JPS60128920A - Exhaust repurifier of diesel engine - Google Patents

Exhaust repurifier of diesel engine

Info

Publication number
JPS60128920A
JPS60128920A JP58237090A JP23709083A JPS60128920A JP S60128920 A JPS60128920 A JP S60128920A JP 58237090 A JP58237090 A JP 58237090A JP 23709083 A JP23709083 A JP 23709083A JP S60128920 A JPS60128920 A JP S60128920A
Authority
JP
Japan
Prior art keywords
heat
exhaust
collection member
regeneration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58237090A
Other languages
Japanese (ja)
Other versions
JPH0233852B2 (en
Inventor
Shigeki Hamada
浜田 茂樹
Shigeru Sakurai
茂 桜井
Yoshitaka Nomoto
義隆 野元
Takumi Nishida
西田 工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58237090A priority Critical patent/JPS60128920A/en
Publication of JPS60128920A publication Critical patent/JPS60128920A/en
Publication of JPH0233852B2 publication Critical patent/JPH0233852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2270/00Mixing air with exhaust gases
    • F01N2270/04Mixing air with exhaust gases for afterburning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To reduce the sizes of an electric heater and a battery by accumulating thermal energy generated by the heater, in a heat accumulator in advance and heating regenerated gas by accumulated energy so as to heat a collecting member provided with catalizer when said member is repurified. CONSTITUTION:Particulates involved in exhaust gas fed from an engine 1 are collected by a collecting member 4 and a clogged amount detector 24 which detects variation in electric resistance between electrodes 25 and 25 discriminates that the quantity of collected particulates reaches a specified value. If the detector discriminates the member is clogged, an electric heater 13 is electrified and heated to heat a heater accumulating member 14 so as to accumulate heat energy. It is discriminated whether the temperature of heat accumulating member detected by a temperature detector 23 reaches a specified value or not and if an air pump 6 is actuated on the basis of the discrimination of YES. The first and second opening and closing valve 9 and 10 are closed and the third opening and closing valve 11 is opened. And high temperature regenerated gas (or air) is produced in the heat accumulating member 14 and sent to the collecting member 4 so as to heat and burn particulate composition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ディーゼルエンジンの排気中に含まれる未燃
カーボン等の微粒子成分(パティキュレート)を排気通
路に設けた触媒付捕集部材により捕集するようにしたデ
ィーゼルエンジンの排気浄化装置に関し、特に上記触媒
付捕集部材を再生する対策に間する。
Detailed Description of the Invention (Industrial Application Field) The present invention captures particulate components (particulates) such as unburned carbon contained in the exhaust gas of a diesel engine using a catalyst-equipped collection member provided in an exhaust passage. Regarding an exhaust gas purification device for a diesel engine that is designed to collect gas, we will particularly focus on measures to regenerate the catalyst-equipped collection member.

(従来技術) 従来より、この種の、排気通路に微粒子成分捕集用の捕
集部材(フィルタ部材)を配置せしめたディーゼルエン
ジンの排気浄化装置はよく知られているが、このもので
は長期間経過すると捕集された微粒子成分の堆積により
捕集部材に゛目詰まりが生じてエンジン出力が低下する
等の問題があり、この問題に対処するために定期的に上
記捕集部材の目詰まりを解消すでその再生を行う必要が
ある。
(Prior art) This type of diesel engine exhaust purification device in which a collection member (filter member) for collecting particulate components is arranged in the exhaust passage is well known, but this device does not last for a long time. Over time, the collection member may become clogged due to the accumulation of collected particulate components, resulting in a reduction in engine output. Once it is resolved, it is necessary to perform its regeneration.

そしt、このような捕集部材の再生を行う方式の一例と
して、従来、例えば特開昭56−56921号公報等に
目示されているように、排気通路に配設する捕集部材を
、排気中の未燃ガスを酸化燃焼させる触媒作用を併有す
る触媒付のものとするとともに、該触媒付捕集部材より
も上流側の排気通路に排気ガスを加熱する電気発熱体(
電気ヒータ)等の加熱手段を設け、該加熱手段により加
熱された排気ガスを再生ガスとして触媒付捕集部材に導
いて該触媒付捕集部材での酸化反応によりさらに高温に
し、この高温となった排気ガスによって捕集部材に捕集
されている微粒子成分を燃焼除去するようにしたものが
提案されている。
As an example of a method for regenerating such a collection member, conventionally, as disclosed in, for example, Japanese Patent Laid-Open No. 56-56921, a collection member disposed in an exhaust passage is It is equipped with a catalyst that has a catalytic effect to oxidize and burn unburned gas in the exhaust gas, and an electric heating element (
A heating means such as an electric heater is provided, and the exhaust gas heated by the heating means is guided as regeneration gas to a collecting member with a catalyst, and is further raised to a high temperature by an oxidation reaction in the collecting member with a catalyst. A system has been proposed in which particulate components collected in a collection member are burned and removed by the exhaust gas.

ところで、この提案のものでは、触媒付捕集部材での排
気ガスの再燃焼による発熱を利用して微粒子成分を加熱
燃焼させるため、加熱手段の発熱体容量、バッテリ容量
等をある程度は小さくすることができるが、微粒子成分
を効果的に燃焼除去するには約600°C以上の高湯度
への加熱が必要であることを考慮した場合、上記加熱手
段の発熱体容邑、バツデリ容量をあまりに小さく設定す
ることはできないものである。
By the way, in this proposal, the particulate components are heated and combusted using the heat generated by the re-combustion of exhaust gas in the catalytic collection member, so the capacity of the heating element of the heating means, the capacity of the battery, etc. must be reduced to some extent. However, considering that heating to a high temperature of approximately 600°C or higher is required to effectively burn and remove the particulate components, the heating element volume and heating capacity of the heating means are too small. It cannot be set.

(発明の目的) そこで、本発明の目的は、上記の触媒付捕集部材を加熱
再生するための再生ガスを、電気発熱体と該電気発熱体
からの熱エネルギーを蓄熱する蓄熱材との組合せによっ
て加熱するようにすることにより、触媒付捕集部材を効
果的に再生しながら電気発熱体やバッテリの容量を従来
のものよりもさらに小さく設定できるようにすることに
ある。
(Object of the Invention) Therefore, the object of the present invention is to combine the regeneration gas for heating and regenerating the above-mentioned catalyst-equipped collection member with an electric heating element and a heat storage material that stores thermal energy from the electric heating element. The object of the present invention is to make it possible to set the capacity of the electric heating element and the battery to be smaller than that of the conventional one while effectively regenerating the collecting member with the catalyst.

(発明の構成) 上記目的を達成するために、本発明の解決手段は、排気
通路に微粒子成分を捕集する触媒付捕集部材を設けたデ
ィーゼルエンジンの排気浄化装置において、上記捕集部
材の上流側に捕集部材に捕集された微粒子成分を燃焼除
去させるための再生ガスを供給する再生ガス供給装置を
配設し、該再生ガス供給装置には電気発熱体と、該電気
発熱体の熱エネルギーを蓄熱するとともに放熱により上
記再生ガスを加熱する蓄熱材とを具備させたものである
。゛このことにより、蓄熱材に蓄熱された電気発熱体か
らの熱エネルギーを捕集部材の再生時には該蓄熱材から
放出させて再生ガスを加熱昇温させ、その邦渇した再生
ガスによ−)で捕集部材を加熱再生させるようにしたも
のである。
(Structure of the Invention) In order to achieve the above-mentioned object, the solution means of the present invention is an exhaust gas purification device for a diesel engine that is provided with a catalyst-equipped collection member for collecting particulate components in the exhaust passage. A regeneration gas supply device for supplying regeneration gas for burning and removing the particulate components collected by the collection member is disposed on the upstream side, and the regeneration gas supply device includes an electric heating element and the electric heating element. It is equipped with a heat storage material that stores thermal energy and heats the regeneration gas by heat radiation. (Thus, when the collection member is regenerated, the thermal energy from the electric heating element stored in the heat storage material is released from the heat storage material to heat and raise the temperature of the regeneration gas, and the exhausted regeneration gas is used.) The collection member is regenerated by heating.

(発明の効果) したがって、本発明によれば、電気発熱体で発生した熱
エネルギーを予め蓄熱材に蓄熱しておき、触媒付捕集部
材の再生時には上記蓄熱された熱エネルギーによって再
生ガスを加熱して捕集部材を加熱再生するため、触媒付
捕集部材を効果的に再生しながら電気発熱体およびバッ
テリの容量を従来のものよりもさらに小さく設定でき、
ひいてはディーゼルエンジンの排気浄化装置のコンパク
ト化を図ることができる。
(Effects of the Invention) Therefore, according to the present invention, the thermal energy generated by the electric heating element is stored in the heat storage material in advance, and when the catalyst-equipped collection member is regenerated, the regenerated gas is heated by the stored thermal energy. Since the collection member is regenerated by heating, the capacity of the electric heating element and battery can be set smaller than conventional ones while effectively regenerating the collection member with catalyst.
As a result, the exhaust purification device for a diesel engine can be made more compact.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の第1実施例に係るディーゼルエンジン
の排気浄化装置の全体構成を示し、1はディーゼルエン
ジン、2は該エンジン1に吸気を供給するための吸気通
路、3はエンジン1からの排気ガスを外部に排出するた
めの排気通路であって、該排気通路3の途中には排気ガ
ス中のカーボン粒子等の微粒子成分を捕集する触媒付捕
集部材4が配設されている。該触媒付捕集部材4は、セ
ラミック等の多孔質材料によりハニカム状に形成され、
そのハニカム孔の開口端はハニカム体の両端部で交互に
閉塞され、かつ排気ガスに接触する表面には貴金属ある
いは卑金属による酸化触媒がコーティングされており、
一端部のハニカム孔開口端から流入した排気ガスが通気
性を持つ多孔質隔壁を通って他端部のハニカム孔開口部
から流出する問に上記多孔質隔壁によって排気ガス中の
微粒子成分を捕集するとともに、酸化触媒にようで排気
ガス中の未燃ガスを酸化反応させるものである。
FIG. 1 shows the overall configuration of a diesel engine exhaust purification device according to a first embodiment of the present invention, in which 1 is a diesel engine, 2 is an intake passage for supplying intake air to the engine 1, and 3 is from the engine 1. This is an exhaust passage for discharging exhaust gas to the outside, and a catalyst-equipped collection member 4 is disposed in the middle of the exhaust passage 3 to collect particulate components such as carbon particles in the exhaust gas. . The catalyst-equipped collection member 4 is formed in a honeycomb shape from a porous material such as ceramic,
The open ends of the honeycomb holes are alternately closed at both ends of the honeycomb body, and the surface that comes into contact with the exhaust gas is coated with an oxidation catalyst made of noble metal or base metal.
Exhaust gas flows in through the honeycomb hole opening at one end, passes through a porous partition wall with air permeability, and flows out from the honeycomb hole opening at the other end, and the porous partition wall collects particulate components in the exhaust gas. At the same time, it acts as an oxidation catalyst and causes unburned gas in the exhaust gas to undergo an oxidation reaction.

上記触媒付捕集部材4よりもT1側の排気通路3には再
生ガス供給通路5の下流端が開口され、該再生ガス供給
通路5の上流端はエアポンプ6に連通され、再生ガス供
給通路5の途中部は連通路7を介して排気通路3の再生
ガス供給通路5下流端との接続部よりも上流側に連通さ
れている。また、排気通路3の再生ガス供給通路5下流
端との接続部と、連通路7との接続部との間には排気バ
イパス通路8の上流端が開口され、該排気バイパス通路
8の下流端は上記捕集部材4よりも下流側の排気通路3
に開口されている。
A downstream end of a regeneration gas supply passage 5 is opened in the exhaust passage 3 on the T1 side of the catalyst collecting member 4, and an upstream end of the regeneration gas supply passage 5 is communicated with an air pump 6. A midway portion of the exhaust passage 3 is communicated with the downstream end of the regeneration gas supply passage 5 through a communication passage 7 on the upstream side of the connection portion of the exhaust passage 3 with the downstream end of the regeneration gas supply passage 5 . Further, an upstream end of an exhaust bypass passage 8 is opened between the connection part of the exhaust passage 3 with the downstream end of the regeneration gas supply passage 5 and the connection part with the communication passage 7, and the downstream end of the exhaust bypass passage 8 is the exhaust passage 3 on the downstream side of the collection member 4
It is opened to

また、上記排気通路3δ連通路7との接続部にはNr!
X調整可能な常時閉の電磁式の第1開閉弁9が配設され
、該第1開閉弁9は、閉じた状態では連通路7の排気通
路3との連通を遮断するとともに第1開閉弁9上下流側
の排気通路3.3同士を連通させ、図で仮想線にて示す
ように開くと連通路7を第1開閉弁9上流側の排気通路
3に連通させるとともに該第1開閉弁9上下流側の排気
通路3.3同士の連通を遮断するように開閉する。また
、上記排気通路3の排気バイパス通路8上流端との接続
部には開度調整可能な常時閉の電磁式の第2開閉弁10
が配設され、該第2開閉弁10は、閉じた状態では排気
バイパス通路8の排気通路3との連通を遮断するととも
に第2開閉弁10上下流側の排気通路3.3同士を連通
させ、図で仮想線にて示すように開くと排気バイパス通
路8を第2開閉弁10上流側の排気通路3に連通させる
とともに該第2開閉弁10上下流側の排気通路3゜3同
士の連通を遮断するように開閉する。さらに、上記再生
ガス供給通路5の連通路7との接続部よりも下流側には
該再生ガス供給通路5を開閉する常時閉の電磁式の第3
開閉弁11が配設されており、第1開閉弁9を閉じかつ
第2および第3開閉弁10.11を開いた状態でエアポ
ンプ6を作動させることにより、該エアポンプ6から吐
出されたエアを、触媒付捕集部材4に捕集された微粒子
成分を燃焼除去させるための再生ガスとして、再生ガス
供給通路5および排気通路3の一部を通して捕集部材4
に供給するようにした再生ガス供給装置12が構成され
ている。
Further, the connection portion of the exhaust passage 3δ with the communication passage 7 is filled with Nr!
A normally closed electromagnetic first on-off valve 9 that can be adjusted by X is provided, and when the first on-off valve 9 is closed, it cuts off communication between the communication passage 7 and the exhaust passage 3, and also closes the first on-off valve 9. The exhaust passages 3 and 3 on the upstream and downstream sides of the first on-off valve 9 communicate with each other, and when opened as shown by the imaginary line in the figure, the communication passage 7 is communicated with the exhaust passage 3 on the upstream side of the first on-off valve 9, and the first on-off valve 9 Open and close the upstream and downstream exhaust passages 3.3 to cut off communication between them. Further, at the connection portion of the exhaust passage 3 with the upstream end of the exhaust bypass passage 8, a normally closed electromagnetic second on-off valve 10 whose opening degree can be adjusted is provided.
is disposed, and the second on-off valve 10, in the closed state, cuts off communication between the exhaust bypass passage 8 and the exhaust passage 3, and allows the exhaust passages 3.3 on the upstream and downstream sides of the second on-off valve 10 to communicate with each other. , when opened as shown by the imaginary line in the figure, the exhaust bypass passage 8 is communicated with the exhaust passage 3 on the upstream side of the second on-off valve 10, and the exhaust passages 3 on the upstream and downstream sides of the second on-off valve 10 are communicated with each other. Open and close to shut off. Further, on the downstream side of the connecting portion of the regeneration gas supply passage 5 with the communication passage 7, there is a normally closed electromagnetic third valve that opens and closes the regeneration gas supply passage 5.
An on-off valve 11 is provided, and by operating the air pump 6 with the first on-off valve 9 closed and the second and third on-off valves 10.11 open, the air discharged from the air pump 6 is removed. , the collection member 4 is passed through a part of the regeneration gas supply passage 5 and the exhaust passage 3 as a regeneration gas for burning and removing particulate components collected by the collection member 4 with catalyst.
A regeneration gas supply device 12 is configured to supply the gas to the gas.

さらに、上記再生ガス供給通路5の連通路7との接続部
と第3開閉弁11との間には、通電により発熱する電気
発熱体13(ヒータ)と、該電気発熱体13を埋め込ん
で密封形成された蓄熱材14とが配設されている。上記
蓄熱材14は、例えば融点が200〜300″″C内外
のリン酸塩や硝酸カリウムと亜硝酸ナトリウムとの混合
塩等の溶融塩、あるいは融点が200°01MIIのテ
フロン系プラスチック、ウッドメタル〈低融点合金)等
からなり、電気発熱体13で発生した熱エネルギーを蓄
熱するとともに放熱により上記再生ガス i(エアポン
プ6からの吐出エア)を加熱するように設けられている
Further, an electric heating element 13 (heater) that generates heat when energized is embedded between the connection part of the regeneration gas supply passage 5 with the communication passage 7 and the third on-off valve 11, and the electric heating element 13 is embedded and sealed. A formed heat storage material 14 is disposed. The heat storage material 14 is made of, for example, a molten salt such as a phosphate having a melting point of 200 to 300"C or a mixed salt of potassium nitrate and sodium nitrite, a Teflon plastic with a melting point of 200°01 MII, or a wood metal. The regeneration gas i (discharged air from the air pump 6) is provided to store the thermal energy generated by the electric heating element 13 and to heat the regeneration gas i (air discharged from the air pump 6) by heat radiation.

一方、15は上記エアポンプ6、第1ないし第3#ll
閉弁9〜11のアクチュエータおよび電気発熱体13に
電力を供給するバッテリ、16はエアポンプ6を0N−
OFF制御するエアポンプ用電磁スイッチ、17は同じ
くエアポンプ6への通電電圧を変えてエアポンプ6の回
転数すなわちそのエア吐出量を増減制御する変圧装置で
ある。また、18は上記第1開閉弁9を開閉制御する第
1開閉弁用電磁スイツチ、19は第2開閉弁1oを#1
l111]制御する第2開閉弁用電磁スイツチ、2oは
第3開閘弁11を開閉制御する第3閤閉弁用電磁スイツ
チ、21は上記電気発熱体13を作動制御する発熱体用
電磁スイッチであって、以上の各電磁スイッチ18〜2
1は常時はOFF状態のものである。
On the other hand, 15 is the air pump 6, the first to third #ll
A battery 16 supplies power to the actuators of the valve closing valves 9 to 11 and the electric heating element 13;
The air pump electromagnetic switch 17 for OFF control is also a voltage transformer that changes the voltage applied to the air pump 6 to increase or decrease the rotational speed of the air pump 6, that is, the amount of air discharged. Further, 18 is a first on-off valve electromagnetic switch that controls opening and closing of the first on-off valve 9, and 19 is a second on-off valve 1o.
111] An electromagnetic switch for the second on-off valve to control, 2o an electromagnetic switch for the third on-off valve that controls the opening and closing of the third on-off valve 11, and 21 an electromagnetic switch for the heating element that controls the operation of the electric heating element 13. Therefore, each of the above electromagnetic switches 18 to 2
1 is normally in the OFF state.

また、22は上記触媒付捕集部材4の直上流側の排気通
路3に臨設された。排気温度Tεを検出する排気温度検
出器、23は上記蓄熱材14内に埋設された。蓄熱材温
度TRを検出する蓄熱材m度検出器、24は捕集された
微粒子成分の堆積によって捕集部材4が目詰゛まり状態
になったことを検出する目詰まり検出器であって、該目
詰まり検出器24は、捕集部材4にその軸方向に所定の
間隔をあけて埋設された2本の電極25.25間の電気
抵抗値を測定して、該電気抵抗値が微粒子成分の捕集部
材4への堆積に伴ってその主成分たるカーボン粒子の電
気伝導変の上昇により所定値以下に減少変化したことを
判定することによって目詰まり状態を検出するものであ
る。
Further, 22 was installed in the exhaust passage 3 immediately upstream of the catalyst-equipped collection member 4. An exhaust gas temperature detector 23 for detecting the exhaust gas temperature Tε was embedded in the heat storage material 14. A heat storage material temperature detector 24 detects the heat storage material temperature TR, and 24 is a clogging detector that detects that the collection member 4 has become clogged due to the accumulation of collected particulate components. The clogging detector 24 measures the electrical resistance value between two electrodes 25 and 25 embedded in the collection member 4 at a predetermined interval in the axial direction, and determines whether the electrical resistance value is a particulate component. The clogging state is detected by determining that the electrical conductivity of the carbon particles, which are the main component, has decreased to a predetermined value or less due to the increase in the electrical conductivity of the carbon particles, which are the main component thereof, as they are deposited on the collection member 4.

さらに、26は上記排気温度検出器22、蓄熱材m度検
出器23および目詰まり検出器24からの出力を受けて
、h la 変圧装置117および各電磁スイッチ18
〜21を制御する制御回路であって、該制御回路26は
マイクロコンピュータを内蔵しており、各検出器22〜
24からの出力信号をマイクロコンピュータで処理して
変圧装置17および電磁スイッチ18〜21に所定の1
IilJIII指令信号を出力するものである。
Further, 26 receives the outputs from the exhaust temperature detector 22, heat storage material m degree detector 23, and clogging detector 24, and receives the outputs from the h la transformer 117 and each electromagnetic switch 18.
~21, the control circuit 26 has a built-in microcomputer, and controls each detector 22~21.
The output signal from 24 is processed by a microcomputer and applied to the transformer 17 and the electromagnetic switches 18 to 21 at a predetermined value.
It outputs an IilJIII command signal.

次に、上記実施例の作動について第2図に示す制御フロ
ーチャートを参考に説明する。
Next, the operation of the above embodiment will be explained with reference to the control flowchart shown in FIG.

制御フローのスタート後、先ず、ステップS+において
排気潟麿検出器22で検出した排気温度Tεが蓄熱材温
度検出器23で検出した蓄熱材温度TRよりも高−いか
否かの判定を行う。この判定がTE≦TRであるNoの
ときにはステップS2に移り、第1ないし第3開閉弁9
〜11を全て閉状態に保つことによりエンジン1からの
排気ガスを排気通路3のみを通して触媒付捕集部材4に
流通させる。一方、上記ステップS+での判定がTE>
TRであるYESのときにはステップS3に移り、第1
および第3開閉弁9,11を開くとともに第2開閉弁1
0を閉じることにより排気ガスを連通路7および再生ガ
ス供給通路5を通して捕集部材4に流通させる。以上の
状態では、排気ガス中のカーボン等の微粒子成分が捕集
部材4に捕集され、かつ未燃ガスが捕集部材4の触媒に
よって酸化されることにより、排気カスが浄化される。
After the control flow starts, first, in step S+, it is determined whether the exhaust gas temperature Tε detected by the exhaust gas detector 22 is higher than the heat storage material temperature TR detected by the heat storage material temperature detector 23. When this determination is No that TE≦TR, the process moves to step S2, and the first to third on-off valves 9
- 11 are all kept closed to allow exhaust gas from the engine 1 to flow through only the exhaust passage 3 to the catalyst-equipped collection member 4. On the other hand, the determination in step S+ above is TE>
When the TR is YES, the process moves to step S3, and the first
and opens the third on-off valve 9, 11 and the second on-off valve 1
By closing 0, the exhaust gas is allowed to flow through the communication path 7 and the regeneration gas supply path 5 to the collection member 4. In the above state, particulate components such as carbon in the exhaust gas are collected by the collection member 4, and unburned gas is oxidized by the catalyst of the collection member 4, thereby purifying the exhaust residue.

また、排気’IA a T r、が蓄熱材@ i[T 
Rよりも高いときのみに排気ガスが蓄熱材14側に流れ
るため、該排気ガスの熱エネルギーによって蓄熱材14
を加熱昇温させることができる。
In addition, the exhaust 'IA a T r, is a heat storage material @i[T
Since the exhaust gas flows to the heat storage material 14 side only when the temperature is higher than R, the heat energy of the exhaust gas causes the heat storage material 14 to
can be heated to raise the temperature.

この後、ステップS4において捕集部材4の再生インタ
ーバルが設定インターバルに達したか否か、すなわち捕
集部材4に捕集された微粒子成分により電極25.25
間の電気抵抗値が所定値以下に減少して目詰まり検出器
24から捕集部材4の目詰まりを示す目詰まり信号が出
力されているか否かの判定を行う。この判定がNoであ
るときにはステップS1に戻って制御フローを繰り返し
、判定がYESであるときには再生準備行程に入る。
After that, in step S4, it is determined whether the regeneration interval of the collection member 4 has reached the set interval or not.
It is determined whether or not the electrical resistance value between the collecting members 4 and 4 has decreased to a predetermined value or less, and the clogging detector 24 is outputting a clogging signal indicating that the collecting member 4 is clogged. When this determination is No, the process returns to step S1 to repeat the control flow, and when the determination is YES, a regeneration preparation process is entered.

上記再生準備行程では、先ずステップS5において電気
発熱体13を通電により発熱させて蓄熱材14を加熱し
、発熱体13で発生した熱エネルギーを蓄熱材14に蓄
熱する。この後、ステップS6で排気温度TEが蓄熱材
濡面TRよりも高いか否かの判定を行い、この判定がT
E≦TRであるNoのときにはステップS7に移り、上
゛記第1ないし第3開閉弁9〜11を全て閉状態に保つ
ことにより排気ガスを排気通路3を通して捕集部材4に
流す。判定がTE >TRであるYESのときにはステ
ップS8に移り、第1および第3開閉弁9.11を開く
とともに第2開閉弁10を閉じることにより排気ガスを
連通路7および再生ガス供給通路5を通して捕集部材4
に流入させる。このことにより、蓄熱材14はその温度
TRよりも低温の排気ガスによって冷却されるのが阻止
され、蓄熱材14の蓄熱効率を高めることができる。
In the regeneration preparation step, first, in step S5, the electric heating element 13 is energized to generate heat to heat the heat storage material 14, and the thermal energy generated by the heating element 13 is stored in the heat storage material 14. After that, in step S6, it is determined whether the exhaust gas temperature TE is higher than the wet surface TR of the heat storage material, and if this determination is T
When E≦TR (No), the process moves to step S7, and the exhaust gas is caused to flow through the exhaust passage 3 to the collection member 4 by keeping all the first to third on-off valves 9 to 11 closed. When the determination is YES (TE > TR), the process moves to step S8, and the first and third on-off valves 9.11 are opened and the second on-off valve 10 is closed, thereby allowing the exhaust gas to pass through the communication path 7 and the regeneration gas supply path 5. Collection member 4
to flow into. This prevents the heat storage material 14 from being cooled by the exhaust gas having a temperature lower than its temperature TR, thereby increasing the heat storage efficiency of the heat storage material 14.

次いで、ステップS9において上記蓄熱材温度TRが所
定温度以上に達したか否かを判定する。
Next, in step S9, it is determined whether the heat storage material temperature TR has reached a predetermined temperature or higher.

この判定がNoであるときには上記ステップS6に戻っ
てそれ以降のステップSy 、Ssを繰り返す。蓄熱材
温度TRが所定温度以上に達して判定がYESになると
再生行程に入る。
If this determination is No, the process returns to step S6 and the subsequent steps Sy and Ss are repeated. When the heat storage material temperature TR reaches a predetermined temperature or higher and the determination becomes YES, a regeneration process begins.

この再生行程では、先ずステップShoにおいて、エア
ポンプ6を作動させるとともに、第1および第2開閉弁
9.10を閉じて第3開閉弁11のみを開く。このこと
により、エアポンプ6から吐出されたエアは再生ガス供
給通路5を通って触媒付捕集部材4に流入し、−F配回
生ガス供給通路5を通る問にその途中の蓄熱状態にある
蓄熱材14との熱交換作用により捕集部材4を再生でき
る高温の再生温度To (To≧600’ C)まで加
熱されて再生ガスとなる。この高湿の再生ガス(エア)
の捕集部材4への流入により該捕集部材4に捕集されて
いた微粒子成分は加熱されてその燃焼が始まる。尚、こ
の問、エンジン1からの排気ガスは排気バイパス通路8
を通って外部に排出される。
In this regeneration process, first in step Sho, the air pump 6 is operated, the first and second on-off valves 9 and 10 are closed, and only the third on-off valve 11 is opened. As a result, the air discharged from the air pump 6 flows into the catalyst-equipped collection member 4 through the regeneration gas supply passage 5, and the heat stored in the heat storage state during the passage through the -F distribution regeneration gas supply passage 5. Due to the heat exchange action with the material 14, it is heated to a high regeneration temperature To (To≧600'C) at which the collection member 4 can be regenerated, and becomes regeneration gas. This high humidity regeneration gas (air)
As the particles flow into the collection member 4, the particulate components collected on the collection member 4 are heated and combustion begins. In addition, in this question, the exhaust gas from the engine 1 is passed through the exhaust bypass passage 8.
is discharged to the outside through the

次いで、ステップSnに移って変圧装置17によりエア
ポンプ6のエア吐出農を時間の経過に伴って減委させる
ように制御する。このことにより、上記微粒子成分がそ
の燃焼の進行により減少してもそれに対して再生ガスが
過剰に供給されることはなくなり、その分エアポンプ6
での消費エネルギーを低減することができる。
Next, the process moves to step Sn, and the pressure transformer 17 is controlled to reduce the air discharge rate of the air pump 6 over time. As a result, even if the particulate component decreases due to the progress of combustion, the regeneration gas will not be supplied in excess, and the air pump 6 will be compensated accordingly.
can reduce energy consumption.

そして、一定時間経過後に上記捕集部材4の目詰まり状
態が解潤されて電極25.25間の電気抵抗値がちとの
大きさに戻ると、最後のステップ812で電気発熱体1
3およびエアポンプ6への通電を停止する。以上により
制御フローの1サイクルが完了して、以後は上記と同様
の制御フローが繰り返される。
Then, after a certain period of time has elapsed, when the clogging state of the collection member 4 is resolved and the electric resistance between the electrodes 25 and 25 returns to the original value, in the final step 812, the electric heating element 1
3 and the air pump 6 are stopped. With the above, one cycle of the control flow is completed, and the same control flow as described above is repeated thereafter.

したがって、この場合、触媒付捕集部材4に対する再生
準備行程で電気発熱体13がらの熱エネルギーを蓄熱材
14に徐々に蓄熱しておき、再生時にはこの蓄熱材14
で蓄熱された熱エネルギーによってエアポンプ6がらの
吐出エア(再生ガスを再生温度Toまで加熱昇温させる
ため、再生時に単に電気発熱体のみで再生ガスを加熱す
る加熱システムに比べて電気発熱体13にて賄う熱エネ
ルギーが少なくて済み、よって電気発熱体13の発熱容
齢およびバッテリ15の電気容量を小さく設定すること
ができる。
Therefore, in this case, the thermal energy from the electric heating element 13 is gradually stored in the heat storage material 14 during the regeneration preparation process for the catalyst-equipped collection member 4, and during regeneration, the heat storage material 14
Because the discharge air (regeneration gas) from the air pump 6 is heated to the regeneration temperature To by the thermal energy stored in Therefore, the heat generation capacity of the electric heating element 13 and the electric capacity of the battery 15 can be set small.

第3図および第4図は第2実施例を示しく尚、第1図お
よび第2図と同じ部分については同じ符号を付してその
詳細な説明を省略する)、捕集部材4を再生するための
再生ガスに排気ガスを利用したものである。
3 and 4 show the second embodiment, and the same parts as in FIGS. 1 and 2 are given the same reference numerals and detailed explanation thereof is omitted), and the collection member 4 is recycled. Exhaust gas is used as regeneration gas for this purpose.

すなわち、本実施例では、第3図に示すように、・触媒
付捕集部材4の直下流側の排気通路3には排気ガス中の
酸素濃度を検出する酸素81m検出器27が臨設されて
いる。また、制御回路26′はその入力信号の1つに上
記酸素濃度検出器27からの出力信号を付加して変圧装
置17および各電磁スイッチ18〜21を制御するよう
に設けられており、その他は上記第1実施例と同様に構
成され) でいる。
That is, in this embodiment, as shown in FIG. 3, an oxygen 81m detector 27 for detecting the oxygen concentration in the exhaust gas is installed in the exhaust passage 3 immediately downstream of the catalyst-equipped collection member 4. There is. Further, the control circuit 26' is provided so as to add an output signal from the oxygen concentration detector 27 to one of its input signals to control the transformer 17 and each electromagnetic switch 18 to 21. The configuration is similar to that of the first embodiment described above.

この第2実施例の作動について第4図に示す制御フロー
チャートに沿って説明すると、ステップS1からステッ
プSsまでの通常行程および再生準備行程は上記第1実
施例と同じ動作でもって行われる。そして、ステップS
9での判定、ずなわち蓄熱材温度TRが所定温度以上に
達したか否かの判定がYESになって再生行程に入ると
、先ずステップamにおいてエンジン1の排気瀉喰TE
が捕集部材4に対する再生温IToよりも高い状態にあ
るか否かの判定を行い、この判定がTε≦ToのNoで
あるときには、ステップSnにおいてさらに排気温度T
εが上記再生濃度Toよりも低温の所定81度以上にあ
るか否かの判定を行い、この判定がNoであるときには
ステップS鰺に戻って排気1度TEが所定温度以上にな
るのを持つ。
The operation of this second embodiment will be explained along the control flowchart shown in FIG. 4. The normal process and regeneration preparation process from step S1 to step Ss are performed in the same manner as in the first embodiment. And step S
When the determination in step 9, that is, the determination as to whether or not the heat storage material temperature TR has reached a predetermined temperature or higher, is YES and the regeneration process begins, first, in step am, the exhaust air filter TE of the engine 1 is
is higher than the regeneration temperature ITo for the collection member 4, and if this determination is No (Tε≦To), the exhaust temperature T is further increased in step Sn.
It is determined whether ε is at a predetermined temperature of 81 degrees or higher, which is lower than the regeneration concentration To, and if this determination is No, the process returns to step S and the exhaust gas 1 degree TE is kept at a predetermined temperature or higher. .

上記ステップSuでの判定がYESになると、第2rl
a閉弁10を閉じかつ第3開閉弁11を開くとともに第
1開簡弁9の開度を調整することにより、排気ガスの一
部を再生ガス供給通路5に流して該再生ガス供給通1!
15の蓄熱@14により再生Ii度Toに上昇するまで
加熱したのち再び排気通路3内の排気ガスに戻し、排気
ガス全体を再生maT0に加熱*mさせる。この再生濃
度Toまで加熱弁81された排気ガスは再生ガスとなう
(−一部材4に流入して該捕集部材4に捕集されている
微粒子成分を加熱I!焼させる。
If the determination in step Su above becomes YES, the second rl
By closing the closing valve 10, opening the third opening/closing valve 11, and adjusting the opening degree of the first opening/closing valve 9, a part of the exhaust gas is caused to flow into the regeneration gas supply passage 5. !
15 heat storage@14 until the temperature rises to regeneration Ii degree To, the exhaust gas is returned to the exhaust passage 3 again, and the entire exhaust gas is heated to regeneration maT0*m. The exhaust gas heated by the heating valve 81 to this regeneration concentration To becomes a regeneration gas (-1), which flows into the member 4 and the particulate components collected by the collection member 4 are heated and burned.

一方、上記ステップ9鱒での判定がTε>T。On the other hand, the determination in the above step 9 trout is Tε>T.

であるYESのときには、ステップSoにおいて第1な
いし第311ffl弁9〜11を全て閉じることにより
、該高温の排気ガスをそのまま再生ガスとして排気通路
3を通して捕集部材4に流入させる。
When YES, all the first to 311ffl valves 9 to 11 are closed in step So, and the high-temperature exhaust gas is directly made to flow into the collection member 4 through the exhaust passage 3 as regeneration gas.

このことにより、上記と同様に、捕集部材4に補集され
ていた微粒子成分が加熱されて燃焼除去される。
As a result, the particulate components collected by the collection member 4 are heated and burned and removed in the same manner as described above.

そして、上記ステップ812またはステップS+sの轡
はステップSNにおいて、酸素濃度検出器27によって
検出された排気ガス中の酸索濃廓が設定値以下にあるか
否かの判定を行う。この判定がNoであるとき、すなわ
ち排気ガス中の酸素が捕集部材4の再生状態で微粒子成
分の燃焼に費やされた後でも設定m度よりも多く残存し
ているときには、エンジン1から排出された排気ガス中
に微数子成分の燃焼のための酸素が充足している状態と
みて誠テップS鱒に、戻り、その後の制御フローを繰り
返す。一方、ステ、ツブSHでの判定がYESであると
き、すなわち捕集部材4適過俵の排気ガス中の酸素11
度が設定°濃度以下であるときには、エンジン1からの
排気ガス中に微粒子成分を十分に燃焼させるだけの酸素
が不足している状態とみて、次のステップS+sにおい
て排気ガス中の酸素不足を補充してその濃度を設定値に
収める゛べく第1開閉弁9を閉じかつ第3開閉弁11を
開くとともに、エアポンプ6を作動させてそのエア吐出
量および第2開閉弁1Oの開度を調整する。このことに
より、捕集部材4に捕集されている微粒子成分を十分な
量の酸素(エア)のもとで確実に燃焼させて除去するこ
とができる。
Then, in step SN of step 812 or step S+s, it is determined whether the oxygen concentration in the exhaust gas detected by the oxygen concentration detector 27 is below a set value. When this determination is No, that is, when more oxygen in the exhaust gas remains than the set m degrees even after the oxygen in the exhaust gas is consumed in the combustion of particulate components in the regenerated state of the collection member 4, the exhaust gas is discharged from the engine 1. Assuming that the exhaust gas thus produced is sufficient with oxygen for combustion of the fractional components, the system returns to the Makoto step S trout and repeats the subsequent control flow. On the other hand, when the judgment in ST and knob SH is YES, that is, the oxygen 11 in the exhaust gas of the collecting member 4 is
When the temperature is below the set concentration, it is assumed that there is not enough oxygen in the exhaust gas from the engine 1 to burn the particulate components sufficiently, and the oxygen deficiency in the exhaust gas is replenished in the next step S+s. In order to keep the concentration within the set value, the first on-off valve 9 is closed and the third on-off valve 11 is opened, and the air pump 6 is operated to adjust the air discharge amount and the opening degree of the second on-off valve 1O. . Thereby, the particulate components collected by the collection member 4 can be reliably burned and removed under a sufficient amount of oxygen (air).

この後、捕集部材4の再生が終了すると最後のステップ
S+sで電気発熱体13およびエアポンプ6を作動停止
させたのち制御フローの1サイクルが完了する。
Thereafter, when the regeneration of the collection member 4 is completed, the electric heating element 13 and the air pump 6 are stopped in the final step S+s, and one cycle of the control flow is completed.

したがって、本実施例でも上記第1実施例と同様の作用
効果を奏することができることに加えて、高温の排気ガ
スを再生ガスとして利用するため、再生ガスの再生1B
 変T oまでの昇温が容易となり、捕集部材4を効率
良く再生できるとともにエアポンプ6での消費エネルギ
ーをより一層低減できる利点がある。
Therefore, in addition to being able to achieve the same effects as in the first embodiment, this embodiment also utilizes high-temperature exhaust gas as the regeneration gas.
There is an advantage that the temperature can be easily raised to a temperature of T o, the collection member 4 can be regenerated efficiently, and the energy consumption by the air pump 6 can be further reduced.

また、第5図および第6図は第3実施例を示しく第1図
ないし第4図と同じ部分については同じ符号を付してそ
の詳細な説明を省略する)、過給機付ディーゼルエンジ
ンに適用したものである。
In addition, FIGS. 5 and 6 show the third embodiment, and the same parts as in FIGS. 1 to 4 are given the same reference numerals and detailed explanations are omitted), a diesel engine with a supercharger. It was applied to

すなわち、本実施例では、連通路7との接続部と第2開
閉弁10との間の排気通路3にはタービン28が配設さ
れ、かつ吸気通路2の途中には上記タービン28と回転
軸29を介して駆動連結されたブロワ3Oが配設されて
おり、排気ガス流によってタービン28を回転し、それ
に伴ってブロワ3Oを回転駆動して該ブロワ3Oによっ
てエンジン1への吸気を過給するようにした過給機31
が構成されている。また、上記連通路7の途中には過給
機31のタービン28に加わる排気圧が所定圧以上に上
昇するとスプリング32の付勢力に抗して開弁して連通
路7を開くウェストゲートパルプ33が配設されており
、上記実施例における排気温度検出器22、第1開閉弁
9および第1開閉弁用電磁スイツチ18は省略されてい
る。その他は上記第2実施例と同様に構成されている。
That is, in this embodiment, the turbine 28 is disposed in the exhaust passage 3 between the connection part with the communication passage 7 and the second on-off valve 10, and the turbine 28 and the rotating shaft are disposed in the middle of the intake passage 2. A blower 3O is disposed, which is drive-connected via a blower 29, and the exhaust gas flow rotates the turbine 28, which rotates the blower 3O and supercharges the intake air to the engine 1 by the blower 3O. Supercharger 31
is configured. Further, in the middle of the communication passage 7, when the exhaust pressure applied to the turbine 28 of the supercharger 31 rises above a predetermined pressure, a waste gate pulp 33 opens against the urging force of a spring 32 to open the communication passage 7. The exhaust temperature detector 22, the first on-off valve 9, and the first on-off valve electromagnetic switch 18 in the above embodiment are omitted. The rest of the structure is the same as that of the second embodiment.

そして、本実施例での作動は第6図に示すフローチャー
トに沿って行われる。すなわち、スタート時にウェスト
ゲートパルプ33が開いてル)る状態、つまりエンジン
1が高回転高負荷領域にあって該エンジン1からの排気
ガスの瀉痕Tεおよび圧力が高まっている状態で、ステ
ップS1において捕集部材4の再生インターバルが設定
インターバルに達したか否かの判定を行い、この判定が
NOであるときには同じステップ1を繰り返す。ステッ
プS1での判定がYESとなると、ステップS2にて電
気発熱体13への通電により蓄熱材14を加熱して発熱
体13の熱エネルギーを蓄熱材14に蓄熱する。この後
、ステップS3において上記蓄熱材14の温度TRが所
定湿度以上に上昇したか否かの判定を行い:判定が−N
oであるときには同じステップS3を繰り返す。蓄熱材
温度TRの所定湿度以上への昇温によ“り上記ステップ
S3での判定がYESI%l:なると、捕集部材4の再
生を行いつつステップS4において排気ガス中の酸素濃
度が設定値以下か否かを判定し、判定がN。
The operation in this embodiment is performed according to the flowchart shown in FIG. That is, in a state in which the waste gate pulp 33 is opened at the time of starting, that is, in a state in which the engine 1 is in a high rotation and high load region and the exhaust gas trace Tε and pressure from the engine 1 are increasing, step S1 is performed. In this step, it is determined whether the regeneration interval of the collection member 4 has reached the set interval, and if this determination is NO, the same step 1 is repeated. If the determination in step S1 is YES, the heat storage material 14 is heated by energizing the electric heating element 13 in step S2, and the thermal energy of the heating element 13 is stored in the heat storage material 14. After that, in step S3, it is determined whether the temperature TR of the heat storage material 14 has risen to a predetermined humidity or higher; the determination is -N.
o, the same step S3 is repeated. When the temperature of the heat storage material temperature TR rises to a predetermined humidity or higher and the determination in step S3 becomes YES%l:, the oxygen concentration in the exhaust gas is set to the set value in step S4 while regenerating the collection member 4. Determine whether it is less than or equal to or not, and the determination is N.

であるときには同じステップS4を繰り返す。一方、上
記ステップS4での判定がYESになると、次のステッ
プS5において排気ガス中の酸素11度を設定値に収め
るべく第3開閉弁11を開き、かつエアポンプ6を作動
さ、せてそのエア吐出量および第2開閉弁10の。開度
を調整しながら捕集部材4の再生を続行する。そして該
捕集部材4の再生が終了すると次のステップS6にて電
気発熱体13およびエアポンプ6を作動停止させたのち
制御フローの1サイクルが完了する。
If so, the same step S4 is repeated. On the other hand, if the determination in step S4 is YES, in the next step S5, the third on-off valve 11 is opened in order to keep the oxygen in the exhaust gas at 11 degrees Celsius within the set value, and the air pump 6 is operated to of the discharge amount and the second on-off valve 10. Regeneration of the collection member 4 is continued while adjusting the opening degree. When the regeneration of the collection member 4 is completed, the electric heating element 13 and the air pump 6 are stopped in the next step S6, and one cycle of the control flow is completed.

したがって、本実施例でも上記各実施例と同様の作用効
果を奏することができることに加えて、過給機付ディー
ゼルエンジンの特長を利用して排気ガスの温度TEが高
温となってウェストゲートパルプ−33が開くときのみ
に該高温の排気ガスを蓄熱材1゛4側に流すため、排気
温度検出器22、第1開閉弁9等が不要になり、装置構
成および制御システムを簡略化できる利点がある。
Therefore, in addition to being able to achieve the same effects as in the above embodiments, this embodiment also takes advantage of the features of a supercharged diesel engine to raise the temperature TE of the exhaust gas, thereby reducing the wastegate pulp. Since the high-temperature exhaust gas flows to the heat storage material 1-4 side only when 33 is opened, the exhaust temperature detector 22, the first on-off valve 9, etc. are not required, and the device configuration and control system can be simplified. be.

尚、一本発明は上記実施例に限定されるものではなく、
種々の変形例をも包含するものであり、例えば上、記実
施例では、電気発熱体13の発熱量を不変としたが、再
生時には蓄熱時(再生準備時)よりも増大変化させるよ
うに制御してよい。これは、例えば発熱体13を1敗配
置しておいてそのうち再生時に作動する発熱体13を蓄
熱時よりも増やしたり、発熱体13への通電電圧を再生
時に増大変化させたり、あるいは再生時に蓄熱材14の
外表面を発熱体13によって加熱すること等により達成
される。そして、このように発熱体13の発熱量を可変
制御することにより、再生ガスが蓄熱材14のみならず
発熱体13によっても強力に加熱されるので、捕集部材
4の再生をより一層効率良く行うことができる。
It should be noted that the present invention is not limited to the above embodiments,
It also includes various modifications; for example, in the above embodiment, the amount of heat generated by the electric heating element 13 remains unchanged; however, during regeneration, it is controlled to increase more than during heat storage (when preparing for regeneration). You may do so. This can be done, for example, by arranging one heating element 13 and increasing the number of heating elements 13 activated during regeneration than during heat storage, by increasing and changing the voltage applied to the heating element 13 during regeneration, or by increasing the number of heating elements 13 activated during regeneration, or by increasing the voltage applied to the heating element 13 during regeneration, or by increasing the number of heating elements 13 activated during regeneration. This is achieved by, for example, heating the outer surface of the material 14 with the heating element 13. By variably controlling the calorific value of the heating element 13 in this way, the regeneration gas is strongly heated not only by the heat storage material 14 but also by the heating element 13, so that the collection member 4 can be regenerated even more efficiently. It can be carried out.

また、再生時に蓄熱材14に適宜の燃料やオイルを供給
することにより、排気温度Tεの上昇および未燃ガスの
増量による触媒付捕集部材4での酸化反応の促進等を狙
って上記の効果を得るようにしてもよい。
In addition, by supplying appropriate fuel or oil to the heat storage material 14 during regeneration, the above effects can be achieved with the aim of increasing the exhaust gas temperature Tε and promoting the oxidation reaction in the catalyst-equipped collection member 4 by increasing the amount of unburned gas. You may also obtain

さらに、再生時に捕集部材4を通過した後の高温の排気
ガス(微粒子成分の燃焼により発生するガス)を蓄熱材
14側に還流させて蓄熱材14を加熱するようにしても
よい。
Furthermore, the heat storage material 14 may be heated by circulating high-temperature exhaust gas (gas generated by combustion of particulate components) after passing through the collection member 4 during regeneration to the heat storage material 14 side.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は第1実施
例を示す全体構成図、第2図は同制御システムのフロー
チャート図、第3図は第2実施例を示す全体構成図、第
4図は同制御システムのフローチャート図、第5図は第
3実施例を示す全体構成図、第6図は同制御システムの
フローチャート図である。 1・・・エンジン、3・・・排気通路、4・・・触媒付
捕集部材、6・・・エアポンプ、9・・・第1開閉弁、
10・・・第2R閏弁、11・・・第3開閉弁、12.
12’ 12″・・・再生ガス供給装置、13・・・電
気発熱体、14・・・蓄熱材、22・・・排気温度検出
器、23・・・蓄熱材濃度検出器、24・・・目詰まり
検出器、26.26′26”・・・制御回路、27・・
・酸素11度検出器、31・・・過給機、33・・・ウ
ェストゲートバルブ。 第5図 第6図
The drawings show embodiments of the present invention; FIG. 1 is an overall configuration diagram showing the first embodiment, FIG. 2 is a flowchart of the control system, and FIG. 3 is an overall configuration diagram showing the second embodiment. , FIG. 4 is a flowchart of the same control system, FIG. 5 is an overall configuration diagram showing a third embodiment, and FIG. 6 is a flowchart of the same control system. DESCRIPTION OF SYMBOLS 1... Engine, 3... Exhaust passage, 4... Catalyst-equipped collection member, 6... Air pump, 9... First on-off valve,
10... 2nd R leap valve, 11... 3rd on-off valve, 12.
12'12''... Regeneration gas supply device, 13... Electric heating element, 14... Heat storage material, 22... Exhaust temperature detector, 23... Heat storage material concentration detector, 24... Clogging detector, 26.26'26"...Control circuit, 27...
・Oxygen 11 degree detector, 31...supercharger, 33...waste gate valve. Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1) 排気通路にカーボン粒子等の微粒子成分を捕集
する触媒付補集部材を設けたディーゼルエンジンの排気
浄化装置において、上記触媒付捕集部材の上流側に触媒
付捕集部材に捕集された1粒子成分を燃焼除去させるた
めの再生ガスを供給する再生ガス供給装置を配設し、該
再生ガス供給装置に、電気発熱体とミ該電気発熱体の熱
エネルギーを蓄熱するとともに放熱により上記再生ガス
を加熱する蓄熱材とを設けたことを特徴とするディーゼ
ルエンジンの排気浄化装置。
(1) In an exhaust purification device for a diesel engine that is provided with a catalyst-equipped collection member that collects particulate components such as carbon particles in the exhaust passage, the catalyst-equipped collection member collects particulate components such as carbon particles on the upstream side of the catalyst-equipped collection member. A regeneration gas supply device is installed to supply regeneration gas for burning and removing the single particle component, and the regeneration gas supply device is equipped with an electric heating element and an electric heating element that stores the thermal energy of the electric heating element and radiates the heat. An exhaust gas purification device for a diesel engine, comprising: a heat storage material that heats the regenerated gas.
JP58237090A 1983-12-14 1983-12-14 Exhaust repurifier of diesel engine Granted JPS60128920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237090A JPS60128920A (en) 1983-12-14 1983-12-14 Exhaust repurifier of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237090A JPS60128920A (en) 1983-12-14 1983-12-14 Exhaust repurifier of diesel engine

Publications (2)

Publication Number Publication Date
JPS60128920A true JPS60128920A (en) 1985-07-10
JPH0233852B2 JPH0233852B2 (en) 1990-07-31

Family

ID=17010257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237090A Granted JPS60128920A (en) 1983-12-14 1983-12-14 Exhaust repurifier of diesel engine

Country Status (1)

Country Link
JP (1) JPS60128920A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013242A1 (en) * 1990-02-21 1991-09-05 Southwest Research Institute Device and method for regeneration of an internal combustion exhaust particulate trap
DE4008092A1 (en) * 1990-03-14 1991-09-19 Gillet Heinrich Gmbh Regeneration of carbon filters for Diesel IC engine - using reference airflow to monitor pressure build=up on filters to determine regeneration point
EP0953737A1 (en) * 1998-04-29 1999-11-03 Institut Francais Du Petrole Process and device for the local and controlled regeneration of a particles filter
FR2877039A1 (en) * 2004-10-21 2006-04-28 Renault Sas METHOD AND SYSTEM FOR REGENERATING A PARTICLE FILTER
CN100383367C (en) * 2006-07-10 2008-04-23 北京工业大学 A cold start emission adsorption device for automobiles
JP2016156360A (en) * 2015-02-26 2016-09-01 日本特殊陶業株式会社 Exhaust gas temperature control device and temperature adjustment device of exhaust gas
US10300435B2 (en) 2015-02-26 2019-05-28 Ngk Spark Plug Co., Ltd. Ammonia generation apparatus and ammonia generation control apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818013U (en) * 1981-07-28 1983-02-03 日産自動車株式会社 Exhaust purification device
JPS58166826U (en) * 1982-04-30 1983-11-07 株式会社土屋製作所 Exhaust filter for particulate separation
JPS59162316A (en) * 1983-01-07 1984-09-13 カミンズ・エンジン・カンパニー・インコーポレイテッド Method and device for reducing granular discharge from internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818013U (en) * 1981-07-28 1983-02-03 日産自動車株式会社 Exhaust purification device
JPS58166826U (en) * 1982-04-30 1983-11-07 株式会社土屋製作所 Exhaust filter for particulate separation
JPS59162316A (en) * 1983-01-07 1984-09-13 カミンズ・エンジン・カンパニー・インコーポレイテッド Method and device for reducing granular discharge from internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013242A1 (en) * 1990-02-21 1991-09-05 Southwest Research Institute Device and method for regeneration of an internal combustion exhaust particulate trap
DE4008092A1 (en) * 1990-03-14 1991-09-19 Gillet Heinrich Gmbh Regeneration of carbon filters for Diesel IC engine - using reference airflow to monitor pressure build=up on filters to determine regeneration point
EP0953737A1 (en) * 1998-04-29 1999-11-03 Institut Francais Du Petrole Process and device for the local and controlled regeneration of a particles filter
FR2778118A1 (en) * 1998-04-29 1999-11-05 Inst Francais Du Petrole METHOD AND DEVICE FOR LOCAL AND CONTROLLED REGENERATION OF A PARTICLE FILTER
US6176896B1 (en) 1998-04-29 2001-01-23 Institut Francais Du Petrole Process and device for local and controlled regeneration of a particle filter
FR2877039A1 (en) * 2004-10-21 2006-04-28 Renault Sas METHOD AND SYSTEM FOR REGENERATING A PARTICLE FILTER
CN100383367C (en) * 2006-07-10 2008-04-23 北京工业大学 A cold start emission adsorption device for automobiles
JP2016156360A (en) * 2015-02-26 2016-09-01 日本特殊陶業株式会社 Exhaust gas temperature control device and temperature adjustment device of exhaust gas
US10300435B2 (en) 2015-02-26 2019-05-28 Ngk Spark Plug Co., Ltd. Ammonia generation apparatus and ammonia generation control apparatus

Also Published As

Publication number Publication date
JPH0233852B2 (en) 1990-07-31

Similar Documents

Publication Publication Date Title
JP2004176571A (en) Exhaust emission control device of internal combustion engine
WO2002101208A1 (en) Improvements in particulate filters
JP3028110B2 (en) Engine exhaust gas purification equipment
JPS60128920A (en) Exhaust repurifier of diesel engine
WO2007010985A1 (en) Exhaust gas purifier
JPH0128255Y2 (en)
JPH0128256Y2 (en)
JPH0232450B2 (en)
JPS6126573Y2 (en)
JP3826661B2 (en) Diesel particulate filter
JP2516113Y2 (en) Exhaust gas aftertreatment device
KR100773268B1 (en) Diesel exhaust gas purification device and control method
JPH01182517A (en) Diesel engine exhaust purification device
JPH0517370Y2 (en)
JP3580563B2 (en) Exhaust gas particulate purification system for internal combustion engine
JP3385820B2 (en) Particulate trap device
JPH04109019A (en) Internal combustion engine exhaust particulate purification device
JP3724368B2 (en) Regeneration control method for DPF system
JPH03134214A (en) Diesel exhaust purification device
JPH07233720A (en) Exhaust gas particulate purifier
JP3078942B2 (en) Exhaust gas treatment device
JPS61232318A (en) Regeneration of diesel exhaust gas minute particle catching body
JPH0621538B2 (en) Exhaust particulate treatment device for internal combustion engine
JPH0619790Y2 (en) Exhaust gas purification device with backflow regeneration
JPH0315617A (en) Internal combustion engine exhaust particulate treatment device