JPS60128248A - Low magnetostriction amorphous iron alloy - Google Patents

Low magnetostriction amorphous iron alloy

Info

Publication number
JPS60128248A
JPS60128248A JP58235074A JP23507483A JPS60128248A JP S60128248 A JPS60128248 A JP S60128248A JP 58235074 A JP58235074 A JP 58235074A JP 23507483 A JP23507483 A JP 23507483A JP S60128248 A JPS60128248 A JP S60128248A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
formula
magnetic
magnetostriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58235074A
Other languages
Japanese (ja)
Inventor
Koichiro Inomata
浩一郎 猪俣
Takao Sawa
孝雄 沢
Michio Hasegawa
長谷川 迪雄
Tadahiko Kobayashi
忠彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58235074A priority Critical patent/JPS60128248A/en
Publication of JPS60128248A publication Critical patent/JPS60128248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a low magnetostriction amorphous Fe alloy having high magnetic permeability comparable to that of an amorphous Co alloy by adding a specified element for accelerating the formation of an amorphous state and B to an Fe-Cr alloy or an Fe-Cr-Ni alloy. CONSTITUTION:An alloy having a composition represented by formula I (where G is at least one among Si, Ge, P and C, 0.08<=a<=0.17, 76<=x<=90 and y<=20) or by formula II (where G is at least one among Si, Ge, P and C, 0.08<=a<=0.17, b<=0.2, 76<=x<=90 and y<=20) is used as the material of the magnetic core of a magnetic head, a high-frequency transformer, a choke, a noise filter or the like. In the formula I , 0.09<=a<=0.15, 80<=x<=86 and 1<=y<=10 may be satisfied, and in the formula II, 0.09<=a<=0.15, 0.05<=b<=0.2, 80<=x<=86 and 1<=y<=10 may be satisfied. A molten alloy having said composition is made amorphous by rapid cooling on a roll rotating at a high speed because Si, Ge, P or C is contained, and an amorphous alloy having high magnetic permeability and a remarkably low saturation magnetostriction constant due to Cr is obtd.

Description

【発明の詳細な説明】 〔@男の技術分野〕 不光明は!#lc基低磁歪非晶質合金(二関する。[Detailed description of the invention] [@Men's technical field] Fukumyo is! #lc-based low magnetostriction amorphous alloy (two related)

〔96明の技術的背景とその問題点〕 従来、磁気ヘッド、高周波トランス、チョーク。[Technical background of the 1996 Ming era and its problems] Conventional magnetic head, high frequency transformer, choke.

ノイズフィルタ等の磁心用材料として用いられてイルモ
の(二、パーマロイ、フェライト、センダスト、けいA
m等の結晶質の材料がある。
Irmo's (2, permalloy, ferrite, sendust, Kei A) are used as magnetic core materials for noise filters, etc.
There are crystalline materials such as m.

この磁心材料として要求さALる特性に、例えば透磁率
、磁束密度等がめる。前述のパーマロイ。
The AL characteristics required for this magnetic core material include magnetic permeability, magnetic flux density, etc. Permalloy as mentioned above.

センダスト、けい素鋼等は、比抵抗が小さいので、高周
波領域ζニおいて透磁率が低下し、鉄損が大きくなって
しまう。又、フェライトは比抵抗が大きいため、高周波
領域での高速g&率、低鉄損を得ることができるが、磁
束密度が高々5000 G程度と小さく、それぞれ一長
一短の特性しか得ることができなかった。
Since sendust, silicon steel, and the like have a small resistivity, their magnetic permeability decreases in the high frequency region ζ2, resulting in an increase in iron loss. Further, since ferrite has a large resistivity, it is possible to obtain high-speed g & ratio and low iron loss in the high frequency region, but the magnetic flux density is as small as about 5000 G at most, and each has only advantages and disadvantages.

これに対し、高透磁率、低保磁力等の優れた替質磁気特
性を示す非晶質合金が江目されている。
In contrast, amorphous alloys have been developed which exhibit excellent magnetic properties such as high magnetic permeability and low coercive force.

この中でもCo : Fe = 94 二6 程度の組
成比を有するCo基非晶質合釡は飽和磁歪楚敢(λ、)
がほぼOに近く、10’様度の高透磁率を有するため、
現任オーディオ用磁気ヘッド等に・開用されている。
Among these, a Co-based amorphous alloy having a composition ratio of about Co:Fe = 9426 has a saturated magnetostriction strength (λ,).
is close to O and has a high magnetic permeability of 10′, so
Currently being used in audio magnetic heads, etc.

一方磁束密度の大きい非晶質合金としてFe基非晶負合
金が刈られている。Co基非晶實合金が高々Q KG 
a度しか得られないのに対し、Fe基非晶負合金は例え
ば16 KG a度も得ることができ、磁心の小型化が
可能等で有望な材料である。又、Coに比ベコスト的に
も安く、さらにFe基の方が鐸導磁気異方性が小さいの
で、製造上でのメリットも大きい。
On the other hand, Fe-based amorphous negative alloys are being used as amorphous alloys with high magnetic flux density. Co-based amorphous alloys are at most Q KG
On the other hand, Fe-based amorphous negative alloys can obtain as much as 16 KGa degrees, for example, and are a promising material because they enable the miniaturization of magnetic cores. In addition, it is cheaper in cost than Co, and the Fe-based material has a smaller conductive magnetic anisotropy, so it has great manufacturing advantages.

しかしながらF’e基非基質晶質合金般にλ、が大きく
 (特開11858−42759号ン高い透磁率が得ら
れなかった。又、製造時に加わる応力による透磁率の劣
化度が大きいという欠点があった。
However, F'e-based non-matrix crystalline alloys generally have a large λ. there were.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点を考慮してなされたもので、磁歪が小
ざく、Co基非晶質合金並みの重送磁率を有する鉄基低
1a歪非晶質合金を提供することを目的とする。
The present invention has been made in consideration of the above points, and an object thereof is to provide an iron-based low 1a strained amorphous alloy with small magnetostriction and a heavy magnetic flux similar to that of a Co-based amorphous alloy. .

〔発明の概要〕[Summary of the invention]

本発明は、 (7e1−a Cra )*QyBsoo−x−y 曲
”’ ■(GはSt、Ge、P、Cから選ばれる少なく
とも1遣の元素、&g)C@’:jはそれぞれ0.08
≦a≦0.17゜76≦X≦90.y≦20の関係と満
足する数)で示されることを特徴とrる鉄基低磁歪非晶
質合金である。
(7e1-a Cra)*QyBsoo-x-y Song"' ■ (G is at least one element selected from St, Ge, P, and C, &g) C@': j is each 0. 08
≦a≦0.17°76≦X≦90. It is an iron-based low magnetostriction amorphous alloy characterized by a number satisfying the relationship y≦20.

すなわち、本発明はFe基非晶質曾並のFeの一部を特
定量のCr ”’C置換することによシ、著しく小さな
飽和@歪定数(λ、)を実現eきるというものである。
That is, the present invention makes it possible to realize a significantly small saturation@strain constant (λ) by substituting a specific amount of Cr for a part of Fe-based amorphous Fe. .

以下ζニ各組成分の限定理由を示す。The reason for limiting each component of ζ2 will be shown below.

Orは、磁歪の低下に大きく寄与するものであり、0式
やaが0.08未満では、λ#>5X10−’と大きく
なシ、応力に伴なう透磁率及び鉄損の劣化が顕著となる
。aが0.17 t−超えると、磁束督度が例えば50
00 G以下に低下し兼用的ではなくなる。よって0.
08≦a≦0.17の範囲とする。
Or greatly contributes to the reduction of magnetostriction, and when 0 formula or a is less than 0.08, λ#>5X10-' is large, and the deterioration of magnetic permeability and iron loss due to stress is significant. becomes. When a exceeds 0.17 t-, the magnetic flux density increases, for example, by 50
It drops below 00 G and becomes unusable. Therefore, 0.
The range is 08≦a≦0.17.

またFe及びCrの含有量ケ示ず■式中xr:あるが、
Xが76未満であると、Cr i、を変化させてもλ3
を5 X 10−’以下ベニすることができず、Xが9
0 t−超えると非晶質化が内錐である。よって76≦
X≦90の範囲とする。
In addition, the content of Fe and Cr is not shown ■ xr in the formula: Yes, but
If X is less than 76, even if Cr i is changed, λ3
cannot be lower than 5 X 10-', and X is 9
Above 0 t- the amorphization is in the inner cone. Therefore, 76≦
The range is X≦90.

また0式中のGはSi*Ge、P+Cから選ばれた少な
くとも一種の元素であ夕、非晶質化を容易ならしめる作
用tもり。Gの’6a緘yが20を超えると融点が高く
なり非晶質化が困難となる。よってy≦20の11囲と
する。Gは少藍の含有量で効果があられれはじめるが、
実用的にはy≧1の範囲、特にl≦y≦10の範囲が好
ましい。 さらにGとしてStを選択した揚盆に非晶質
化が容易になるのとともζニ熱安定性が向上する。
Further, G in the formula 0 is at least one element selected from Si*Ge and P+C, and has the effect of facilitating amorphization. When the '6a y of G exceeds 20, the melting point becomes high and it becomes difficult to make it amorphous. Therefore, it is set as 11 circles with y≦20. G starts to be effective with a small amount of indigo,
Practically speaking, the range of y≧1, particularly the range of l≦y≦10, is preferable. Furthermore, when St is selected as G, it becomes easier to become amorphous and the thermal stability of ζ improves.

特1Z 0.09≦a≦0.15 、80≦X≦86.
1≦y≦10の関係をイ丙たすとき、λ、≦3 X 1
0= と侵れた時性を示すので、実用上非常に好ましい
Special 1Z 0.09≦a≦0.15, 80≦X≦86.
When satisfying the relationship 1≦y≦10, λ, ≦3 X 1
Since it shows a corrupted temporality as 0=, it is very preferable from a practical point of view.

また、Niを含有させることにより、Crとともに磁歪
の低下に寄与し、キュリ一温度(T6)が上昇し、非晶
質合金の製造4を容易にすることができる。
Furthermore, by including Ni, it contributes to a reduction in magnetostriction together with Cr, increases the Curie temperature (T6), and facilitates the production 4 of an amorphous alloy.

すなわち、 (Fe+−a−b Nba N1b)x Gy Bso
o−x−y ・曲・■(GはSt @ Ge * P 
@ Cから選ばオLる少なくとも1種の元素、a s 
b * X * yはそれぞれ0.o8≦a゛≦OA7
 e b ≦0.2 * 75 ≦x S 9t) 、
V ≦20 tl) IJJJ係金満足金満足ン で示されること?を特徴とする鉄基低磁歪非晶質合金で
ある。
That is, (Fe+-a-b Nba N1b)x Gy Bso
o-x-y・Song・■(G is St @ Ge * P
@ At least one element selected from C, a s
b*X*y are each 0. o8≦a゛≦OA7
e b ≦0.2 * 75 ≦x S 9t),
V ≦20 tl) What is indicated by IJJJ? It is an iron-based low magnetostriction amorphous alloy characterized by:

■式中&、X、yは0式と同様の理由で限定する。(2) In the formula, &, X, and y are limited for the same reason as in formula 0.

Ni t−添加することにより Tck高くすることが
できるが、添加1itbが0,2を超えるとかえってR
が低下してしまう。また、N1を添加するとλ、が低下
し、さらにbが0.2よシ少ないと範囲では磁束警度が
高くなる。
Tck can be increased by adding Ni t-, but if the addition 1itb exceeds 0.2, R
will decrease. Further, when N1 is added, λ decreases, and when b is less than 0.2, the magnetic flux intensity increases in the range.

特に0.05≦b≦0.2の範囲で磁束密度が9kG以
上、λ、≦2 X IF’ 、Tc≧150℃と優れた
非晶質合金を得ることができる。
In particular, in the range of 0.05≦b≦0.2, it is possible to obtain an excellent amorphous alloy with a magnetic flux density of 9 kG or more, λ, ≦2 X IF', and Tc≧150°C.

本発明口よる鉄基低磁歪非晶質合金は、一般に行なわれ
ているように、所望の組成比を有する溶融合金ヲ、り、
冷することによシ得られる。例えば単ロール法等が良く
用いられる。
The iron-based low magnetostriction amorphous alloy according to the present invention can be obtained by preparing a molten alloy having a desired composition ratio, as is generally practiced.
It is obtained by cooling. For example, a single roll method is often used.

一フ投に誠心として用いる場合は、例えば非晶質合金薄
帯を、巻回して所望の形状(=し樹脂モールドを施して
固める。本発明による非晶質合金は、λ8が小さいため
、樹脂モールド時の応力印加によっても透磁率の劣化度
が小さく、実用上非常に有効である。
When used as a single-handed throw, for example, an amorphous alloy thin strip is wound into a desired shape (==) and then hardened by applying a resin mold. Even when stress is applied during molding, the degree of deterioration of magnetic permeability is small, making it very effective in practice.

〔発明の効果〕〔Effect of the invention〕

以上詳述したμ口<、本発明の鉄基低磁歪非晶質合金は
、飽、I′lJ磁歪足叔が著しく小さく、そのため透4
a率が極めて高く、かつ応力に伴う透磁率の劣化度が小
さい等の特長を有し、しかも鉄を土木とした材料である
ため低価格であり、従来コバルト基非晶質合金を用いて
いた分野、例えば磁気ヘッド、可飽和リアクトル等に用
いることができるほか、トランス、チョーク、ノイズフ
ィルタ等多くの磁心材料として用いることができ、工業
上極めて1曲i直の商い材料である。
The iron-based low magnetostriction amorphous alloy of the present invention described in detail above has a significantly small I'lJ magnetostriction foot;
It has features such as an extremely high a-rate and a small degree of deterioration of magnetic permeability due to stress, and since it is a material made from iron, it is inexpensive, and conventionally cobalt-based amorphous alloys were used. In addition to being used in various fields such as magnetic heads and saturable reactors, it can also be used as a magnetic core material for transformers, chokes, noise filters, etc., and is an extremely versatile material in industry.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施列に基づいて説明する。(実施列1
〜12及び比較例1,2.3)下記表に示す組成の非晶
質合金を単ロール法により作製した。すなわち、1・−
の高速回転するロール上に石英管ノズルから各組成の溶
融合金をアルゴンガス(ガス圧0.81c9/cr/l
 )により吠出させ、得られた薄Vi忙急冷して幅12
uIL、厚み約刃μm1長さ約10 m 0)薄帯試料
を作製した。
Hereinafter, the present invention will be explained based on the implementation series. (Implementation row 1
~12 and Comparative Examples 1, 2.3) Amorphous alloys having the compositions shown in the table below were produced by a single roll method. That is, 1・−
Argon gas (gas pressure 0.81c9/cr/l)
), and the resulting thin layer was quenched to a width of 12
uIL, a thin strip sample with a thickness of approximately μm and a length of approximately 10 m 0) was prepared.

この試料から外径10myφ、内径61!Iφのリング
試料を作製し、無磁場中において結晶化温度よシも低く
、キュリ一点よりも高い温度で10分間処理した。これ
に−次コイルを巻き、マックスウェルブリッジ(バイア
ス磁界=2m06)を用いて実効透4Ia革を測定した
From this sample, the outer diameter is 10 myφ and the inner diameter is 61! A ring sample of Iφ was prepared and treated in the absence of a magnetic field at a temperature lower than the crystallization temperature and higher than the Curie point for 10 minutes. A secondary coil was wound around this, and the effective permeability of the 4Ia leather was measured using a Maxwell bridge (bias magnetic field = 2m06).

また、ストレインゲージ法を用いて飽和磁歪定数を、D
TA (示差熱分析器)を用いて結晶化温度をそれぞれ
測定した。
In addition, using the strain gauge method, the saturation magnetostriction constant is calculated as D
The crystallization temperature of each sample was measured using a TA (differential thermal analyzer).

更に、上目已然処理後のリング試料につい゛〔、エポキ
シ樹脂を用いてモールドし、その後マックスウェルブリ
ッジを用いて実効透磁率を測定し、樹脂モールド時の応
力による劣化度を調べた。これらの結果を下記表)二併
記rる。 以下余白上記表から明らかなように、比戟闇
1〜3の非晶質合並は砲オl磁歪定数(λ、)が5 X
 10−”i超える高い直となっており、樹脂モールド
前でも実効透磁率が低く、しかも+MJl1wモールド
後の実効透磁率の劣化度も太きい。これに対して、実施
例1〜12の非晶質合金は飽和磁歪定数(λ、)が5X
lO−’以下と小さく、高い実効a磁率が得られ、しか
も樹脂モールド区の実効透磁率の劣化度も非常に小さい
Furthermore, the ring samples after the above-mentioned treatment were molded using epoxy resin, and then the effective magnetic permeability was measured using a Maxwell bridge to examine the degree of deterioration due to stress during resin molding. These results are shown in the table below. As is clear from the above table, the amorphous layers of Higakuya 1 to 3 have a magnetostriction constant (λ,) of 5
10-"i, the effective magnetic permeability is low even before resin molding, and the degree of deterioration of the effective magnetic permeability after +MJl1w molding is also large. In contrast, the amorphous magnetic permeability of Examples 1 to 12 The quality alloy has a saturation magnetostriction constant (λ,) of 5X
A high effective magnetic permeability of less than lO-' can be obtained, and the degree of deterioration of the effective magnetic permeability of the resin mold section is also very small.

また、上述したのと同様な方法(二よ’) (Fe1−
Cr、)as Siy &o非非晶金合金作製し、紹和
鍼歪廻数λ、及び」和磁化σ、を測定した。なお、飽和
磁化の測定には試料振動型磁力形を用いた。こ−の結果
を第1図に示す。
In addition, the same method as described above (2yo') (Fe1-
A non-crystalline gold alloy (Cr, ) as Siy &o was prepared, and the Shōwa acupuncture strain rotation number λ and the sum magnetization σ were measured. Note that a sample vibrating magnetic force type was used to measure the saturation magnetization. The results are shown in Figure 1.

第1図から明らかなように、λ、はOrの含有量が増加
rるとともに1しく低下し、a≧0.08 でλ、が5
XlO−6以下となっている。
As is clear from Fig. 1, λ decreases by 1 as the content of Or increases, and when a≧0.08, λ becomes 5
It is below XlO-6.

更に、上述したのと同様な方法により (F’e(1,
o+−bCro、ooNib)84siaBtt非晶質
縫金を作製し、胞4u磁歪定数λ、を測定した。この結
果を第2図に示す。
Furthermore, (F'e(1,
o+-bCro, ooNib) 84siaBtt amorphous stitch was produced, and the magnetostriction constant λ of the cell 4u was measured. The results are shown in FIG.

弗2図から明らかなように、飽和磁歪定数λ8はNi含
有量が増加するとともに低下し、Niを添加することに
よりλ、を微妙(二調整することが−Cきる。ことがわ
かる。
As is clear from Figure 2, the saturation magnetostriction constant λ8 decreases as the Ni content increases, and by adding Ni, λ can be finely adjusted.

また、(Feo、oo−b cro、1゜N1b)as
sisBtt の組成系でN1fbe変化させたときの
T、(C)の変化ks3図屯=示す。第3図から明らか
なようにNLの添加ととも(二Tcが上昇し、b > 
0.2となるとまたToが低下していることがわかる。
Also, (Feo, oo-b cro, 1°N1b) as
The change in T, (C) when changing N1fbe in the composition system of sisBtt is shown in the ks3 diagram. As is clear from Fig. 3, with the addition of NL (2Tc increases, b >
It can be seen that when it becomes 0.2, To decreases again.

よってb≦0.2の範囲が好ましく、特に0.05≦b
≦0.2の範囲が、他の特性)二も併せて改れたもので
ある。
Therefore, the range b≦0.2 is preferable, particularly 0.05≦b
In the range of ≦0.2, other characteristics (2) are also modified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の鉄基低磁歪非晶質合
金の合金組成と磁気特性とのA係を示す線図、化3図は
本発明の鉄基低磁歪非晶質合金の付会組成とキュリ一温
度との関係を示す線図である。 代理人 弁理士 則 近 慰 右(ほか1名)第1図 Cr ((1) 第 2 図
Figures 1 and 2 are diagrams showing the A ratio between the alloy composition and magnetic properties of the iron-based low magnetostriction amorphous alloy of the present invention, and Figure 3 is a diagram showing the A ratio between the alloy composition and magnetic properties of the iron-based low magnetostriction amorphous alloy of the present invention. FIG. 2 is a diagram showing the relationship between the chemical composition and the Curie temperature. Agent: Patent Attorney Noriyuki Kon (and 1 other person) Figure 1 Cr ((1) Figure 2

Claims (1)

【特許請求の範囲】 (1) (FJ −a Cra )x Gy n、oO
−、−。 (Gは5ieGe、P+Cから選ばれる少なくとも1捕
の元素、a、x+yはそれぞれ0.08≦a≦0−17
 + 76 ≦x ≦90 e y ≦20 ’7)関
係を満足する数)で示されることを特徴とする鉄基低磁
歪非晶質合金。 (2ン 0−09 ≦ a ≦ 0−15 + 80 
≦ x ≦ 86 * 1 ≦ y ≦10の関係と満
足すること分特徴とする特許請求の範囲第1項記載の鉄
基低磁歪非晶質合金。 f3) (FeJ−a−b CraNlb )zGyB
soo−r−y(式中、GはE3s r Ge t P
 r Cカb A ハn ル少eくとも1種の元素、&
*b*XeVはそれぞれ0.08 ≦a ≦0.17 
、 b ≦0.2 、76 ≦x ≦90 、 y ≦
20の関係を満足する数) で示されることを特徴とする鉄基低磁歪非晶質合金。 (4) 0.09≦a≦0.15 、 0.05≦b≦
0.2.80≦X≦86.1≦y≦100)関係を満足
することを特徴とする特許請求の範囲第3項記載の鉄基
低磁歪非晶質合金。
[Claims] (1) (FJ -a Cra) x Gy n, oO
−、−. (G is 5ieGe, at least one element selected from P+C, a, x+y are each 0.08≦a≦0-17
+76≦x≦90 e y≦20 '7) An iron-based low magnetostrictive amorphous alloy. (2nd 0-09 ≦ a ≦ 0-15 + 80
The iron-based low magnetostrictive amorphous alloy according to claim 1, which satisfies the following relationship: ≦ x ≦ 86 * 1 ≦ y ≦10. f3) (FeJ-a-b CraNlb)zGyB
soo-ry (wherein, G is E3s r Get P
r C ka b A han le at least one element, &
*b*XeV is each 0.08 ≦a ≦0.17
, b≦0.2, 76≦x≦90, y≦
An iron-based low magnetostriction amorphous alloy characterized by having a number satisfying the relationship of 20). (4) 0.09≦a≦0.15, 0.05≦b≦
The iron-based low magnetostrictive amorphous alloy according to claim 3, which satisfies the following relationship: 0.2.80≦X≦86.1≦y≦100).
JP58235074A 1983-12-15 1983-12-15 Low magnetostriction amorphous iron alloy Pending JPS60128248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235074A JPS60128248A (en) 1983-12-15 1983-12-15 Low magnetostriction amorphous iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235074A JPS60128248A (en) 1983-12-15 1983-12-15 Low magnetostriction amorphous iron alloy

Publications (1)

Publication Number Publication Date
JPS60128248A true JPS60128248A (en) 1985-07-09

Family

ID=16980675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235074A Pending JPS60128248A (en) 1983-12-15 1983-12-15 Low magnetostriction amorphous iron alloy

Country Status (1)

Country Link
JP (1) JPS60128248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338376A (en) * 1992-06-05 1994-08-16 Central Iron And Steel Research Institute Iron-nickel based high permeability amorphous alloy
CN103451578A (en) * 2013-08-20 2013-12-18 青岛云路新能源科技有限公司 Iron-based amorphous strip and manufacturing method thereof, transformer core and transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338376A (en) * 1992-06-05 1994-08-16 Central Iron And Steel Research Institute Iron-nickel based high permeability amorphous alloy
CN103451578A (en) * 2013-08-20 2013-12-18 青岛云路新能源科技有限公司 Iron-based amorphous strip and manufacturing method thereof, transformer core and transformer

Similar Documents

Publication Publication Date Title
JPH0525946B2 (en)
JPS5933183B2 (en) Low loss amorphous alloy
US4190438A (en) Amorphous magnetic alloy
JP2552274B2 (en) Glassy alloy with perminer characteristics
JPS6362579B2 (en)
KR920007579B1 (en) Soft magnetic materials
JPH0544165B2 (en)
JPS60128248A (en) Low magnetostriction amorphous iron alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
JPH0277555A (en) Fe-base soft-magnetic alloy
JPS6043466A (en) Amorphous low-magnetostriction iron alloy
JPS59150415A (en) Choke coil
JPS6043899B2 (en) High effective permeability non-quality alloy
JPH0138862B2 (en)
JPS61295602A (en) Amorphous core for common mode choke
JPH01290746A (en) Soft-magnetic alloy
JPS61295601A (en) Amorphous core for common mode choke
JPS59107501A (en) Heat sensor
JPS58185747A (en) Amorphous iron alloy for magnetic head
JPH05304014A (en) Fe-co soft magnetic material with excellent soft magnetic property and soft magnetic electric part assembled body
RU2041512C1 (en) Rigid strip core and process of its manufacture
JPS6169939A (en) Amorphous alloy for magnetic head
RU2190275C2 (en) Magnetic core
JPH03180425A (en) Method for improving magnetic permeability characteristic
JPH02240243A (en) Fe-base superfine-crystal alloy with low loss