JPS60128613A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPS60128613A
JPS60128613A JP58237128A JP23712883A JPS60128613A JP S60128613 A JPS60128613 A JP S60128613A JP 58237128 A JP58237128 A JP 58237128A JP 23712883 A JP23712883 A JP 23712883A JP S60128613 A JPS60128613 A JP S60128613A
Authority
JP
Japan
Prior art keywords
electrode
substrate
high frequency
distance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58237128A
Other languages
Japanese (ja)
Inventor
Hidekazu Oota
英一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP58237128A priority Critical patent/JPS60128613A/en
Publication of JPS60128613A publication Critical patent/JPS60128613A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To obtain a high quality film because ion electron and nonreactive gas to not reach the film on the substrate to be processed by making longer the distance between a high frequency electrode and grounded electrode than the distance between the high frequency electrode and electrode in the side of substrate. CONSTITUTION:Distance between an electrode 2 in the side of substrate and an opposing electrode 20 is set longer than distance (l) between high frequency electrodes 21, 22 and earth electrodes 24, 25 and the electrode 2 in the side of substrate is grounded as in the case of the earth electrodes 24, 25. The raw material gas is decomposed by an intensive plasma generated between the high frequency electrodes 21, 22 in the opposing electrode 20 and earth electrodes 24, 25 and thereby the neutral radical required for formation of film is produced. Weak plasma is also generated between the high frequency electrodes 21, 22 in the opposing electrode 20 and electrode 10 in the side of substrate and said neutral radical receives the energy required for maintaining active condition from said weak plasma. Reaction occurs at the surface of substrate 10 and thereby a CVD film is formed.

Description

【発明の詳細な説明】 (技術分野) 本発明はプラズマCVD装置に関するもので特に半導体
集積回路装置における薄膜形成に用いられるものである
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a plasma CVD apparatus, and is particularly used for forming thin films in semiconductor integrated circuit devices.

(従来技術) プラズマCV D (Chemical Vapor 
Dcpoaition )装置は気体化合物の化学反応
を起させるのに必要なエネルギーをグロー放電のプラズ
マによって得るものであって、膜強度が強い等の特徴を
有するため半導体装置の製造において非晶質半導体薄膜
や絶縁膜等の形成に広く用いられて因る。
(Prior art) Plasma CVD (Chemical Vapor
The Dcpoation) device uses glow discharge plasma to obtain the energy necessary to cause a chemical reaction in gaseous compounds, and because it has characteristics such as strong film strength, it is used in the production of semiconductor devices such as amorphous semiconductor thin films and This is because it is widely used for forming insulating films and the like.

第1図は従来のプラズマCVD装置の構成の概略を示す
断面図であって、ペルジャー/の内部に互論に平行に対
向する基板側電極−および高周阪電極lを有している。
FIG. 1 is a cross-sectional view schematically showing the structure of a conventional plasma CVD apparatus, which has a substrate-side electrode and a high-frequency electrode L that are mutually and parallelly opposed to each other inside a Pelger.

この基板側電極コには加熱用のヒータ3が内蔵されてお
シ、この基板側電極コの表面に取付けられた被処理基板
IOを処理中加熱する。また、高周波電極lの表面には
原料ガスの噴出口jが設けられておシ、ペルジャー/の
外部にあるガス導人口tから尋人された原料ガス//を
噴出させる。ペルジャー/には排気ロアが設けられてお
り処理中には適当な排気を行ってペルジャー/内の圧力
を一定の低圧に保持する。また、基板側電極コと高周波
電極グ間には高周波電源gが接続されている。
This substrate-side electrode has a built-in heater 3 for heating the substrate to be processed IO attached to the surface of this substrate-side electrode during processing. Further, a raw material gas ejection port j is provided on the surface of the high-frequency electrode l, and the raw material gas is spouted from a gas introduction port t located outside the Pelger. The Pel jar is equipped with an exhaust lower, and during processing, appropriate evacuation is performed to maintain the pressure inside the Pel jar at a constant low pressure. Further, a high frequency power source g is connected between the substrate side electrode G and the high frequency electrode G.

このような装置を使用した薄膜形成は次のように行われ
る。薄膜を形成すべき被処理基板IOを基板側電極コの
表面上に固定し、ヒータ3を電源りによシ通電して被処
理基板10を加熱する。排気孔7から排気を行ってガス
導入部tから原料ガスl/を導入し、高周波電極グの噴
出口!より噴出させる。この高周波電極グと基板側電極
−との間に高周波出力を印加するとグロー放電が起り、
原料ガスがプラズマ化して分解し所定の化学反応が起つ
て所望の半導体薄膜を形成することができる。
Thin film formation using such an apparatus is performed as follows. The substrate IO to be processed on which a thin film is to be formed is fixed on the surface of the substrate-side electrode, and the heater 3 is energized by the power supply to heat the substrate 10 to be processed. Exhaust air from the exhaust hole 7, and introduce the raw material gas l/ from the gas introduction part t, to the ejection port of the high-frequency electrode! Make it squirt more. When a high frequency output is applied between this high frequency electrode and the substrate side electrode, a glow discharge occurs.
The raw material gas turns into plasma and decomposes, causing a predetermined chemical reaction to form a desired semiconductor thin film.

しかしながら、このような従来のプラズマCVD装置に
あっては基板側電極と高周波電極との間でプラズマが発
生することから、形成される膜にイオンや電子が衝突す
るために膜がダメージを受け、良質の膜が得られな込と
いう問題がある。また、高周波電極側から原料ガスが供
給され、未反応ガスが被処理基板の表面に直接当たるた
め、基板表面における反応が妨げられ、これも膜質を悪
化させる要因となっている。
However, in such conventional plasma CVD equipment, since plasma is generated between the substrate-side electrode and the high-frequency electrode, ions and electrons collide with the formed film, causing damage to the film. There is a problem that a good quality film cannot be obtained. Furthermore, since the raw material gas is supplied from the high-frequency electrode side and the unreacted gas directly hits the surface of the substrate to be processed, the reaction on the substrate surface is hindered, which is also a factor in deteriorating the film quality.

(目的) 本発明はこのような従来技術の欠点を解消しようとして
なされたもので、膜質を向上させることのできるプラズ
マCVD装置を提供することを目的とする。
(Objective) The present invention has been made in an attempt to eliminate the drawbacks of the prior art, and an object of the present invention is to provide a plasma CVD apparatus that can improve film quality.

(実施例) 以下、第2図ないし第3図を参照しながら本発明の実施
例のいくつかを詳細に説明する。
(Embodiments) Hereinafter, some embodiments of the present invention will be described in detail with reference to FIGS. 2 and 3.

力1図は本発明の一実施例の構成の概女を示す断面図で
あって、ペルジャー/内にはヒータ3を内蔵した基板側
電極コとこれに対向する対向電極、20が設けられてい
る。この対向電極の詳細を第3図の概略断面図およびl
f、1図の上面図に示す。これによれば、円筒状の中心
高周波電極2/およびこれと同心の中空円筒状高周波電
極、2.2が絶縁物で成る支持部材力で支持され、中心
高周波電極、2/の外面と中空円筒状高周波電極nの内
面からいずれも等距離eの位置、および中空円筒状高周
波電極、22の外面から距離lの位置にそれぞれ同心円
状のアース電極Jおよびjが同様に支持部材力で支持さ
れて設けられている。これらの電極間の間隙、261.
271.2gはそれぞれ原料ガスの噴出部となっている
Figure 1 is a cross-sectional view schematically showing the structure of an embodiment of the present invention, in which a substrate-side electrode containing a heater 3 and a counter electrode 20 opposite thereto are provided inside the Pelger. There is. The details of this counter electrode are shown in the schematic cross-sectional view in Fig. 3 and l.
f, shown in top view in Figure 1. According to this, the cylindrical central high-frequency electrode 2/ and the hollow cylindrical high-frequency electrode 2.2 concentric therewith are supported by the force of a supporting member made of an insulator, and the outer surface of the central high-frequency electrode 2/ and the hollow cylinder Concentric ground electrodes J and j are similarly supported by the force of the support member at positions equidistant e from the inner surface of the hollow cylindrical high frequency electrode n, and at a distance l from the outer surface of the hollow cylindrical high frequency electrode 22. It is provided. The gap between these electrodes, 261.
271.2g each serves as a source gas ejection part.

筐だ、第3図に示されるように、2つの高周波電極コ/
およびnは共通の高周波電源に接続されて接地されてい
る。
As shown in Figure 3, it is a housing with two high frequency electrodes.
and n are connected to a common high frequency power source and grounded.

このような対向電極20と基板側電極λを用いたCVD
被B〆の形成を再び第一図を参照しながら説明すると、
基板側電極コと対向′1d極ユO間の距離Wは前述の高
周波電極コバ、22とアース電極、2弘、5との距離l
よりも大きな値を有しておシ、基板側電極λはアース電
極J、Jと同様に接地されている。
CVD using such a counter electrode 20 and substrate side electrode λ
The formation of the B-bound will be explained with reference to Figure 1 again.
The distance W between the substrate side electrode A and the opposing pole 1d is the distance l between the high frequency electrode edge 22 and the ground electrode 2H and 5 mentioned above.
The substrate side electrode λ is grounded like the ground electrodes J and J.

祉ずCVD被膜を形成する被処理基板10を基板側電極
−の表面に載置し、ヒータ3を電源りによシ通電し基板
10を100な込し300℃に加熱する。
A substrate 10 to be processed on which a CVD film is to be formed is placed on the surface of the substrate-side electrode, and the heater 3 is energized by the power source to heat the substrate 10 to 300°C.

次に排気孔7を通じてペルジャー/内の排気を行いθ、
 / % J Torr程度の所定圧力にしておく。次
に、対向電極ユ0の原料ガス導人口27よシモノシラン
(stall)、ジシラン(Si2H6)、ジボラン(
B2HI、)、アン、モニア(NH3)等の原料ガスを
窒素(Nz)9ノキヤリアガスとともに導入し対向電極
、20の原料ガス1貝出口2乙、コア1.2gよシ噴出
させ、対向電極ユ0の周波を印加する。
Next, exhaust the inside of the Pelger/ through the exhaust hole 7, and θ.
/% Keep the pressure at a predetermined level of about J Torr. Next, the raw material gas introduction port 27 of the counter electrode unit 0 is replaced with simonosilane (stall), disilane (Si2H6), diborane (
A raw material gas such as B2HI, ), ammonium, or monia (NH3) is introduced together with nitrogen (Nz) 9 carrier gas, and the raw material gas of 20 is spouted from 1 shell outlet 2 and a core 1.2 g. Apply a frequency of

前述したように対向電極、20中の副周波電極、!/1
.2ツとアース宛極コ弘、記°の間の距卜、−4は高周
波電極ユへ、2コと基板側電極10の間の距141M 
Wより短かいから、前者においてより強bプラズマが発
生する。
As mentioned above, the counter electrode, the sub-frequency electrode in 20,! /1
.. The distance between the two terminals and the earth terminal is 141M.
Since it is shorter than W, stronger b plasma is generated in the former.

すなわち、原料ガスは対向電極、2O中の高周波電極コ
バ、!ツとアース電極、24’4.#との間で発生した
強いプラズマ中で分解され、被膜形成に必要な中性ラジ
カルが生成される。この中性ラジカルの寿命は通常数n
 Seeであり非常に短かいが、本発明の構成では対向
1a極に中の高周波電極ユバnと基板側電1710との
間でも弱いプラズマが発生して因るため、この弱いプラ
ズマから活性状態を維持するのに必要なエネルギーを受
取シながら基板/θまで輸送されるので、基板表面で反
応が起υ、CV D Ij<、rが形成される。
That is, the raw material gas is the counter electrode, the high frequency electrode edge in 2O,! and ground electrode, 24'4. It is decomposed in the strong plasma generated between # and the neutral radicals necessary for film formation are generated. The lifespan of this neutral radical is usually several n
Although it is very short, in the configuration of the present invention, weak plasma is also generated between the high frequency electrode 1710 in the opposing pole 1a and the substrate side electrode 1710, so the active state cannot be activated from this weak plasma. Since it is transported to the substrate /θ while receiving the energy necessary to maintain it, a reaction occurs on the substrate surface, υ, and CV D Ij<,r is formed.

このようなプラズマ中にはイオンや゛電子も存在してい
るが、基板側電極−と高周波電極コ/、−コ間の距離W
よシも高周波電極コへnとアース電極、24t、3間の
距ス1dの方が短かいため、後者の方でより強い電界と
なシ基板グの方へ向うイオンや1d子はごくわずかであ
って基板10上に形成される’rr臭にダメージを与え
ることは少な−。筺た、原料ガスの大部分は高周波電極
ユバ、!、、2とアース電極J、ユSとの間で分解され
るため、基板10上に未反応ガスが達することば少なく
基板10上での反応は良好に行わnる。
Ions and electrons also exist in such plasma, but the distance W between the substrate side electrode and the high frequency electrode
Also, since the distance S1d between the high-frequency electrode n and the ground electrode 24t and 3 is shorter, the electric field is stronger on the latter side, and very few ions or 1d particles head toward the ground electrode. However, the 'rr odor formed on the substrate 10 is less likely to cause damage. Most of the raw material gas is contained in the high frequency electrode! .

第1図は本発明の他の実施例における対向電極30の構
成を示す断面図であって、円筒および円錐の組合わせよ
り成る電極を3個設け、両瑞の電極3/および32を高
周波電極中心の電極33をアース゛La極とし各電極の
円錐面1i1の距離が第1図の場合と同じlを成すよう
に各電極の円錐直径をそれぞれ異なるようにしたもので
ある。なお、図示されていブよいが、各電極の円筒部分
は充分な絶縁がなされている。嫁だ高周波電極3/およ
び3ツは高周波電源に接続され、アース電極は接地され
ている。
FIG. 1 is a cross-sectional view showing the structure of a counter electrode 30 in another embodiment of the present invention, in which three electrodes each consisting of a combination of a cylinder and a cone are provided, and both electrodes 3/32 are used as high-frequency electrodes. The central electrode 33 is the earth (La) pole, and the conical diameters of the electrodes are made different so that the distance between the conical surfaces 1i1 of each electrode is the same as in FIG. 1. Although not shown, the cylindrical portion of each electrode is sufficiently insulated. The high-frequency electrodes 3 and 3 are connected to a high-frequency power source, and the earth electrode is grounded.

このような対向電極を使用した場合も1,5≠周波寛極
3/、3:rとアース電極33間で強いプラズマが発生
し高周波電極3ハ32と基板側市価間で弱いプラズマが
発生するため、第1図、第1図で説明したようなCV 
D Uy’Tの形成が行われる。
Even when such counter electrodes are used, strong plasma is generated between 1,5≠frequency-tolerant electrode 3/, 3:r and the earth electrode 33, and weak plasma is generated between the high-frequency electrode 3c and the substrate side market price. Therefore, the CV as explained in Figs.
The formation of D Uy'T takes place.

第3図、第1図で説明した対向成極を有するプラズマC
VD装置を用Aて非晶賀シリコン膜を形成したときの光
導電率σp(00m) と暗専′喝率σ。
Plasma C with opposite polarization as explained in FIGS. 3 and 1
The photoconductivity σp (00m) and the black rate σ when an amorphous silicon film was formed using a VD device.

(0cm)’につ込て従来のtE 1m k有するプラ
ズマCVD装置を用いた場合と比較した結果を表に示す
これらの測定はコプレーナ型のセルを用いて100rn
Wの光を照射することによって行った。
(0 cm)', and the results are compared with those using a conventional plasma CVD apparatus with a tE of 1 mk.
This was done by irradiating W light.

表 高周波′1に極とアース電極から成る対向電極を有する
本発明のプラズマCVD装置では形成される膜の膜質が
著しく向上して層ることがわかる。
It can be seen that in the plasma CVD apparatus of the present invention having a counter electrode consisting of a pole and a ground electrode at the surface high frequency '1, the quality of the film formed is significantly improved.

(効果) 以上のように、本発明においては基板側電極と、これに
対向し、高周波電極および接地電極よ構成る対向’% 
他とをペルジャー内に有し、高周波’t’4<と接地′
lt極間の距め1はりも高周波電極と基板側電極間の距
離を大きくとっておシ、高周波電極と接地電極間で強い
プラズマが発生し原料ガスの大部分が分解されるため、
被処理基板上の膜にイオン、電子、未反応ガスが到達せ
ず良質の膜が得られる。
(Effects) As described above, in the present invention, the substrate-side electrode and the opposing electrode formed by the high-frequency electrode and the ground electrode are provided.
high frequency 't'4< and ground'
lt Distance between poles 1 The distance between the high frequency electrode and the substrate side electrode should be kept large, as strong plasma will be generated between the high frequency electrode and the ground electrode and most of the raw material gas will be decomposed.
Ions, electrons, and unreacted gases do not reach the film on the substrate to be processed, resulting in a high-quality film.

1だ、高周波電極と接地電極間の距離および高周波′電
極と基板側電極の距離の比を適当に選択することにより
力気質および成長率を任意に!Ij!J御することがで
きる。
1. By appropriately selecting the distance between the high-frequency electrode and the ground electrode and the ratio of the distance between the high-frequency electrode and the substrate-side electrode, the temperament and growth rate can be adjusted as desired! Ij! J can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマCVD装置の414成を示す断
面図、第一図は本発明のプラズマCVD装置の一実施例
の4・h成を示す断面図、第3図および第11図はそれ
ぞれ第一図における対向電極の構成を示す断面図および
上面図、第1図は本発明の他の実施例における対向電極
の構成を示す断面図である。 /・・・ペルジャー、コ・・・基板側′成極、3・・・
ヒータ、J、J9・・・原料ガス導入口、7・・・排気
へg・・・關周波電源、タ・・・ヒータ用電υ1ハ 1
0・・・被処理基板、 //・・・原料ガス、 ユ0,
3θ・・・対向電極、コ/、、2.2,3/、3コ・・
・尚周波電極、 、23・・・支持部材、−弘、 、1
5 、3.j・・・アース電極、コロ、コア、;22,
3≠、3S・・・間腺。
FIG. 1 is a sectional view showing the 414 configuration of a conventional plasma CVD apparatus, FIG. FIG. 1 is a sectional view and a top view showing the structure of the counter electrode in FIG. 1, and FIG. 1 is a sectional view showing the structure of the counter electrode in another embodiment of the present invention. /...Pelger, Co...Substrate side' polarization, 3...
Heater, J, J9... Raw material gas inlet, 7... To exhaust g... Related frequency power supply, Ta... Heater electric υ1c 1
0...Substrate to be processed, //...Source gas, U0,
3θ...Counter electrode, ko/, 2.2, 3/, 3...
・Sonic frequency electrode, , 23... Support member, -Hiroshi, , 1
5, 3. j... Earth electrode, roller, core; 22,
3≠, 3S... intergland.

Claims (1)

【特許請求の範囲】 入排気装置を有するペルジャー内に、被処理基板を載置
しこの被処理基板を加熱するヒータを有する基板側電極
と、この基板側電極から所定の距離を隔てた対向′電極
とを有し、 この対向電極は、前記基板側電極とともに接地された接
地電極と、この接地電極から前記所定の距L1Lよりも
短い距「准を有しかつ原料ガスの噴出口をなす間隙をも
って配置された高周波電極より成り、 前記噴出口から原料ガスの供給下で前記高周波電極と接
地間に高周波を印加して前記被処理基板表面に膜形成を
行うプラズマCVD装置。 λ、高周波電極と接地′ru極とが同心円状に配置され
たものである特許請求の範囲第/項記曜40プラズマC
VD装置。 31.高周波電極と接地電極とが同心の円錐状に配置さ
れたものである特許請求の範囲第1項記載のプラズマC
VD装置。
[Scope of Claims] A substrate to be processed is placed in a pelger having an inlet/exhaust device, a substrate-side electrode having a heater for heating the substrate to be processed, and an opposing electrode located at a predetermined distance from the substrate-side electrode. The counter electrode has a ground electrode that is grounded together with the substrate side electrode, and a gap that has a distance from the ground electrode that is shorter than the predetermined distance L1L and that forms a source gas ejection port. λ, a high-frequency electrode and a high-frequency electrode that applies high-frequency waves between the high-frequency electrode and ground to form a film on the surface of the substrate to be processed while supplying raw material gas from the jet nozzle. Claim No. 40 Plasma C in which the grounding poles are arranged concentrically.
VD device. 31. The plasma C according to claim 1, wherein the high frequency electrode and the ground electrode are arranged in a concentric conical shape.
VD device.
JP58237128A 1983-12-15 1983-12-15 Plasma cvd apparatus Pending JPS60128613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237128A JPS60128613A (en) 1983-12-15 1983-12-15 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237128A JPS60128613A (en) 1983-12-15 1983-12-15 Plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPS60128613A true JPS60128613A (en) 1985-07-09

Family

ID=17010818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237128A Pending JPS60128613A (en) 1983-12-15 1983-12-15 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS60128613A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199213A (en) * 1987-10-13 1989-04-18 Mitsui Toatsu Chem Inc Device for formation of film
JPH01226148A (en) * 1988-03-07 1989-09-08 Mitsui Toatsu Chem Inc Film forming apparatus
JPH01227427A (en) * 1988-03-08 1989-09-11 Mitsui Toatsu Chem Inc Film forming apparatus
US4901669A (en) * 1986-05-09 1990-02-20 Mitsubishi Jukogyo Kabushiki Kaisha Method and apparatus for forming thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901669A (en) * 1986-05-09 1990-02-20 Mitsubishi Jukogyo Kabushiki Kaisha Method and apparatus for forming thin film
JPH0199213A (en) * 1987-10-13 1989-04-18 Mitsui Toatsu Chem Inc Device for formation of film
JPH01226148A (en) * 1988-03-07 1989-09-08 Mitsui Toatsu Chem Inc Film forming apparatus
JPH01227427A (en) * 1988-03-08 1989-09-11 Mitsui Toatsu Chem Inc Film forming apparatus

Similar Documents

Publication Publication Date Title
TWI241649B (en) Multiple frequency plasma chamber with grounding capacitor at cathode
US6779483B2 (en) Plasma CVD apparatus for large area CVD film
US20100101727A1 (en) Capacitively coupled remote plasma source with large operating pressure range
US20070193515A1 (en) Apparatus for generating remote plasma
JP2000323458A (en) Plasma processing method and device
JPH03146674A (en) Chemical treatment device assisted by diffusion plasma
US4979467A (en) Thin film formation apparatus
US20040094270A1 (en) Plasma process chamber and system
KR100377096B1 (en) Semiconductor fabricating apparatus having improved shower head
JPS60128613A (en) Plasma cvd apparatus
JP4087234B2 (en) Plasma processing apparatus and plasma processing method
JPH06333850A (en) Plasma processing device
TWI469695B (en) Plasma processing device
JPH10265212A (en) Production of microcrystal and polycrystal silicon thin films
JP3032362B2 (en) Coaxial plasma processing equipment
CN110494950A (en) The high deposition rate high quality silicon nitride realized by long-range nitrogen free radical source
JP3485013B2 (en) Plasma processing method and apparatus
CN113921367B (en) Cavity device
JP3137532B2 (en) Plasma CVD equipment
JPH024976A (en) Thin film formation
JPH05243160A (en) Plasma cvd device for manufacturing semiconductor device
JP2004186531A (en) Plasma processing apparatus
JPS60250631A (en) Plasma etching device
JP3615919B2 (en) Plasma CVD equipment
JP3082659B2 (en) Plasma processing equipment