JPH0128255Y2 - - Google Patents

Info

Publication number
JPH0128255Y2
JPH0128255Y2 JP20154183U JP20154183U JPH0128255Y2 JP H0128255 Y2 JPH0128255 Y2 JP H0128255Y2 JP 20154183 U JP20154183 U JP 20154183U JP 20154183 U JP20154183 U JP 20154183U JP H0128255 Y2 JPH0128255 Y2 JP H0128255Y2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
collection member
exhaust
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20154183U
Other languages
Japanese (ja)
Other versions
JPS60110617U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20154183U priority Critical patent/JPS60110617U/en
Publication of JPS60110617U publication Critical patent/JPS60110617U/en
Application granted granted Critical
Publication of JPH0128255Y2 publication Critical patent/JPH0128255Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、デイーゼルエンジンの排気中に含ま
れる未燃カーボン等の微粒子成分(パテイキユレ
ート)を排気通路に設けた触媒付捕集部材により
捕集するようにしたデイーゼルエンジンの排気浄
化装置に関し、特に上記触媒付捕集部材を再生す
る対策に関する。
[Detailed description of the invention] (Field of industrial application) This invention collects particulate components (particulate matter) such as unburned carbon contained in the exhaust gas of diesel engines using a catalyst-equipped collection member installed in the exhaust passage. The present invention relates to an exhaust gas purification device for a diesel engine, and particularly relates to a measure for regenerating the catalyst-equipped collection member.

(従来技術) 従来より、この種の、排気通路に微粒子成分捕
集用の捕集部材(フイルタ部材)を配置せしめた
デイーゼルエンジンの排気浄化装置はよく知られ
ているが、このものでは長期間経過すると捕集さ
れた微粒子成分の堆積により捕集部材に目詰まり
が生じてエンジン出力が低下する等の問題があ
り、この問題に対処するために定期的に上記捕集
部材の目詰まりを解消してその再生を行う必要が
ある。
(Prior art) This type of exhaust purification device for a diesel engine is well known in which a collection member (filter member) for collecting particulate components is placed in the exhaust passage. Over time, the collection member may become clogged due to the accumulation of collected particulate components, causing problems such as a reduction in engine output.To deal with this problem, the collection member is periodically cleared from clogging. and play it.

そして、このような捕集部材の再生を行う方式
の一例として、従来、例えば特開昭56−56921号
公報等に開示されているように、排気通路に配設
する捕集部材を、排気中の未燃ガスを酸化燃焼さ
せる触媒作用を併有する触媒付のものとするとと
もに、該触媒付捕集部材よりも上流側の排気通路
に排気ガスを加熱する電気発熱体(電気ヒータ)
等の加熱手段を設け、該加熱手段により加熱され
た排気ガスを再生ガスとして触媒付捕集部材に導
いて該触媒付捕集部材での酸化反応によりさらに
高温にし、この高温となつた排気ガスによつて捕
集部材に捕集されている微粒子成分を燃焼除去す
るようにしたものが提案されている。
As an example of a method for regenerating such a collection member, conventionally, for example, as disclosed in Japanese Patent Laid-Open No. 56-56921, etc., a collection member disposed in an exhaust passage is regenerated during exhaust gas. an electric heating element (electric heater) that heats the exhaust gas in an exhaust passage upstream of the catalyst-equipped collection member;
A heating means is provided, and the exhaust gas heated by the heating means is guided as regeneration gas to a collection member with a catalyst, and is further raised to a high temperature by an oxidation reaction in the collection member with a catalyst, and this high temperature exhaust gas is A system has been proposed in which particulate components collected in a collection member are removed by combustion.

(考案が解決しようとする問題点) ところで、この提案のものでは、触媒付捕集部
材での排気ガスの再燃焼による発熱を利用して微
粒子成分を加熱燃焼させるため、加熱手段の発熱
体容量、バツテリ容量等をある程度は小さくする
ことができる。しかし、微粒子成分を効果的に燃
焼除去するには約600℃以上の高温度への加熱が
必要であることを考慮した場合、上記加熱手段の
発熱体容量、バツテリ容量をあまりに小さく設定
することはできないものである。
(Problem to be solved by the invention) By the way, in this proposal, the particulate components are heated and combusted using the heat generated by the re-combustion of the exhaust gas in the catalytic collection member, so the capacity of the heating element of the heating means is reduced. , battery capacity, etc. can be reduced to some extent. However, considering that heating to a high temperature of approximately 600°C or higher is necessary to effectively burn and remove particulate components, it is important to avoid setting the heating element capacity and battery capacity of the heating means too small. It is something that cannot be done.

そこで、上記の触媒付捕集部材を加熱再生する
ための再生ガスを、電気発熱体と該電気発熱体か
らの熱エネルギーを蓄熱する蓄熱材との組合せに
よつて加熱するようにすることにより、触媒付捕
集部材を効果的に再生しながら電気発熱体やバツ
テリの容量を従来のものよりもさらに小さく設定
できるようにすることが考えられる。
Therefore, by heating the regeneration gas for heating and regenerating the above-described catalyst-equipped collection member using a combination of an electric heating element and a heat storage material that stores thermal energy from the electric heating element, It is conceivable that the capacity of the electric heating element and the battery can be set smaller than the conventional ones while effectively regenerating the catalytic collection member.

ところが、その場合、蓄熱材の利用によつて電
気発熱体およびバツテリの容量を小さくした分だ
け電気発熱体からの熱エネルギーを蓄熱材に十分
に蓄熱するまでの時間が長くかかり、短時間のエ
ンジン運転を繰り返すときには蓄熱材での熱エネ
ルギーの蓄熱不足により再生ガスが高温度まで加
熱昇温されず、捕集部材を確実に再生することが
できないという問題が生じる。
However, in this case, by using a heat storage material, the capacity of the electric heating element and battery is reduced, so it takes a longer time to sufficiently store the thermal energy from the electric heating element in the heat storage material. When the operation is repeated, a problem arises in that the regeneration gas is not heated to a high temperature due to insufficient storage of thermal energy in the heat storage material, and the collection member cannot be regenerated reliably.

(考案の目的) 本考案はかかる諸点に鑑みてなされたもので、
その目的とするところは、上記した蓄熱材の温度
がエンジンの排気ガス熱を受けて所定温度以上に
上昇するとその熱エネルギーを活かして直ちに捕
集部材の再生を行うようにすることにより、蓄熱
材の使用により電気発熱体およびバツテリの容量
を小さく設定しつつ、電気発熱体での消費電力を
低減して捕集部材の再生を確実に行い得るように
することにある。
(Purpose of the invention) This invention was made in view of the above points,
The purpose of this is to utilize the thermal energy to immediately regenerate the collection member when the temperature of the heat storage material rises above a predetermined temperature due to heat from the engine exhaust gas. The purpose of this invention is to set the capacities of the electric heating element and the battery to a small value while reducing the power consumption of the electric heating element, thereby making it possible to reliably regenerate the collection member.

(考案の構成) 上記目的を達成するために、本考案の構成は、
排気通路に微粒子成分捕集用の触媒付捕集部材を
配設してなるデイーゼルエンジンの排気浄化装置
において、上記触媒付捕集部材上流側の排気系
に、排気ガスと接触し、かつ捕集部材に捕集され
た微粒子成分を燃焼除去するための再生ガスを加
熱する蓄熱材と、該蓄熱材を加熱して熱エネルギ
ーを蓄熱させる電気発熱体と、所定期間毎に上記
電気発熱体に通電させる第1の発熱体制御手段と
を設ける。さらに、上記蓄熱材の温度を検出する
蓄熱材温度検出器と、該蓄熱材温度検出器の出力
を受け、蓄熱材温度が所定値以上に上昇したとき
には上記所定期間内であつても上記電気発熱体に
通電させる第2の発熱体制御手段とを設けたもの
である。
(Structure of the invention) In order to achieve the above object, the structure of the invention is as follows:
In a diesel engine exhaust purification device comprising a catalyst-equipped collection member for collecting particulate components disposed in the exhaust passage, a catalyst-equipped collection member is provided in the exhaust system upstream of the catalyst-equipped collection member to come into contact with exhaust gas and collect it. A heat storage material that heats regenerated gas to burn and remove particulate components collected by the member; an electric heating element that heats the heat storage material and stores thermal energy; and energizes the electric heating element at predetermined intervals. and a first heating element control means for controlling the heating element. Further, a heat storage material temperature detector detects the temperature of the heat storage material, and when the heat storage material temperature rises to a predetermined value or more based on the output of the heat storage material temperature detector, the electric heat generation is performed even within the predetermined period. A second heating element control means for energizing the body is provided.

このことにより、デイーゼルエンジンの運転中
に排気ガスによる加熱を受けて蓄熱材が所定値以
上に温度上昇すると、他の制御に優先して捕集部
材の再生を実行するようにしたものである。
As a result, when the temperature of the heat storage material rises above a predetermined value due to heating by exhaust gas during operation of the diesel engine, the collection member is regenerated with priority over other controls.

(考案の効果) したがつて、本考案によれば、デーゼルエンジ
ンの運転中、排気系に配設された蓄熱材の温度が
所定値以上に達すると、捕集部材の再生インター
バルに達していなくても電気発熱体に通電して排
気通路の微粒子成分捕集用の触媒付捕集部材を再
生するようにしたものであるので、蓄熱材の使用
により電気発熱体およびバツテリの容量を小さく
設定しながら、短時間のエンジン運転であつても
捕集部材を確実に再生することができ、排気抵抗
の低減促進による燃費、出力の改善を図り得、ひ
いてはエンジンの排気ガス熱利用による電気発熱
体での消費電力の低減、触媒付捕集部材に対する
再生インターバルの安全サイドへの設定等を図る
ことができる。
(Effect of the invention) Therefore, according to the invention, when the temperature of the heat storage material disposed in the exhaust system reaches a predetermined value or more during operation of the diesel engine, the regeneration interval of the collection member has not been reached. The system regenerates the catalytic collection member for collecting particulate components in the exhaust passage by energizing the electric heating element, so the capacity of the electric heating element and battery can be set small by using a heat storage material. However, it is possible to reliably regenerate the collection member even during short engine operation, and it is possible to improve fuel efficiency and output by promoting a reduction in exhaust resistance. It is possible to reduce the power consumption of the catalyst, set the regeneration interval for the catalyst-equipped collection member on the safe side, etc.

(実施例) 以下、本考案の実施例を図面に基づいて詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本考案の実施例に係るデイーゼルエン
ジンの排気浄化装置の全体構成を示し、1はデイ
ーゼルエンジン、2は該エンジン1に吸気を供給
するための吸気通路、3はエンジン1からの排気
ガスを外部に排出するための排気通路であつて、
該排気通路3の途中には排気ガス中のカーボン粒
子等の微粒子成分を捕集する触媒付捕集部材4が
配設されている。該触媒付捕集部材4は、セラミ
ツク等の多孔質材料によりハニカム状に形成さ
れ、そのハニカム孔の開口端はハニカム体の両端
部で交互に閉塞され、かつ排気ガスに接触する表
面には貴金属あるいは卑金属による酸化触媒がコ
ーテイングされており、一端部のハニカム孔開口
端から流入した排気ガスが通気性を持つ多孔質隔
壁を通つて他端部のハニカム孔開口部から流出す
る間に上記多孔質隔壁によつて排気ガス中の微粒
子成分を捕集するとともに、酸化触媒によつて排
気ガス中の未燃ガスを酸化反応させるものであ
る。
FIG. 1 shows the overall configuration of a diesel engine exhaust purification device according to an embodiment of the present invention, in which 1 is a diesel engine, 2 is an intake passage for supplying intake air to the engine 1, and 3 is an exhaust gas from the engine 1. An exhaust passage for discharging gas to the outside,
A catalyst-equipped collection member 4 is disposed in the middle of the exhaust passage 3 to collect particulate components such as carbon particles in the exhaust gas. The catalyst-equipped collection member 4 is formed in a honeycomb shape from a porous material such as ceramic, the open ends of the honeycomb holes are alternately closed at both ends of the honeycomb body, and the surface in contact with the exhaust gas is coated with a noble metal. Alternatively, an oxidation catalyst made of a base metal is coated, and the exhaust gas flowing in from the opening end of the honeycomb hole at one end passes through a porous partition wall with air permeability and flows out from the opening end of the honeycomb hole at the other end. Particulate components in the exhaust gas are collected by the partition wall, and unburned gas in the exhaust gas is subjected to an oxidation reaction by the oxidation catalyst.

上記触媒付捕集部材4よりも上流側の排気通路
3には再生ガス供給通路5の上流端が開口され、
該再生ガス供給通路5の上流端はエアポンプ6に
連通され、再生ガス供給通路5の途中部は連通路
7を介して排気通路3の再生ガス供給通路5下流
端との接続部よりも上流側に連通されている。ま
た、排気通路3の再生ガス供給通路5下流端との
接続部と、連通路7との接続部との間には排気バ
イパス通路8の上流端が開口され、該排気バイパ
ス通路8の下流端は上記捕集部材4よりも下流側
の排気通路3に開口されている。
The upstream end of a regeneration gas supply passage 5 is opened in the exhaust passage 3 on the upstream side of the catalyst-equipped collection member 4,
The upstream end of the regeneration gas supply passage 5 is communicated with an air pump 6, and the middle part of the regeneration gas supply passage 5 is connected via the communication passage 7 to the upstream side of the connection part of the exhaust passage 3 with the downstream end of the regeneration gas supply passage 5. is communicated with. Further, an upstream end of an exhaust bypass passage 8 is opened between the connection part of the exhaust passage 3 with the downstream end of the regeneration gas supply passage 5 and the connection part with the communication passage 7, and the downstream end of the exhaust bypass passage 8 is opened to the exhaust passage 3 on the downstream side of the collecting member 4.

また、上記排気通路3の連通路7との接続部に
は開度調整可能な常時閉の電磁式の第1開閉弁9
が配設され、該第1開閉弁9は、閉じた状態では
連通路7の排気通路3との連通を遮断するととも
に第1開閉弁9上下流側の排気通路3,3同士を
連通させ、図で仮想線にて示すように開くと連通
路7を第1開閉弁9上流側の排気通路3に連通さ
せるとともに該第1開閉弁9上下流側の排気通路
3,3同士の連通を遮断するように開閉する。ま
た、上記排気通路3の排気バイパス通路8上流端
との接続部には開度調整可能な常時閉の電磁式の
第2開閉弁10が配設され、該第2開閉弁10
は、閉じた状態では排気バイパス通路8の排気通
路3との連通を遮断するとともに第2開閉弁10
上下流側の排気通路3,3同士を連通させ、図で
仮想線にて示すように開くと排気バイパス通路8
を第2開閉弁10上流側の排気通路3に連通させ
るとともに該第2開閉弁10上下流側の排気通路
3,3同士の連通を遮断するように開閉する。さ
らに、上記再生ガス供給通路5の連通路7との接
続部よりも下流側には該再生ガス供給通路5を開
閉する常時閉の電磁式の第3開閉弁11が配設さ
れている。そして、全開閉弁9〜11を開くこと
により、エンジン1の排気ガスを、触媒付捕集部
材4に捕集された微粒子成分を燃焼除去させるた
めの再生ガスとして連通路7および再生ガス供給
通路5を通して捕集部材4に供給し、また第1開
閉弁9を閉じかつ第2および第3開閉弁10,1
1を開いた状態でエアポンプ6を作動させること
により、該エアポンプ6から吐出されたエアを再
生ガス供給通路5を通して捕集部材4に供給する
ように構成されている。
Further, at the connection part of the exhaust passage 3 with the communication passage 7, a normally closed electromagnetic first on-off valve 9 whose opening degree can be adjusted is provided.
is disposed, and the first on-off valve 9, in the closed state, cuts off communication between the communication passage 7 and the exhaust passage 3, and allows the exhaust passages 3, 3 on the upstream and downstream sides of the first on-off valve 9 to communicate with each other, When opened as shown by the imaginary line in the figure, the communication passage 7 is communicated with the exhaust passage 3 on the upstream side of the first on-off valve 9, and communication between the exhaust passages 3, 3 on the upstream and downstream sides of the first on-off valve 9 is cut off. Open and close as shown. Further, a normally closed electromagnetic second on-off valve 10 whose opening degree is adjustable is disposed at the connection portion of the exhaust passage 3 with the upstream end of the exhaust bypass passage 8.
In the closed state, the exhaust bypass passage 8 is cut off from communicating with the exhaust passage 3, and the second on-off valve 10 is closed.
When the upstream and downstream exhaust passages 3 and 3 are communicated with each other and opened as shown by the imaginary line in the figure, an exhaust bypass passage 8 is formed.
is opened and closed so as to communicate with the exhaust passage 3 on the upstream side of the second on-off valve 10, and to block communication between the exhaust passages 3, 3 on the upstream and downstream sides of the second on-off valve 10. Furthermore, a normally closed electromagnetic third on-off valve 11 for opening and closing the regeneration gas supply passage 5 is disposed downstream of the connection portion of the regeneration gas supply passage 5 with the communication passage 7 . By opening the full opening/closing valves 9 to 11, the exhaust gas from the engine 1 is converted into the communication passage 7 and the regeneration gas supply passage as regeneration gas for burning and removing particulate components collected by the catalyst-equipped collection member 4. 5 to the collection member 4, and also closes the first on-off valve 9 and closes the second and third on-off valves 10, 1.
By operating the air pump 6 with 1 open, air discharged from the air pump 6 is supplied to the collection member 4 through the regeneration gas supply passage 5.

さらに、上記再生ガス供給通路5の連通路7と
の接続部と第3開閉弁11との間には、通電によ
り発熱する電気発熱体12(ヒータ)と、該電気
発熱体12を埋め込んで密封形成された蓄熱材1
3とが配設されている。上記蓄熱材13は、例え
ば融点が200〜300℃内外のリン酸塩や硝酸カリウ
ムと亜硝酸ナトリウムとの混合塩等の溶融塩、あ
るいは融点が200℃程度のテフロン系プラスチツ
ク、ウツドメタル(低融点合金)等からなり、電
気発熱体12により加熱されて該電気発熱体12
で発生した熱エネルギーを蓄熱するとともに放熱
により上記再生ガス(エンジン1の排気ガス)を
加熱するように設けられている。
Further, an electric heating element 12 (heater) that generates heat when energized is embedded between the connection part of the regeneration gas supply passage 5 with the communication passage 7 and the third on-off valve 11, and the electric heating element 12 is embedded and sealed. Formed heat storage material 1
3 are arranged. The heat storage material 13 is, for example, a molten salt such as a phosphate having a melting point of around 200 to 300°C or a mixed salt of potassium nitrate and sodium nitrite, or Teflon plastic or wood metal (low melting point alloy) having a melting point of about 200°C. etc., and is heated by the electric heating element 12 to generate the electric heating element 12.
The regenerating gas (exhaust gas of the engine 1) is provided to heat the regenerated gas (exhaust gas of the engine 1) by storing the generated thermal energy and radiating the heat.

一方、14は上記エアポンプ6、第1〜第3開
閉弁9〜11のアクチユエータおよび電気発熱体
12に電力を供給するバツテリ、15はエアポン
プ6をON−OFF制御するエアポンプ用電磁スイ
ツチ、16は同じくエアポンプ6への通電電圧を
変えてエアポンプ6の回転数すなわちそのエア吐
出量を増減制御する変圧装置である。また、17
は上記第1開閉弁9を開閉制御する第1開閉弁用
電磁スイツチ、18は第2開閉弁10を開閉制御
する第2開閉弁用電磁スイツチ、19は第3開閉
弁11を開閉制御する第3開閉弁用電磁スイツ
チ、20は上記電気発熱体12を作動制御する発
熱体用電磁スイツチであつて、以上の各電磁スイ
ツチ15,17〜20は常時はOFF状態のもの
である。
On the other hand, 14 is a battery that supplies power to the air pump 6, the actuators of the first to third on-off valves 9 to 11, and the electric heating element 12, 15 is an electromagnetic switch for the air pump that controls ON/OFF of the air pump 6, and 16 is the same. This is a voltage transformation device that changes the voltage applied to the air pump 6 to increase or decrease the rotational speed of the air pump 6, that is, the amount of air discharged. Also, 17
18 is a second on-off valve electromagnetic switch that controls opening and closing of the first on-off valve 10; 19 is a second on-off valve electromagnetic switch that controls opening and closing of the third on-off valve 11; 3. An electromagnetic switch 20 for the opening/closing valve is a heating element electromagnetic switch for controlling the operation of the electric heating element 12, and each of the electromagnetic switches 15, 17 to 20 is normally in an OFF state.

また、21は上記触媒付捕集部材4の直上流側
の排気通路3に臨設された、排気ガス温度TE
検出する排気ガス温度検出器、22は触媒付捕集
部材4の直下流側の排気通路3に臨設された、排
気ガス中の酸素濃度を検出する酸素濃度検出器、
23は上記蓄熱材13内に埋設された、蓄熱材温
度TRを検出する蓄熱材温度検出器、24は捕集
された微粒子成分の堆積によつて捕集部材4が目
詰まり状態になつたことを検出する目詰まり検出
器であつて、該目詰まり検出器24は、捕集部材
4にその軸方向に所定の間隔をあけて埋設された
2本の電極25,25間の電気抵抗値を測定し
て、該電気抵抗値が微粒子成分の捕集部材4への
堆積に伴つてその主成分たるカーボン粒子の電気
伝導度の上昇により所定値以下に減少変化したこ
とを判定することによつて目詰まり状態を検出す
るものである。
Further, 21 is an exhaust gas temperature detector installed in the exhaust passage 3 immediately upstream of the catalyst-equipped collection member 4 to detect the exhaust gas temperature T E , and 22 is an exhaust gas temperature detector immediately downstream of the catalyst-equipped collection member 4. an oxygen concentration detector for detecting the oxygen concentration in the exhaust gas, which is temporarily installed in the exhaust passage 3 of the
23 is a heat storage material temperature detector embedded in the heat storage material 13 for detecting the heat storage material temperature T R ; 24 is a heat storage material temperature detector embedded in the heat storage material 13; 24 is a heat storage material temperature detector embedded in the heat storage material 13; The clogging detector 24 detects the electric resistance value between two electrodes 25, 25 embedded in the collecting member 4 at a predetermined interval in the axial direction thereof. is measured, and it is determined that the electrical resistance value has decreased to a predetermined value or less due to an increase in the electrical conductivity of carbon particles, which are the main component, as the particulate components are deposited on the collection member 4. This is used to detect clogging conditions.

さらに、26は上記排気ガス温度検出器21、
酸素濃度検出器22、蓄熱材温度検出器23およ
び目詰まり検出器24からの出力を受けて上記変
圧装置16および各電磁スイツチ15,17〜2
0を制御する制御回路であつて、該制御回路26
はマイクロコンピユータを内蔵しており、各検出
器21〜24からの出力信号をマイクロコンピユ
ータで処理して変圧装置16および電磁スイツチ
15,17〜20に所定の制御指令信号を出力す
るものである。そして、この制御回路26は、目
詰まり検出器24によつて検出される捕集部材4
の目詰まり状態で代表される所定期間毎に上記電
気発熱体12に通電させる第1の発熱体制御手段
を構成するとともに、蓄熱材温度検出器23によ
つて検出された蓄熱材温度TRが、捕集部材4を
加熱再生可能な再生温度T0より高い第2の設定
温度T2よりも低くかつ再生温度T0よりも低い第
1の設定温度T1以上に上昇したときには上記所
定期間内であつても上記電気発熱体12に通電さ
せるように制御する第2の発熱体制御手段を構成
する。
Furthermore, 26 is the exhaust gas temperature detector 21,
In response to the outputs from the oxygen concentration detector 22, heat storage material temperature detector 23, and clogging detector 24, the transformer 16 and each electromagnetic switch 15, 17-2
0, the control circuit 26
has a built-in microcomputer, which processes the output signals from each of the detectors 21-24 and outputs predetermined control command signals to the transformer 16 and the electromagnetic switches 15, 17-20. This control circuit 26 controls the collection member 4 detected by the clogging detector 24.
It constitutes a first heating element control means that energizes the electric heating element 12 at predetermined intervals represented by a clogging state, and also controls the heat storage material temperature T R detected by the heat storage material temperature detector 23. , within the above-mentioned predetermined period when the collection member 4 is heated to a temperature higher than the first set temperature T 1 which is lower than the second set temperature T 2 which is higher than the regeneration temperature T 0 and which is lower than the regeneration temperature T 0 . A second heating element control means is configured to control the electric heating element 12 to be energized even if

次に、上記実施例の作動について第2図に示す
制御フローチヤートを参考に説明する。
Next, the operation of the above embodiment will be explained with reference to the control flowchart shown in FIG.

制御フローのスタート後、先ず、ステツプS1
おいて排気ガス温度検出器21で検出した排気ガ
ス温度TEが蓄熱材温度検出器23で検出した蓄
熱材温度TRよりも高いか否かの判定を行う。こ
の判定がTE≦TRであるNOのときにはステツプ
S2に移り、第1〜第3開閉弁9〜11を全て閉状
態に保つことによりエンジン1からの排気ガスを
排気通路3のみを通して触媒付捕集部材4に流通
させる。一方、上記ステツプS1での判定がTE
TRであるYESのときにはステツプS3に移り、第
1および第3開閉弁9,11を開くとともに第2
開閉弁10を閉じることにより排気ガスを連通路
7および再生ガス供給通路5を通して蓄熱材13
側に流通させる。以上の状態では、排気ガス中の
カーボン等の微粒子成分が捕集部材4に捕集さ
れ、かつ未燃ガスが捕集部材4の触媒によつて酸
化されることにより、排気ガスが浄化される。ま
た、排気ガス温度TEが蓄熱材温度TRよりも高い
ときのみに排気ガスが蓄熱材13側に流れるた
め、該排気ガスの熱エネルギーによつて蓄熱材1
3を加熱昇温させることができる。
After the control flow starts, first, in step S1 , it is determined whether the exhaust gas temperature T E detected by the exhaust gas temperature detector 21 is higher than the heat storage material temperature T R detected by the heat storage material temperature detector 23. conduct. If this judgment is NO, where T E ≦ T R , the step is
Proceeding to S2 , the first to third on-off valves 9 to 11 are all kept closed to allow exhaust gas from the engine 1 to flow through only the exhaust passage 3 to the catalyst-equipped collection member 4. On the other hand, the determination in step S1 above is T E >
When TR is YES, the process moves to step S3 , where the first and third on-off valves 9 and 11 are opened, and the second
By closing the on-off valve 10, the exhaust gas is passed through the communication path 7 and the regeneration gas supply path 5 to the heat storage material 13.
Flow to the side. In the above state, particulate components such as carbon in the exhaust gas are collected by the collection member 4, and unburned gas is oxidized by the catalyst of the collection member 4, thereby purifying the exhaust gas. . In addition, since the exhaust gas flows to the heat storage material 13 side only when the exhaust gas temperature T E is higher than the heat storage material temperature T R , the heat storage material 1
3 can be heated to raise the temperature.

この後、ステツプS4において上記蓄熱材温度
TRが第1設定温度T1以上にあるか否かが判定さ
れ、この判定がTR<T1のNOであるときにはス
テツプS5に移つて捕集部材4の再生インターバル
が設定インターバルに達したか否か、すなわち捕
集部材4に捕集された微粒子成分により電極2
5,25間の電気抵抗値が所定値以下に減少して
目詰まり検出器24から捕集部材4の目詰まりを
示す目詰まり信号が出力されているか否かの判定
を行う。このステツプS5での判定がNOであると
きにはステツプS1に戻つて制御フローを繰り返
す。上記ステツプS4での判定がYESであるとき
には直ちに次のステツプS6以降の再生準備行程に
入る。また、ステツプS5での判定がYESである
ときも再生準備行程に入る。
After this, in step S4 , the temperature of the heat storage material is
It is determined whether T R is equal to or higher than the first set temperature T 1 , and if this determination is NO (T R < T 1 ) , the process moves to step S 5 and the regeneration interval of the collection member 4 reaches the set interval. In other words, the fine particle components collected by the collection member 4 cause the electrode 2 to
It is determined whether the electric resistance value between 5 and 25 has decreased to a predetermined value or less and the clogging detector 24 is outputting a clogging signal indicating that the collection member 4 is clogged. If the determination at step S5 is NO, the process returns to step S1 to repeat the control flow. If the determination in step S4 is YES, the process immediately enters the next step S6 and subsequent regeneration preparation steps. Further, when the determination in step S5 is YES, the reproduction preparation process is also entered.

上記再生準備行程では、先ずステツプS6におい
て電気発熱体12を通電により発熱させて蓄熱材
13を加熱し、発熱体12で発生した熱エネルギ
ーを蓄熱材13に蓄熱する。この後、ステツプS7
で排気ガス温度TEが蓄熱材温度TRよりも高いか
否かの判定を行い、この判定がTE≦TRである
NOのときにはステツプS8に移り、上記第1〜第
3開閉弁9〜11を全て閉状態に保つことにより
排気ガスを排気通路3を通して捕集部材4側に流
す。判定がTE>TRであるYESのときにはステツ
プS9に移り、第1および第3開閉弁9,11を開
くとともに第2開閉弁10を閉じることにより排
気ガスを連通路7および再生ガス供給通路5を通
して蓄熱材13側に流す。このことにより、蓄熱
材13はその温度TRよりも低温の排気ガスによ
つて冷却されるのが阻止され、蓄熱材13の蓄熱
効率を高めることができる。
In the regeneration preparation step, first, in step S6 , the electric heating element 12 is energized to generate heat to heat the heat storage material 13, and the thermal energy generated by the heating element 12 is stored in the heat storage material 13. After this, step S 7
It is determined whether the exhaust gas temperature T E is higher than the heat storage material temperature T R , and this determination is T E ≦ T R.
If NO, the process moves to step S8 , and the first to third on-off valves 9 to 11 are all kept closed to allow the exhaust gas to flow through the exhaust passage 3 to the collection member 4 side. When the determination is YES, that is, T E > T R , the process moves to step S 9 , and the first and third on-off valves 9 and 11 are opened, and the second on-off valve 10 is closed, thereby transferring the exhaust gas to the communication path 7 and supplying regeneration gas. It flows through the passage 5 to the heat storage material 13 side. This prevents the heat storage material 13 from being cooled by exhaust gas having a temperature lower than the temperature T R thereof, thereby increasing the heat storage efficiency of the heat storage material 13.

次いで、ステツプS10において上記蓄熱材温度
TRが第2設定温度T2以上に達したか否かを判定
する。この判定がTR<T2のNOであるときには
上記ステツプS7に戻つてそれ以降のステツプS8
S9を繰り返す。上記判定がTR≧T2のYESになる
と再生行程に入る。
Next, in step S10 , the temperature of the heat storage material is
It is determined whether T R has reached the second set temperature T 2 or higher. If this determination is NO (T R < T 2 ) , the process returns to step S 7 and performs the subsequent steps S 8 ,
Repeat S 9 . When the above judgment becomes YES with T R ≧T 2 , the regeneration process begins.

この再生行程では、先ずステツプS11において
エンジン1の排気ガス温度TEが捕集部材4を加
熱再生可能な再生温度T0よりも高い状態にある
か否かの判定を行い、この判定がTE≦T0のNO
であるときには、ステツプS12において第2開閉
弁10を閉じかつ第3開閉弁11を開くとともに
第1開閉弁9の開度を調整することにより、排気
ガスの一部を再生ガス供給通路5に流して該再生
ガス供給通路5の第2設定温度T2以上に加熱さ
れた蓄熱材13により再生温度T0に上昇するま
で加熱したのち再び排気通路3内に戻し、排気ガ
ス全体を再生温度T0に加熱昇温させる。この再
生温度T0まで加熱昇温された排気ガスは再生ガ
スとなつて捕集部材4に流入して該捕集部材4に
捕集されている微粒子成分を加熱燃焼させる。
In this regeneration process, first, in step S11 , it is determined whether the exhaust gas temperature T E of the engine 1 is higher than the regeneration temperature T 0 at which the collection member 4 can be heated and regenerated. NO of E ≦T 0
If so, in step S12 , a part of the exhaust gas is transferred to the regeneration gas supply passage 5 by closing the second on-off valve 10, opening the third on-off valve 11, and adjusting the opening degree of the first on-off valve 9. The heat storage material 13 heated to the second set temperature T 2 or higher in the regeneration gas supply passage 5 is heated until the regeneration temperature T 0 is reached, and then returned to the exhaust passage 3 to bring the entire exhaust gas to the regeneration temperature T Heat to 0 . The exhaust gas heated to the regeneration temperature T 0 becomes regeneration gas and flows into the collection member 4 to heat and burn the particulate components collected in the collection member 4 .

一方、上記ステツプS11での判定がTE>T0であ
るYESのときには、ステツプS13において第1な
いし第3開閉弁9〜11を全て閉じることによ
り、該高温の排気ガスをそのまま再生ガスとして
排気通路3を通して捕集部材4側に流通させる。
このことにより、上記と同様に、捕集部材4に捕
集されていた微粒子成分が加熱されて燃焼除去さ
れる。
On the other hand, if the determination in step S11 is YES, that is, T E > T 0 , all the first to third on-off valves 9 to 11 are closed in step S13 , and the high-temperature exhaust gas is directly converted into regenerated gas. It is made to flow through the exhaust passage 3 to the collection member 4 side.
As a result, the particulate components collected by the collection member 4 are heated and burned and removed in the same way as described above.

そして、上記ステツプS12またはステツプS13
後はステツプS14′において、2本の電極25,2
5間の電気抵抗値が所定値以上か否かが判定さ
れ、所定値以上であるYESのとき(捕集部材4
の目詰まりが解消されたとき)はステツプS16
移る。また、電気抵抗値が所定値未満であるNO
のときはステツプS14″に移る。このステツプ
S14″において、酸素濃度検出器22によつて検出
された排気ガス中の酸素濃度が設定値以下にある
か否かの判定を行う。この判定がNOであると
き、すなわち排気ガス中の酸素が捕集部材4の再
生状態で微粒子成分の燃焼に費やされた後でも設
定濃度よりも多く残存しているときには、エンジ
ン1から排出された排気ガス中に微粒子成分の燃
焼のための酸素が充足している状態とみて、ステ
ツプS15′により、エアポンプ6の作動を停止状態
(つまりエアポンプ6が停止状態であれば停止を
維持させ、エアポンプ6が作動状態であれば停止
させること)にするために電磁スイツチ15を介
してエアポンプ6への通電を停止させる。その
後、ステツプS11に戻り、その後の制御フローを
繰り返す。一方、ステツプS14″での判定がYESで
あるとき、すなわち捕集部材4通過後の排気ガス
中の酸素濃度が設定濃度以下であるときには、エ
ンジン1からの排気ガス中に微粒子成分を十分に
燃焼させるだけの酸素が不足している状態とみ
て、次のステツプS15″において排気ガス中の酸素
不足を補充してその濃度を設定値に収めるべく、
第1開閉弁9を閉じかつ第3開閉弁11を開いた
状態で第2開閉弁10の開度を調整し、かつエア
ポンプ6への通電およびその電圧の制御によりエ
ア吐出量を調整する。このことにより、捕集部材
4に捕集されている微粒子成分を十分な量の酸素
(エア)のもとで確実に燃焼させて除去すること
ができる。その後、ステツプS11に戻り制御フロ
ーを繰返し、ステツプS14′の判定がYESとなつて
捕集部材4の再生が終了すると最後のステツプ
S16で電気発熱体12およびエアポンプ6を作動
停止させたのち制御フローの1サイクルが完了す
る。
After step S12 or step S13 , in step S14 ', the two electrodes 25, 2
It is determined whether or not the electrical resistance value between the collection members 4 and 5 is greater than or equal to a predetermined value.
(when the clogging is cleared), proceed to step S16 . Also, if the electrical resistance value is less than the specified value,
, move to step S 14 ″.
In S14 '', it is determined whether the oxygen concentration in the exhaust gas detected by the oxygen concentration detector 22 is below the set value.If this determination is NO, that is, the oxygen concentration in the exhaust gas is When the amount of oxygen remaining in the exhaust gas discharged from the engine 1 is higher than the set concentration even after the particulate components have been combusted in the regenerated state of the collection member 4, oxygen for the combustion of the particulate components is present in the exhaust gas discharged from the engine 1. Assuming that the air pump 6 is satisfied, in step S15 ', the operation of the air pump 6 is stopped (that is, if the air pump 6 is in a stopped state, it is maintained stopped, and if the air pump 6 is in an operating state, it is stopped). Therefore, the power supply to the air pump 6 is stopped via the electromagnetic switch 15.Then, the process returns to step S11 and the subsequent control flow is repeated.On the other hand, when the determination in step S14 '' is YES, that is, the collection If the oxygen concentration in the exhaust gas after passing through member 4 is below the set concentration, it is assumed that there is insufficient oxygen in the exhaust gas from engine 1 to burn the particulate components sufficiently, and the next step S is performed. In order to replenish the oxygen deficiency in the exhaust gas at 15 ″ and keep the concentration within the set value,
The opening degree of the second on-off valve 10 is adjusted with the first on-off valve 9 closed and the third on-off valve 11 opened, and the amount of air discharged is adjusted by energizing the air pump 6 and controlling its voltage. Thereby, the particulate components collected by the collection member 4 can be reliably burned and removed under a sufficient amount of oxygen (air). After that, the process returns to step S11 and repeats the control flow, and when the determination in step S14 ' becomes YES and the regeneration of the collection member 4 is completed, the process returns to the final step.
One cycle of the control flow is completed after the electric heating element 12 and the air pump 6 are deactivated in S16 .

したがつて、この場合、触媒付捕集部材4に対
する再生準備行程で電気発熱体12からの熱エネ
ルギーを蓄熱材13に徐々に蓄熱しておき、再生
時にはこの蓄熱材13で蓄熱された熱エネルギー
によつてエンジン1の排気ガス(再生ガス)を再
生温度T0まで加熱昇温させるため、再生時に単
に電気発熱体のみで再生ガスを加熱する加熱シス
テムに比べて電気発熱体12にて賄う熱エネルギ
ーが少なくて済み、よつて電気発熱体12の発熱
容量およびバツテリ14の電気容量を小さく設定
することができる。
Therefore, in this case, the thermal energy from the electric heating element 12 is gradually stored in the heat storage material 13 during the regeneration preparation process for the catalyst-equipped collection member 4, and the thermal energy stored in the heat storage material 13 is used during regeneration. Since the exhaust gas (regeneration gas) of the engine 1 is heated to the regeneration temperature T 0 by Since less energy is required, the heat generating capacity of the electric heating element 12 and the electric capacity of the battery 14 can be set small.

また、このように電気発熱体12の発熱容量お
よびバツテリ14の電気容量が小さくなると、そ
の小さくなつた分だけ捕集部材4の再生準備時
間、つまり蓄熱材13が所定温度以上に上昇する
までの時間が長くなり、その再生準備時間の経過
中にエンジン1の運転を停止するという短時間運
転パターンが繰り返されたときには、蓄熱材13
で蓄熱する熱エネルギーが不足して捕集部材4の
再生を良好に行うことが困難になる。しかし、本
実施例では、蓄熱材13がエンジン1の排気ガス
熱により加熱されてその温度TRが第1の設定温
度T1以上に上昇すると、捕集部材4の再生イン
ターバルに達しなくても電気発熱体12が通電さ
れて捕集部材4に対する再生準備行程およびその
後の再生行程に移るので、電気発熱体12を僅か
な発熱量で発熱させるだけで蓄熱材13に十分な
熱エネルギーを蓄熱して捕集部材4を確実に再生
することができることになり、排気抵抗の低減促
進による燃費及び出力の改善を図ることができ
る。また、このことにより、電気発熱体12によ
る消費電力を大幅に低減することができるととも
に、捕集部材4の再生インターバルを安全側に設
定することができる。
In addition, when the heat generation capacity of the electric heating element 12 and the electric capacity of the battery 14 decrease in this way, the regeneration preparation time of the collection member 4, that is, the time required until the heat storage material 13 rises to a predetermined temperature or higher, increases by the amount corresponding to the decrease. When the time becomes longer and the short-time operation pattern of stopping the operation of the engine 1 during the elapse of the regeneration preparation time is repeated, the heat storage material 13
There is a shortage of thermal energy stored in the trap, making it difficult to properly regenerate the collection member 4. However, in this embodiment, when the heat storage material 13 is heated by the exhaust gas heat of the engine 1 and its temperature T R rises above the first set temperature T 1 , even if the regeneration interval of the collection member 4 has not been reached. Since the electric heating element 12 is energized and moves to the regeneration preparation process and the subsequent regeneration process for the collection member 4, sufficient thermal energy can be stored in the heat storage material 13 just by making the electric heating element 12 generate heat with a small amount of heat. This means that the collection member 4 can be reliably regenerated, and fuel consumption and output can be improved by promoting reduction in exhaust resistance. Moreover, by this, the power consumption by the electric heating element 12 can be significantly reduced, and the regeneration interval of the collection member 4 can be set on the safe side.

尚、上記実施例では、捕集部材4を再生するた
めの再生ガスにエンジン1の排気ガスを用いた
が、エアポンプ6からの吐出エアを蓄熱材13に
よつて加熱して再生ガスとしてもよい。
In the above embodiment, the exhaust gas of the engine 1 is used as the regeneration gas for regenerating the collection member 4, but the air discharged from the air pump 6 may be heated by the heat storage material 13 and used as the regeneration gas. .

また、上記実施例では、第1の発熱体制御手段
として、電極25,25間の電気抵抗値の減少変
化により捕集部材4の目詰まりを検出して電気発
熱体12に通電させて捕集部材14の再生を行う
ようにしたが、本考案は、排気通路の捕集部材上
下流側間の圧力差をみて該圧力差が増大したとき
に捕集部材を目詰まり状態と判定するようにした
ものや、燃料消費量、エンジンの運転時間等を累
積してその値が一定値を越えると定期的に捕集部
材の再生を行うようにしたものに変更してもよい
のは勿論のことである。
In the above embodiment, the first heating element control means detects clogging of the collection member 4 by a decreasing change in the electric resistance value between the electrodes 25, 25, and energizes the electric heating element 12 to collect the clogging. Although the member 14 is regenerated, the present invention looks at the pressure difference between the upstream and downstream sides of the collection member in the exhaust passage and determines that the collection member is clogged when the pressure difference increases. Of course, it is also possible to change to one in which the collection member is periodically regenerated when the cumulative value of fuel consumption, engine operating time, etc. exceeds a certain value. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を示すもので、第1図は
全体構成図、第2図は制御システムのフローチヤ
ート図である。 1……エンジン、3……排気通路、4……触媒
付捕集部材、6……エアポンプ、9……第1開閉
弁、10……第2開閉弁、11……第3開閉弁、
12……電気発熱体、13……蓄熱材、21……
排気ガス温度検出器、22……酸素濃度検出器、
23……蓄熱材温度検出器、24……目詰まり検
出器、26……制御回路。
The drawings show an embodiment of the present invention; FIG. 1 is an overall configuration diagram, and FIG. 2 is a flowchart of a control system. DESCRIPTION OF SYMBOLS 1... Engine, 3... Exhaust passage, 4... Collection member with catalyst, 6... Air pump, 9... First on-off valve, 10... Second on-off valve, 11... Third on-off valve,
12... Electric heating element, 13... Heat storage material, 21...
Exhaust gas temperature detector, 22...Oxygen concentration detector,
23... Heat storage material temperature detector, 24... Clogging detector, 26... Control circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 排気通路にカーボン粒子等の微粒子成分を捕集
する触媒付捕集部材を設けてなるデイーゼルエン
ジンの排気浄化装置において、上記触媒付捕集部
材上流側の排気系に配設され、捕集部材に捕集さ
れた微粒子成分を燃焼除去するための再生ガスを
加熱する蓄熱材と、該蓄熱材を加熱して熱エネル
ギーを蓄熱させる電気発熱体と、所定期間毎に上
記電気発熱体に通電させる第1の発熱体制御手段
とを備えるとともに、上記蓄熱材の温度を検出す
る蓄熱材温度検出器と、該蓄熱材温度検出器の出
力を受け、蓄熱材温度が所定値以上に上昇したと
きには上記所定期間内であつても上記電気発熱体
に通電させる第2の発熱体制御手段とを備えてい
ることを特徴とするデイーゼルエンジンの排気浄
化装置。
In an exhaust purification device for a diesel engine, which includes a catalyst-equipped collection member for collecting particulate components such as carbon particles in the exhaust passage, the catalyst-equipped collection member is disposed in the exhaust system upstream of the catalyst-equipped collection member, and is arranged in the exhaust system on the upstream side of the catalyst-equipped collection member. a heat storage material that heats regeneration gas for burning and removing collected particulate components; an electric heating element that heats the heat storage material and stores thermal energy; a heat storage material temperature detector that detects the temperature of the heat storage material; and a heat storage material temperature detector that receives the output of the heat storage material temperature detector, and when the heat storage material temperature rises to a predetermined value or higher, the heat storage material temperature detector detects the temperature of the heat storage material. An exhaust gas purification device for a diesel engine, comprising: second heating element control means for energizing the electric heating element even within the period.
JP20154183U 1983-12-28 1983-12-28 Diesel engine exhaust purification device Granted JPS60110617U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20154183U JPS60110617U (en) 1983-12-28 1983-12-28 Diesel engine exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20154183U JPS60110617U (en) 1983-12-28 1983-12-28 Diesel engine exhaust purification device

Publications (2)

Publication Number Publication Date
JPS60110617U JPS60110617U (en) 1985-07-26
JPH0128255Y2 true JPH0128255Y2 (en) 1989-08-29

Family

ID=30763429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20154183U Granted JPS60110617U (en) 1983-12-28 1983-12-28 Diesel engine exhaust purification device

Country Status (1)

Country Link
JP (1) JPS60110617U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264111B2 (en) * 2020-05-19 2023-04-25 トヨタ自動車株式会社 Exhaust purification device

Also Published As

Publication number Publication date
JPS60110617U (en) 1985-07-26

Similar Documents

Publication Publication Date Title
JP3336750B2 (en) Method for regenerating particulate collection filter and exhaust gas purifying device provided with particulate collection filter
JP2001329830A (en) Regeneration device for exhaust gas purifying filter, and filter regeneration method, regeneration program for exhaust gas purifying filter, and recording medium storing program
JP2004176571A (en) Exhaust emission control device of internal combustion engine
WO2007010985A1 (en) Exhaust gas purifier
JP2001280121A (en) Continuous regeneration-type particulate filter device
JP2005194935A (en) Exhaust emission control device
JPH0233852B2 (en)
JPH0128255Y2 (en)
JPH0128256Y2 (en)
JP3146870B2 (en) Particulate filter regeneration device
JPH0232450B2 (en)
JPH10274030A (en) Exhaust emission control device
JPS645048Y2 (en)
JP2516113Y2 (en) Exhaust gas aftertreatment device
JP4219420B2 (en) Exhaust gas filter purification method and exhaust gas filter purification device
JPH06323130A (en) Exhaust particulate eliminating device for diesel engine
JP3073375B2 (en) Exhaust gas purification device
JP3580563B2 (en) Exhaust gas particulate purification system for internal combustion engine
JP3385820B2 (en) Particulate trap device
JPS6335152Y2 (en)
JPH07233720A (en) Exhaust gas particulate purifier
JPH05288035A (en) Exhaust gas treating device for internal combustion engine
JP3724368B2 (en) Regeneration control method for DPF system
JP2000310110A (en) Reproducing system for exhaust emission control device
JPH01182517A (en) Exhaust emission control device for diesel engine