JPS60129698A - Method of melting and decontaminating radioactivity contaminated metal - Google Patents

Method of melting and decontaminating radioactivity contaminated metal

Info

Publication number
JPS60129698A
JPS60129698A JP23776483A JP23776483A JPS60129698A JP S60129698 A JPS60129698 A JP S60129698A JP 23776483 A JP23776483 A JP 23776483A JP 23776483 A JP23776483 A JP 23776483A JP S60129698 A JPS60129698 A JP S60129698A
Authority
JP
Japan
Prior art keywords
melting
metal
decontamination
metals
uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23776483A
Other languages
Japanese (ja)
Other versions
JPH0562319B2 (en
Inventor
宇田 達彦
弘行 土屋
三浦 襄
伊庭 甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23776483A priority Critical patent/JPS60129698A/en
Publication of JPS60129698A publication Critical patent/JPS60129698A/en
Publication of JPH0562319B2 publication Critical patent/JPH0562319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、ウランを取扱う原子力施設で発生するウラ
ン汚染金属の除染において、高い除染率を得るための溶
融除染法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a melt decontamination method for obtaining a high decontamination rate in the decontamination of uranium-contaminated metals generated at nuclear facilities that handle uranium.

従来、ウラン汚染金属の溶融除染は、試料を当該金属の
酸化物などのスラッギング剤と共に加熱炉へ入れ、溶融
過程でウラン化合物を、当該金属より比重の小さいスラ
グ中へ移行させ分離を行っていた。溶融金属は冷却固化
をしてからスラグ層のみ切り出しウランを除去した。し
かし、この方法ではスラグと溶融金属との分離が完全に
行なわれなく、金属中にスラグ成分が取り残される場合
もある。そこで、溶融処理した時点で溶融金属をろ過し
てスラグ成分を分離除去する方法が、とられた。この方
法によりスラグ層に移行したウラン化合物はほぼ分離で
きることがわかったが、溶融金属と結合し金属化合物を
形成したウラン化合物は分離することができない。すな
わち単純な溶融処理ではウラン化合物によって汚染され
た金属を除染しても高い除染係数を得にくいことがわか
った。
Conventionally, in melting and decontaminating uranium-contaminated metals, the sample is placed in a heating furnace together with a slagging agent such as an oxide of the metal, and during the melting process, the uranium compounds are transferred to slag, which has a lower specific gravity than the metal, and are separated. Ta. After the molten metal was cooled and solidified, only the slag layer was cut out and the uranium was removed. However, in this method, slag and molten metal are not completely separated, and slag components may be left behind in the metal. Therefore, a method was adopted in which the molten metal was filtered at the time of melting treatment to separate and remove the slag components. It was found that by this method, most of the uranium compounds that had migrated to the slag layer could be separated, but the uranium compounds that had combined with the molten metal to form metal compounds could not be separated. In other words, it was found that it is difficult to obtain a high decontamination coefficient even if metals contaminated with uranium compounds are decontaminated by simple melting treatment.

例えばウラン化合物で汚染されたアルミニウムの場合、
実験的に得られた除染係数(DF)は約30であった。
For example, in the case of aluminum contaminated with uranium compounds,
The experimentally obtained decontamination factor (DF) was approximately 30.

ろ適法によってスラグを完全に分離し得たとしても、溶
融金属中には金属化合物を形成したウランが残存し、除
染係数’e100以上にすることは難しい。すなわち理
論的に得られる除染係数fDF)は次式で示される。
Even if slag can be completely separated by a suitable filtration method, uranium that has formed a metal compound remains in the molten metal, making it difficult to achieve a decontamination coefficient of 'e100 or higher. That is, the theoretically obtained decontamination coefficient fDF) is expressed by the following equation.

DF’=1+α ここでに:平衡定数 ΔG=生成自由エネルギー R:気体定数 T:温度 上式で、温度1200℃6場合DF’ζ100となる。DF’=1+α where: equilibrium constant ΔG = free energy of formation R: gas constant T: temperature In the above equation, when the temperature is 1200°C, DF'ζ100 is obtained.

しかし、実際原子力施設から排出されるウラン汚染金属
の付着ウラン量は#度換算にしてioppm程度である
が、除染金属の再利用を可能とするためにはo、oip
pm以下にする必要がある。このためには除染係数を1
04以上に上げる必要がある。
However, in reality, the amount of uranium attached to uranium-contaminated metal discharged from nuclear facilities is about ioppm when converted to degrees, but in order to make it possible to reuse decontamination metals, it is necessary to
It is necessary to keep it below pm. For this purpose, the decontamination factor should be set to 1.
You need to raise it to 04 or above.

そこで、本発明に係わる溶融除染法においては、従来の
方法では分離除去しえなかった、溶融後も金属中に残存
するウラン成分を取り除き、除染係数をさらに高めるこ
とを目的とした。以下本発明につき詳細な説明を行なう
Therefore, in the melting decontamination method according to the present invention, the purpose is to further increase the decontamination coefficient by removing the uranium component that remains in the metal even after melting, which could not be separated and removed by conventional methods. The present invention will be explained in detail below.

本発明の溶融除染装置を第1図に示す。まず、加熱炉1
の中に試料ルツボ2全置き、ルツボ内へウラン汚染金属
とアルミナやシリカなどのスラッギング剤を添加する。
The melting decontamination apparatus of the present invention is shown in FIG. First, heating furnace 1
Place the entire sample crucible 2 in the crucible, and add uranium-contaminated metal and a slagging agent such as alumina or silica into the crucible.

ルツボ2には底面にフィルタ4を置く。炉内の雰囲気条
件は真空(10”mmHg程度)又は不活性ガスとし、
雰囲気条件を制御するために給排気設備の接続を可能と
する。試料を炉内に納め、上記雰囲気条件に設定した後
、炉加熱ヒータ2で所定の温度まで上げ、ウラン汚染金
属を溶融せしめたまま、一定時間保持する。この間、溶
融金属中のウラン化合物はスラグ層へ移シ、溶融金属は
フィルタ4を通って受けルツボ5へ移る。受はルツボ5
の中に入った溶融金属はすでに除染された状態にあるが
、なお残存するウラン化合物を含んだまま受けルツボ5
の中で固化する。
A filter 4 is placed on the bottom of the crucible 2. The atmosphere inside the furnace is vacuum (approximately 10 mmHg) or inert gas.
Allows connection of air supply and exhaust equipment to control atmospheric conditions. After placing the sample in the furnace and setting the above atmospheric conditions, the temperature is raised to a predetermined temperature using the furnace heater 2 and held for a certain period of time while the uranium-contaminated metal is melted. During this time, the uranium compound in the molten metal is transferred to the slag layer, and the molten metal is transferred to the receiving crucible 5 through the filter 4. Uke is crucible 5
The molten metal that has entered the crucible 5 has already been decontaminated, but still contains residual uranium compounds.
solidifies inside.

受はルツボ5は、溶融後固化した金属を次の処理に移し
易くするため円筒状の構成となっている。
The receiving crucible 5 has a cylindrical configuration to facilitate the transfer of the solidified metal after melting to the next process.

次に、受はルツボ5において成型固化した金属を、局所
加熱ヒータ6により部分的に溶融せしめ、かつ準平衡的
に溶融相から固相への移行が進むようにヒータ6をヒー
タ駆動機7でゆっくシ移動させる。この溶融固化の過程
で、液相中に溶は込んだ不純物の影響で融点が低くなれ
ば液相中に、また反対に融点が高くなれば固相中に不純
物が濃縮されていく。これをくり返すことにより金属の
純度を上げる。この方法は帯域純化法と言われており、
□高純度材料製造法として一般化している。
Next, the receiver partially melts the molded and solidified metal in the crucible 5 with a local heater 6, and the heater 6 is operated with a heater driver 7 so that the transition from the molten phase to the solid phase progresses in a quasi-equilibrium manner. Move slowly. During this melting and solidification process, if the melting point becomes low due to the influence of impurities dissolved in the liquid phase, the impurities will be concentrated in the liquid phase, and conversely, if the melting point becomes high, the impurities will be concentrated in the solid phase. Repeating this process increases the purity of the metal. This method is called the band purification method,
□It has become popular as a method for producing high-purity materials.

帯塘純化法の原理によれば、金属棒中の不純物の移行状
況は第2図に示すごとく表わされる。第2図において、
帯融域がXまで進んだ時、×の位置における不純物情f
Cは次式で表わされる。
According to the principle of the Otono purification method, the migration of impurities in a metal rod is expressed as shown in FIG. In Figure 2,
When the melting zone advances to X, the impurity condition f at the position of
C is expressed by the following formula.

ここでC8:金属中の最初の不純物濃度Ko =不純物
の偏析係数 t:帯融域の長さ この式から解かるように、金属の純In上げるには、偏
析係数KoがK。〈1もしくはK11>1で、1に対す
る比が高いほどよく不純物を分離できる。ちなみにゲル
マニウムやシリコン中の不純物についてめられたK。は
10−4〜10−6 のオーダーにあり、99.99%
以上の純化が可能である。アルミニウムの例でも99.
9%以上の純化が可能であるとされている。勿論、単一
不純物元素を例にとるとさらに倣量の不純物のみとなり
、単一元素ごとを比較すると原子番号の大きい元素はど
偏析係数に0が小さくなる傾向にある。例えばアルミニ
ウム中のウランのK。をみると10−4以下であるので
、溶融ろ過処理済みのアルミニウムを帯域純化し、ウラ
ンの偏析じた端部を取り除くことによって溶融ろ過済み
アルミニウムの除染係数Drは100〜1000となる
Here, C8: Initial impurity concentration Ko in the metal = Impurity segregation coefficient t: Length of the melting zone As can be seen from this equation, in order to increase the purity of the metal, the segregation coefficient Ko must be K. <1 or K11>1, and the higher the ratio to 1, the better the impurities can be separated. By the way, K was criticized for impurities in germanium and silicon. is on the order of 10-4 to 10-6, 99.99%
The above purification is possible. Even in the case of aluminum, 99.
It is said that purification of 9% or more is possible. Of course, if we take a single impurity element as an example, there will be only a similar amount of impurity, and if we compare each single element, the segregation coefficient of the element with a larger atomic number tends to be smaller than 0. For example, K of uranium in aluminum. is less than 10-4. Therefore, by band-purifying the melt-filtered aluminum and removing the end portion where uranium is segregated, the decontamination coefficient Dr of the melt-filtered aluminum becomes 100 to 1000.

以上述べてきたように、本発明に係わる溶融除染法を用
いれば、従来の溶融方式では最大でも除染係数が100
であったものを、さらに100倍高め104のレベルに
高めることができる。これによシ、除染後の金属は一般
の金属材料として再利用することが可能な、ウラン濃度
o、ooippmのオーダにすることができる。
As mentioned above, if the melt decontamination method according to the present invention is used, the decontamination coefficient can be reduced to 100 at maximum compared to the conventional melt method.
It is possible to further increase the level by 100 times to a level of 104. As a result, the metal after decontamination can be made to have a uranium concentration on the order of o, ooippm, which can be reused as a general metal material.

次に、本発明に係わる溶融除染法の工業化全検討する。Next, we will discuss the entire industrialization of the melt decontamination method according to the present invention.

ウラン汚染アルミニウムが100に77日の割合で廃材
として生じた場合、このアルミニウムを第一段階の溶融
ろ過処理をし、10IMφのアルミニウム棒に成型固化
した後、1cm/時間の速度で帯域純化を進めていけば
20機の帯域純化機の平行処理で可能となる。本方式は
半導体材料や純粋物質を作成することが目的ではないの
で、帯域純化を多数回繰り返す必要はなく、2〜3回の
繰り返しでこと足りるものである。従って、工業化が可
能である。
When uranium-contaminated aluminum is generated as waste material at a rate of 100 to 77 days, this aluminum is subjected to the first stage of melt filtration treatment, formed into a 10 IMφ aluminum rod and solidified, and then zone purification is proceeded at a rate of 1 cm/hour. If this is done, it will be possible to perform parallel processing using 20 band purifiers. Since the purpose of this method is not to create semiconductor materials or pure substances, it is not necessary to repeat band purification many times, and repeating it two to three times is sufficient. Therefore, industrialization is possible.

以上のごとく、本発明は放射性廃棄物の除染および減容
、さらに廃材利用につながるものである。
As described above, the present invention leads to the decontamination and volume reduction of radioactive waste, as well as to the utilization of waste materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるウラン汚染金属の溶融除t ’ 
(7) 1・・・加熱炉、2・・・炉加熱ヒータ、3・・・試料
ルツボ、4・・・ルツボフィルタ、5・・・溶融金属受
ケルツボ、6・・・帯域溶融用ヒータ、7・・・ヒータ
駆動機。 代理人 弁理士 高橋明夫 (8) 第1区 第20 距りχ−〉
Figure 1 shows the melting removal of uranium contaminated metal t' according to the present invention.
(7) 1... Heating furnace, 2... Furnace heater, 3... Sample crucible, 4... Crucible filter, 5... Molten metal receiving crucible, 6... Zone melting heater, 7... Heater drive machine. Agent Patent Attorney Akio Takahashi (8) Ward 1, No. 20 Distance x->

Claims (1)

【特許請求の範囲】 1、放射性物質で汚染された金属廃棄物を全溶融せしめ
、比重差によって、放射性物質を多く含む化合物系と放
射性物質の少ない溶融金属系とを分離させた後、溶融金
属を固化し、帯琥純化法に基づき、当該金属を局所的に
加熱溶融せしめ、溶融相から固相への推移が準平衡的に
行なわれるように、加熱器を緩徐にかつ一定方向へ移動
させることによシ、当該金属中に残留せる放射性物質を
他端へ偏析せしめることを特徴とする放射能汚染金属の
溶融除染法。 2、上記金属の溶融除染において、被除染物質として核
燃料物質であるアクチニド元素又はその化合物を対象と
することt−特徴とする、特許請求の範囲第1項記載の
放射能汚染金属の溶融除染法。
[Claims] 1. After completely melting the metal waste contaminated with radioactive substances and separating the compound system containing a large amount of radioactive substances from the molten metal system containing few radioactive substances by the difference in specific gravity, the molten metal waste is Based on the Obiha purification method, the metal is locally heated and melted, and the heater is moved slowly and in a fixed direction so that the transition from the molten phase to the solid phase occurs in a quasi-equilibrium manner. A method of melting and decontaminating radioactively contaminated metals, which is characterized in that, in particular, radioactive substances remaining in the metals are segregated to the other end. 2. Melting of radioactively contaminated metals as set forth in claim 1, characterized in that in the melting decontamination of metals, actinide elements or their compounds, which are nuclear fuel materials, are targeted as the decontaminated substances. Decontamination method.
JP23776483A 1983-12-19 1983-12-19 Method of melting and decontaminating radioactivity contaminated metal Granted JPS60129698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23776483A JPS60129698A (en) 1983-12-19 1983-12-19 Method of melting and decontaminating radioactivity contaminated metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23776483A JPS60129698A (en) 1983-12-19 1983-12-19 Method of melting and decontaminating radioactivity contaminated metal

Publications (2)

Publication Number Publication Date
JPS60129698A true JPS60129698A (en) 1985-07-10
JPH0562319B2 JPH0562319B2 (en) 1993-09-08

Family

ID=17020097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23776483A Granted JPS60129698A (en) 1983-12-19 1983-12-19 Method of melting and decontaminating radioactivity contaminated metal

Country Status (1)

Country Link
JP (1) JPS60129698A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701962A1 (en) * 1993-02-25 1994-09-02 Siempelkamp Gmbh & Co Process for the recovery of metals usable without damage from waste radioactively contaminated metal mixtures.
WO1997022975A3 (en) * 1995-12-18 1997-08-14 Siemens Ag Process for using contaminated metal parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329319A (en) * 1976-09-01 1978-03-18 Toshiba Ceramics Co Manufacture of high purity siccsi mold articles
JPS57184571A (en) * 1981-05-11 1982-11-13 Power Reactor & Nuclear Fuel Dev Corp Melting and treating device for metallic waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329319A (en) * 1976-09-01 1978-03-18 Toshiba Ceramics Co Manufacture of high purity siccsi mold articles
JPS57184571A (en) * 1981-05-11 1982-11-13 Power Reactor & Nuclear Fuel Dev Corp Melting and treating device for metallic waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701962A1 (en) * 1993-02-25 1994-09-02 Siempelkamp Gmbh & Co Process for the recovery of metals usable without damage from waste radioactively contaminated metal mixtures.
WO1997022975A3 (en) * 1995-12-18 1997-08-14 Siemens Ag Process for using contaminated metal parts

Also Published As

Publication number Publication date
JPH0562319B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
EP0215121B1 (en) Process for purification of solid material
US5082603A (en) Method of treatment of high-level radioactive waste
JPS6060913A (en) Method of removing impurities from piece
CA1121604A (en) Fractional crystallization process
KR101513173B1 (en) Method for Recycling of LiCl Salt Wastes and the Recycling Apparatus thereof
JPS60129698A (en) Method of melting and decontaminating radioactivity contaminated metal
JP2551879B2 (en) Reduction method of vitrification of highly radioactive waste
KR20090046001A (en) Volume reduction and vitrification treatment method for spent uranium catalyst waste
KR100882578B1 (en) Czochralski apparatus for growing crystals and purification method of waste salts using the same
JPH07277722A (en) Method for purifying silicon
US3483913A (en) Method of molten metal separation
KR101369123B1 (en) Method for separation of group Ⅱ nuclides and recovery of pure LiCl by using Li2O
US3148977A (en) Method of purifying uranium metal
JP3263104B2 (en) Purification method of metallic silicon
JPH11248880A (en) Method for treating spent fuel
US4564391A (en) Method for the recovery of silver from silver zeolite
JP2001153991A (en) Peprocessing method for spent nuclear fuel
RU2190671C2 (en) Method of processing uranium metal-based nuclear fuel
JP2933951B2 (en) Handling of used core components of fast reactors
JP4905714B2 (en) Crystalline purification method for nuclear fuel material
JPH1184085A (en) Decontamination method for metal material
JPH0426728A (en) Manufacture of high purity in
Reimann Method for the recovery of silver from silver zeolite
JPH08248188A (en) Decontamination of zirkaloy through slug by low-temperature crucible fusing work accompanied by continuous drawing of ingot
JPH0740077B2 (en) Highly radioactive waste treatment method