JPS60129651A - Preparation of specimen for fluorescent x-ray analysis - Google Patents

Preparation of specimen for fluorescent x-ray analysis

Info

Publication number
JPS60129651A
JPS60129651A JP58236431A JP23643183A JPS60129651A JP S60129651 A JPS60129651 A JP S60129651A JP 58236431 A JP58236431 A JP 58236431A JP 23643183 A JP23643183 A JP 23643183A JP S60129651 A JPS60129651 A JP S60129651A
Authority
JP
Japan
Prior art keywords
specimen
mixing ratio
sample
binder material
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236431A
Other languages
Japanese (ja)
Inventor
Keiji Saito
斎藤 啓二
Kesaki Yokoyama
横山 畩己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58236431A priority Critical patent/JPS60129651A/en
Publication of JPS60129651A publication Critical patent/JPS60129651A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To enhance analytical accuracy by reducing a number of defects on the surface of a specimen and to attain to shorten a preparation time while achieving the reduction in the number of analytical processes, by mixing and crushing a specimen such as an ore or slugs and a binder material in such a state that the mixing ratio of both of them is set to a specific range. CONSTITUTION:In preparing a specimen by mixing a binder material with a specimen for fluorescent X-ray analysis, the binder material is mixed with the specimen in a range of 1/2,000-1/1,000 on a wt. basis while the resulting mixture is crushed and subjected to compression molding to obtain a smooth and homogenous X-ray irradiation surface. At this time, the analytical specimen changes corresponding to the mixing ratio with the binder material and a good result is obtained by bringing the mixing ratio to 1/1,000 or less in order to adjust analytical accuracy to about 0.3-0.4% or less. Therefore, the mixing ratio is well if 1/700 or less, pref., 1/1,000 or less while the mixing ratio of 1/2,100 or more, pref., 1/2,000 or more is an optimum range from the aspect of the generation frequency of a surface defect.

Description

【発明の詳細な説明】 、李発明は蛍2.x、*qq、@分野に係わり、詳しく
は鉱石、都よ、びスラグ類の蛍光X線分析試料、と、そ
のパイ、ンダー材を張棒す混合して、良;’F、Q析竺
料、を得る方法に興する。 8 鉱石1.スラでなどの定性或、仲定量分哲を蛍光X41
!竺析法東適用して、 、T、、F e、 S i O
2、A I 20.3、Ca0.Qq、Oll、、T 
i、o 2、MnO4びS6などの分混合した後、所定
の形状とするため加圧・成型して・平滑なゝ線照−射面
を得60とり゛分析0精度上重要!、ある。2. 、 このため、従来ディスク振動ミルヅレ、−レ帰ミルなど
により短!存間(2〜4分)で75μm以下に微粉砕し
て、広い粒度分布範囲ツ倶試料を一定の粒度せ布にする
、 1.。
[Detailed Description of the Invention] Lee invented Firefly 2. x, *qq, @Related to the field, in detail, fluorescent X-ray analysis samples of ores, minerals, and slag, and their pie and powder materials are mixed in a tension rod to perform good ;'F, Q analysis. Interested in ways to earn money. 8 Ore 1. Fluorescent X41 for qualitative or intermediate quantitative analysis such as slurry
! Applying the analytical method, , T, , Fe, S i O
2, A I 20.3, Ca0. Qq,Oll,,T
After mixing I, O2, MnO4, S6, etc., we pressurize and mold it into a predetermined shape to obtain a smooth linear irradiation surface. ,be. 2. , For this reason, conventional disc vibration milling, -return milling, etc. are shorter! Finely pulverize to 75 μm or less for as long as 2 to 4 minutes to make a sample with a constant particle size from a wide particle size distribution range.1. .

そして、プレスを用いて一定圧力で加圧成型して、ブリ
ケット味料を作、成して分析試、料とする試料調製方法
がr4−5外でいる。 、 、この方法は、竺粉砕した
恐試料にバインダー材として、ステアリン酸、スチレン
マレイン酸などを試料と重量比で1/10程度添加して
、でイスク振動ミルなどり十分混合した後、プレスr&
暫る工程が施されるため、次のような問題、包があった
・ 1、 1 。
In addition, there is a sample preparation method outside R4-5 in which briquette flavoring is prepared by press-molding at a constant pressure using a press and used as an analytical sample or material. , ,This method involves adding stearic acid, styrene maleic acid, etc. as a binder material to a ground sample at a weight ratio of about 1/10 of the sample, mixing thoroughly using an isk vibrating mill, etc., and then using a press r&
Due to the process being carried out for a while, there were the following problems: 1, 1.

(1)供試料とバインダー材を正確に秤量亥る作。(1) Accurately weighing the sample and binder material.

業が必!で々る。、1.11.4、 (2)、微粉砕後、卑すバインダー恢ζ供試料とを混合
する工程郊必!である・ 2− (3)供試料とバインダー材との混合が均等でない部分
が分析、試料のX線照射面に発生し易く測定誤差要因と
なる。
Work is necessary! Dederu. , 1.11.4, (2) After pulverization, there is a process of mixing the base binder with the sample. 2-(3) Areas where the sample and binder material are not evenly mixed tend to occur on the X-ray irradiated surface of the sample during analysis, causing measurement errors.

一般tこ、鉱石、スラグ等の蛍光X線分析において5〜
50mm塊状及び1〜5mmの粒状の供試料を75μm
以下に粉砕し、ディスク状の試料に成型するためにバイ
ンダー材として、ステアリン酸やスチレンマレイン酸等
を1/10程度混合し、プレス成型を行う試料調製方法
が採られているが、この方法では混合にバラツキが生じ
易く、測定精度も低下傾向がある。他方バインダー材と
の混合比を下げると測定精度は向上するが、分析試料の
ディスク状表面に亀裂が生じるなど成型精度が低下して
、測定不能な試料が発生していた。
5 to 5 in fluorescent X-ray analysis of general materials, ores, slag, etc.
50 mm block and 1 to 5 mm granular sample to 75 μm
A sample preparation method is used in which stearic acid, styrene maleic acid, etc. is mixed with about 1/10 of the binder material in order to crush and mold into a disk-shaped sample, and then press molding. Mixing tends to vary, and measurement accuracy tends to decrease. On the other hand, if the mixing ratio with the binder material is lowered, the measurement accuracy improves, but the molding accuracy decreases, such as cracks appearing on the disk-shaped surface of the analysis sample, resulting in samples that cannot be measured.

本発明はX線試料作成時のこれら従前の欠点を解決せん
とすることを目的とするものである。
The present invention seeks to overcome these previous drawbacks when preparing X-ray specimens.

本発明は成型試料面の形状を良好に保ちつつ、分析精度
の低下を伴わない試料を得るために、供試料とバインダ
ー材との混合比を特定範囲内に混合して、粉砕すること
を特徴とするものである。
The present invention is characterized by mixing the sample and binder material within a specific range and pulverizing the sample in order to obtain a sample that maintains a good shape on the surface of the molded sample and does not reduce analysis accuracy. That is.

本発明は試料とバインダー材との混合比を段階的に変化
させて、成型試料形状と混合比との関係及びバインダー
材の混合比と分析(測定)精度との関係を種々実験調査
した結果の知見にもとづきなされたものである。
The present invention is based on the results of various experimental investigations of the relationship between the shape of the molded sample and the mixing ratio, and the relationship between the mixing ratio of the binder material and analysis (measurement) accuracy, by changing the mixing ratio of the sample and the binder material in stages. This was done based on knowledge.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

供試料とバインダー材との混合比を段階的に変化させて
、成型試料の形状、特に表面欠陥発生頻度との関係を調
査した結果を第1図に示す。即ち成型試料の表面の欠陥
発生頻度は供試料とバインダー材との混合比(以下バイ
ングー材/試料の比とする)が1/2000重量比以下
の各点で2%、12%4及び20%と増加し、混合比1
/2500重量比で32%の表面欠陥発生頻度に急増す
ることカリり明した。
Figure 1 shows the results of investigating the relationship between the shape of the molded sample, especially the frequency of surface defects, by changing the mixing ratio of the sample and the binder material in stages. In other words, the frequency of defects occurring on the surface of the molded sample is 2%, 12%, 4, and 20% at each point where the mixing ratio of the sample and binder material (hereinafter referred to as the ratio of binder material/sample) is 1/2000 weight ratio or less. and the mixing ratio increases to 1.
/2500 weight ratio, it became clear that the frequency of surface defect occurrence increased rapidly to 32%.

さらに、供試料S!O2、Al□O,及びCaOの代表
的な場合のバインダー材の混合比と、分析(測定)精度
との関係の実験結果を第2図に示す。
Furthermore, sample S! FIG. 2 shows the experimental results of the relationship between the mixing ratio of binder materials and analysis (measurement) accuracy in a typical case of O2, Al□O, and CaO.

図中1.2.3及び4のグラフはそれぞれ混合比1/1
0.1/700.1/1000及び1/3− 200 (lを示し、S i O2、A I 203及
びCaOの場合について、分析精度をめると混合 比1/10及び1/700では分析誤差の偏差σ(以下
分析精度と言う)の少いAl2O3でも約0.4%あり
、5in2では約0.4%から0.8%と大ぎくバラツ
キが発生している。’CaOでは約0.6%から0.7
%と比較的大きな誤差をもつ分析精度となる。 □ 他方、混合比1/100’0乃至1/2000ではCa
Oの分析精度σが約0.4%でや)劣るものの、混合比
1/10乃至1/700より邊カに分析精度が向上して
いる。
In the graphs 1, 2, 3 and 4, the mixing ratio is 1/1, respectively.
0.1/700.1/1000 and 1/3-200 (l is shown, and in the case of SiO2, A I 203 and CaO, when considering the analysis accuracy, the analysis is not possible at the mixing ratio of 1/10 and 1/700 Even for Al2O3, where the error deviation σ (hereinafter referred to as analysis accuracy) is small, it is about 0.4%, and for 5in2, there is a large variation of about 0.4% to 0.8%.'For CaO, it is about 0. .6% to 0.7
The analysis accuracy has a relatively large error of . □ On the other hand, at a mixing ratio of 1/100'0 to 1/2000, Ca
Although the analysis accuracy σ of O is about 0.4%, which is inferior, the analysis accuracy is significantly improved compared to the mixing ratio of 1/10 to 1/700.

他のALOl及び5i02の分析精度σは約0.2姑か
□ら0.3%と極めて良好である。
The analysis accuracy σ of other ALO1 and 5i02 is extremely good, about 0.2% to 0.3%.

その他S’、MnO及びT 、 F”et分等にライて
も混合比1/1000乃至1/2000の範囲で良好で
あった。
Even when it was added to other components such as S', MnO, T, F''et, etc., the mixture ratio was good within the range of 1/1000 to 1/2000.

以上の如く、分析試料はバインダー材との混合比に上っ
て変化し、分析精度σは約0.3から0゜4%程度以下
とするた玩には混合比は1/10005− 一4= 以下とすることが好結果をもたらす。
As mentioned above, the analysis sample changes depending on the mixing ratio with the binder material, and if the analysis accuracy σ is about 0.3 to 0.4% or less, the mixing ratio is 1/10005-14. = The following will bring about good results.

従って、混合比は1/700以下、好ましくは1/10
00以下が良好であり、他方表面欠陥発生頻度からは混
合比1/2100以上、好ましくは1/2000以上が
混合比の叢適範囲であると決めることが出来る。
Therefore, the mixing ratio is 1/700 or less, preferably 1/10.
On the other hand, from the surface defect occurrence frequency, it can be determined that a mixing ratio of 1/2100 or more, preferably 1/2000 or more is a suitable mixing ratio range.

次に実施例にちいて説明する。 “ ディスク振動ミル及び30〜5’OTプレスを用いて、
次の手順により塊状及び粒状供試料より蛍光X線分析試
料を加圧成型した。即ち、(1)供試料約50gにステ
アリン酸0.’02〜0.06’liを添加する。(2
)振動ミルのベッセルへ装入す墨(3)振動ミルで2〜
3分間微粉砕する。(4)ベッセルより微粉末の供試料
を取り出す。(5)金属製カップに微粉末を入れ約1分
間30Tプレス成型する。
Next, examples will be explained. “Using a disc vibrating mill and a 30-5'OT press,
Fluorescent X-ray analysis samples were press-molded from bulk and granular specimens according to the following procedure. That is, (1) about 50 g of a sample was mixed with 0.0 g of stearic acid. Add '02-0.06'li. (2
) Ink to be charged into the vessel of the vibrating mill (3) 2~ with the vibrating mill
Pulverize for 3 minutes. (4) Remove the fine powder sample from the vessel. (5) Place the fine powder in a metal cup and press-mold at 30T for about 1 minute.

(6)試料を分析する。この手順により作成した試料は
1ヶ約5分で平滑で均質なX線照射面を得ることができ
、従来法の粉砕後、バインダー材を混合して作成すゐi
での10分の所要時間を大幅に短縮でき、分析精度も第
1表に示すように、はぼ2倍に向上した。
(6) Analyze the sample. Samples prepared using this procedure can obtain a smooth and homogeneous X-ray irradiated surface in about 5 minutes per sample.
The time required for the analysis was significantly reduced by 10 minutes, and the analytical accuracy was almost doubled as shown in Table 1.

第 1 表 分析精度(0%) Sio2 Al2O,CaO 従米法 0.0B 0.04 0,07本 法 0.0
3 0,02 0.07以上の如く、本発明によるとX
線分析試料表面の欠陥数が減少し、分析精度が向上する
と共に、試料調製に要する作業時間や分析工数の省力化
が計れた。
Table 1 Analytical accuracy (0%) Sio2 Al2O, CaO Compound method 0.0B 0.04 0.07 method 0.0
3 0.02 0.07 According to the present invention, X
This reduced the number of defects on the surface of line analysis samples, improved analysis accuracy, and reduced the work time and analysis man-hours required for sample preparation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分析試料表面欠陥発生頻度と混合比との関係を
示すグラフ、第2図は、分析精度と混合比との関係を示
すグラフを示す。第2図中、1は試料に対するバインダ
ーの混合量がイ箸重量比、2は、11重量比、3はT−
並1重量比、4は7− 1 1 1 1 11500 /1000 /1500 /2000 /
2500混合比(バインダー/試料) SiO2A1□03Ca0
FIG. 1 is a graph showing the relationship between the analysis sample surface defect occurrence frequency and the mixing ratio, and FIG. 2 is a graph showing the relationship between the analysis accuracy and the mixing ratio. In Figure 2, 1 indicates that the amount of binder mixed with the sample is at a chopstick weight ratio, 2 indicates an 11 weight ratio, and 3 indicates a T-
Normal 1 weight ratio, 4 is 7- 1 1 1 1 11500 /1000 /1500 /2000 /
2500 Mixing ratio (binder/sample) SiO2A1□03Ca0

Claims (1)

【特許請求の範囲】[Claims] 蛍光X線分析試料にバインダー材を混合りで、試料を調
製する方法りおいて、前記試4料臀対し重量比’ie 
1/ 20 (10乃至1. / j、 Q OO,、
の、範囲にパイ、ングー材、を7混合し1粉砕しp後、
加圧感型して、平滑で、均質なX線照射面を得ることを
特機部、才る蛍光X線分析試料の調製方、弊8
A method of preparing a sample by mixing a binder material with a sample for fluorescent X-ray analysis, the weight ratio of the four samples
1/20 (10 to 1. / j, Q OO,,
After mixing 7 parts of Pai and Ngu wood and crushing 1 part,
Our special equipment section aims to obtain a smooth, homogeneous X-ray irradiation surface using a pressure-sensitive type, and how to prepare samples for fluorescence X-ray analysis.
JP58236431A 1983-12-16 1983-12-16 Preparation of specimen for fluorescent x-ray analysis Pending JPS60129651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236431A JPS60129651A (en) 1983-12-16 1983-12-16 Preparation of specimen for fluorescent x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236431A JPS60129651A (en) 1983-12-16 1983-12-16 Preparation of specimen for fluorescent x-ray analysis

Publications (1)

Publication Number Publication Date
JPS60129651A true JPS60129651A (en) 1985-07-10

Family

ID=17000648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236431A Pending JPS60129651A (en) 1983-12-16 1983-12-16 Preparation of specimen for fluorescent x-ray analysis

Country Status (1)

Country Link
JP (1) JPS60129651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468646A (en) * 1987-09-09 1989-03-14 Ngk Insulators Ltd Pretreatment of sample for fluorescent x-ray analysis
JPH02145949A (en) * 1988-11-26 1990-06-05 Fuji Electric Co Ltd Analysis of precious metal in gas sensor
JP2017058362A (en) * 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468646A (en) * 1987-09-09 1989-03-14 Ngk Insulators Ltd Pretreatment of sample for fluorescent x-ray analysis
JPH02145949A (en) * 1988-11-26 1990-06-05 Fuji Electric Co Ltd Analysis of precious metal in gas sensor
JP2017058362A (en) * 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method

Similar Documents

Publication Publication Date Title
CN112557429B (en) Quantitative determination method and sample preparation method for all minerals in graphite ore
JP2017116535A (en) Method of preparing samples for x-ray fluorescence analysis
Madian et al. Impact of fine particles on the rheological properties of uranium dioxide powders
JPS60129651A (en) Preparation of specimen for fluorescent x-ray analysis
CN112129605B (en) Sample preparation method of steelmaking auxiliary material detection sample and steelmaking auxiliary material component analysis method
USRE33243E (en) Process for treating a metal oxide powder
CN111650231A (en) Method for analyzing content of main elements in low-silicon ferrosilicon by X-ray fluorescence spectrum
JPS61178651A (en) Method for solidifying powdery specimen for fluorescent x-ray analysis
CN112611678A (en) Method for detecting liquidity of iron ore powder liquid phase based on actual sintering production condition
CN113138204A (en) Preparation method of N-standard sample suitable for electronic probe analysis
JPH0643975B2 (en) Pretreatment method for fluorescent X-ray analysis sample
CN115561052B (en) Preparation method and application of submicron calcite sample target
JP2017015737A (en) Method of inspecting copper slag containing fine aggregate
JPS61238901A (en) Ferromagnetic powder
CN115479822B (en) Preparation method and application of dolomite solid standard sample
Feret Routine analysis of iron ores by X-ray spectrometry
JP4170157B2 (en) Composition analysis method of optical disk target by fluorescent X-ray
CN115452529B (en) Batch preparation method of standard sample composed of hematite iron isotopes and application of standard sample composed of hematite iron isotopes
Katrus et al. Change in Iron Powder Properties with Treatment in Rolls
Harbour et al. Characterization of Slag, Fly ash and Portland cement for Saltstone
Sinha Effect of mold material on the evolution of morphology in Al-Si Alloys
KR100321055B1 (en) METHOD FOR CHARGING ALLOY IRON DURING MANUFACTURING OF GLASS BEADS OF Fe-Mn or Fe-Cr ALLOY IRON, AND METHOD FOR MANUFACTURING THE GLASS BEADS
RU2158448C1 (en) Nuclear fuel inspection method
RU1554656C (en) Process of production of ferrite powder for composite magnetically hard material
JPH0545272A (en) Anatliytical method for impurity in antimony oxide using fluorescent x-ray