during heating can be The refrigerant coming from the refrigerant return pipe 21 is made into small droplets and transported to the evaporator 4' by the ejector effect, whereby all the refrigerant in the refrigerant reservoir 19 returns to the circulating solution.

このようにして第5図に示す通り、冷房時の循環溶液濃
厚よりも暖房時の循環溶液濃度を薄くすることができる
In this way, as shown in FIG. 5, the concentration of the circulating solution during heating can be made thinner than the concentration of the circulating solution during cooling.

□。すなわち、冷房
運転時に冷暖房切替兼濃度自動調節機構で変わりうる濃
度範囲は、第5図のサイクルM、 Nの内部である。
□. That is, the concentration range that can be changed by the cooling/heating switching/concentration automatic adjustment mechanism during cooling operation is within cycles M and N in FIG. 5.

冷房運転時に蒸発器Uシール17および冷媒溜Uシール
18には冷媒が溜っており、しかも冷媒溜Uシール18
は暖房時の蒸気回路となるため太いので、冷媒の溜る量
も多く、この冷媒が暖房運転に入ると循環溶液中にもど
るため、冷房運転時循環溶液濃度よりも暖房運転循環溶
液濃度Qが薄くなるのである。
During cooling operation, refrigerant accumulates in the evaporator U seal 17 and the refrigerant reservoir U seal 18, and the refrigerant reservoir U seal 18
is thick because it serves as a steam circuit during heating, so a large amount of refrigerant accumulates, and when heating operation starts, this refrigerant returns to the circulating solution, so the circulating solution concentration Q during heating operation is thinner than the circulating solution concentration during cooling operation. It will become.

また暖房運転にて冷暖房切替兼濃度自動調節機構に冷媒
が全くない状態から冷房運転に入ると、凝縮器3で凝縮
した冷媒が蒸発器Uシール17および冷媒溜Uシール1
8を自然に液体封鎖するので、冷房運転が可能となる。
In addition, when cooling operation is started from a state where there is no refrigerant in the air conditioning/heating switching/concentration automatic adjustment mechanism during heating operation, the refrigerant condensed in the condenser 3 is transferred to the evaporator U seal 17 and the refrigerant reservoir U seal 1.
8 is naturally sealed with liquid, allowing cooling operation.

以上の説明は一重効用吸収冷凍機の場合であるが二重効
用吸収冷凍機の場合も同様に成立することはいうまでも
ない。
Although the above explanation is for a single-effect absorption refrigerator, it goes without saying that the same holds true for a double-effect absorption refrigerator.

上述のごとく、本考案の吸収冷凍機によれば、凝縮器と
蒸発器との間に組込まれた簡素な機構で冷暖房切替およ
び溶液濃度の自動調節とを効率よく行なうことが可能と
なり、全体として安価な構造で充実した機能が得られる
のである。
As mentioned above, according to the absorption refrigerator of the present invention, it is possible to efficiently switch between heating and cooling and automatically adjust the concentration of the solution using a simple mechanism incorporated between the condenser and the evaporator. It is possible to obtain rich functionality with an inexpensive structure.

特に本考案の吸収冷凍機では、オーバーフロ一部および
溜り部を持った定液面装置を設けてその溜り部と冷媒溜
とが太いU字状導管で連結されているから、差圧の変動
に対しても上記U字状導管内の冷媒が蒸発器へ抜けるこ
とはなく、上記定液面装置の溜り部には常に定液面が保
たれて、運転状態に応じた溶液の濃度調整を確実に行な
うことができるのであり、また運転停止時でも冷媒を保
有できるので、省エネルギーに寄与しうるほか、運転の
再開を容易に且つ円滑に行なえる利点がある。
In particular, in the absorption refrigerator of the present invention, a constant liquid level device having an overflow part and a reservoir part is provided, and the reservoir part and the refrigerant reservoir are connected by a thick U-shaped conduit, so that the differential pressure varies. Even during this period, the refrigerant in the U-shaped conduit does not escape to the evaporator, and a constant liquid level is always maintained in the reservoir of the constant liquid level device, allowing the concentration of the solution to be adjusted according to the operating conditions. This can be done reliably, and since the refrigerant can be retained even when the operation is stopped, it not only contributes to energy saving but also has the advantage that the operation can be restarted easily and smoothly.

さらに、凝縮器と定液面装置とが太い流路で連結され、
定液面装置でオーバーフローした液が蒸発器へ細いU字
状導管を介して送られるので、凝縮器側のスペースと蒸
発器との間には十分な圧力差が保たれて、蒸発器におけ
る蒸発作用が効率よく行なわれる利点もある。
Furthermore, the condenser and constant liquid level device are connected through a thick channel,
Since the liquid overflowing from the constant liquid level device is sent to the evaporator through a thin U-shaped conduit, a sufficient pressure difference is maintained between the space on the condenser side and the evaporator, and the evaporation in the evaporator is maintained. It also has the advantage of being efficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷暖房切替兼濃度自動調節機構を組込む前の吸
収冷凍機の系統図、第2図は本考案による冷暖房切替兼
濃度自動調節機構を組込まれた吸収冷凍機の系統図、第
3図は上記冷暖房切替兼濃度自動調節機構の詳細構造を
示す縦断面図、第4図は第3図の一部を詳細に示す縦断
面図であり、第5図は本考案による吸収冷凍機の特性を
示すグラフである。 1・・再生器、2・・分離器、3・・凝縮器、4・・蒸
発器、5・・吸収器、6・・熱交換器、7.8・・冷却
管、9・・冷却塔、10・・冷却水循環ポンプ、11・
・冷温木管、12・・空調装置、13・・冷温水循環ポ
ンプ、14・・加熱器、15・・流路としての導入管、
16・・定液面装置、16a・・オーバーフロ一部、1
6b・・溜り部、17・・U字状導管としての蒸発器U
シール、18・・U字状導管としての冷媒溜Uシール、
19・・冷媒溜、20・・流路としての連結管、21・
・冷媒もどし管、22・・均圧穴。
Figure 1 is a system diagram of an absorption refrigerator before incorporating the heating/cooling switching and automatic concentration adjustment mechanism, Figure 2 is a system diagram of an absorption refrigerator incorporating the heating/cooling switching and automatic concentration adjustment mechanism of the present invention, and Figure 3 4 is a vertical sectional view showing a detailed structure of the air-conditioning/heating switching/concentration automatic adjustment mechanism, FIG. 4 is a longitudinal sectional view showing a part of FIG. 3 in detail, and FIG. 5 shows the characteristics of the absorption refrigerator according to the present invention. This is a graph showing. 1. Regenerator, 2. Separator, 3. Condenser, 4. Evaporator, 5. Absorber, 6. Heat exchanger, 7.8. Cooling pipe, 9. Cooling tower. , 10. Cooling water circulation pump, 11.
・Cold/hot wood pipe, 12.・Air conditioner, 13.・Cold/hot water circulation pump, 14.・Heater, 15.・Introduction pipe as a flow path.
16... Constant liquid level device, 16a... Overflow part, 1
6b... Reservoir part, 17... Evaporator U as a U-shaped conduit
Seal, 18... Refrigerant reservoir U seal as a U-shaped conduit,
19. Refrigerant reservoir, 20. Connecting pipe as flow path, 21.
・Refrigerant return pipe, 22...Pressure equalization hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 再生器19分離器2.凝縮器3.蒸発器4.吸収器5.
熱交換器6からなる吸収冷凍機において、上記凝縮器3
の下部から導かれた太い流路15を、一定の液面高さを
保つためのオーバーフロ一部16aおよび溜り部16b
と、これよりオーバーフローした液を上記蒸発器4へ導
びくための第1の導管17の開口部とを有する定液面装
置16に接続するとともに、この定液面装置、16の溜
り部16bと第2の導管18で連通された冷媒溜19を
設けて、この冷媒溜19の上部側面から太い流路20を
上記蒸発器4へ接続し、上記第1の導管17を細いU字
状導管どして形成するとともに、上記第2の導管18を
太いU字状導管として形成したことを特徴とする、冷暖
房切替兼濃度自動調節機構を有する吸収冷凍機。
Regenerator 19 Separator 2. Condenser 3. Evaporator 4. Absorber 5.
In an absorption refrigerator consisting of a heat exchanger 6, the condenser 3
An overflow part 16a and a reservoir part 16b are used to maintain a constant liquid level.
and an opening of a first conduit 17 for guiding the overflowing liquid from this to the evaporator 4, and a reservoir 16b of this constant liquid level device 16. A refrigerant reservoir 19 communicated with a second conduit 18 is provided, a thick channel 20 is connected to the evaporator 4 from the upper side of the refrigerant reservoir 19, and the first conduit 17 is connected to a thin U-shaped conduit. An absorption refrigerator having a heating/cooling switching and automatic concentration adjustment mechanism, characterized in that the second conduit 18 is formed as a thick U-shaped conduit.
JP1980169399U 1980-11-26 1980-11-26 Absorption chiller with heating/cooling switching and automatic concentration adjustment mechanism Expired JPS6013017Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980169399U JPS6013017Y2 (en) 1980-11-26 1980-11-26 Absorption chiller with heating/cooling switching and automatic concentration adjustment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980169399U JPS6013017Y2 (en) 1980-11-26 1980-11-26 Absorption chiller with heating/cooling switching and automatic concentration adjustment mechanism

Publications (2)

Publication Number Publication Date
JPS5690665U JPS5690665U (en) 1981-07-20
JPS6013017Y2 true JPS6013017Y2 (en) 1985-04-25

Family

ID=29680235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980169399U Expired JPS6013017Y2 (en) 1980-11-26 1980-11-26 Absorption chiller with heating/cooling switching and automatic concentration adjustment mechanism

Country Status (1)

Country Link
JP (1) JPS6013017Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136755A (en) * 1974-04-18 1975-10-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136755A (en) * 1974-04-18 1975-10-30

Also Published As

Publication number Publication date
JPS5690665U (en) 1981-07-20

Similar Documents

Publication Publication Date Title
JPS6013017Y2 (en) Absorption chiller with heating/cooling switching and automatic concentration adjustment mechanism
KR0177718B1 (en) Ammonia absorptive cooler/heater
US3620036A (en) Solution concentration control in absorption refrigeration systems
JPH074769A (en) Single and double effect absorption refrigerating device
JPS62186178A (en) Absorption refrigerator
US3695053A (en) Dilution system for absorption refrigeration systems
JP3813348B2 (en) Absorption refrigerator
JP4281967B2 (en) Absorption chiller / heater
JP2009085571A (en) Absorption type refrigerating device
JP2828700B2 (en) Absorption refrigerator
JP2902305B2 (en) Absorption air conditioner
JP2005061652A (en) Absorption refrigerating machine
JP2538424B2 (en) Single-double-effect absorption refrigerator
KR20020050928A (en) Control Method and Structure of Condensate of an Absorption Chiller with Hot Water Supply Function
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP4073219B2 (en) Absorption chiller / heater
KR200142462Y1 (en) Absorption type cooler
JP2883372B2 (en) Absorption chiller / heater
JP4201418B2 (en) Control method of absorption chiller / heater
JP2954514B2 (en) Absorption air conditioner
JPS5818139Y2 (en) Double effect absorption chiller
JPH0417335B2 (en)
JP2011202948A (en) Absorption refrigerating machine
JPS6118365Y2 (en)
JP2011220675A (en) Absorption refrigerating machine