JPH02240243A - Fe-base superfine-crystal alloy with low loss - Google Patents

Fe-base superfine-crystal alloy with low loss

Info

Publication number
JPH02240243A
JPH02240243A JP1060766A JP6076689A JPH02240243A JP H02240243 A JPH02240243 A JP H02240243A JP 1060766 A JP1060766 A JP 1060766A JP 6076689 A JP6076689 A JP 6076689A JP H02240243 A JPH02240243 A JP H02240243A
Authority
JP
Japan
Prior art keywords
alloy
low loss
loss
crystal alloy
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1060766A
Other languages
Japanese (ja)
Inventor
Taku Matsunaga
卓 松永
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Noriyuki Kataoka
潟岡 教行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP1060766A priority Critical patent/JPH02240243A/en
Publication of JPH02240243A publication Critical patent/JPH02240243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an Fe-base superfine-crystal alloy with low loss by providing a specific composition by adding Hf, V, Nb, Ta, Cr, Mo, W, etc., and Au to an Fe-Si-B amorphous alloy. CONSTITUTION:The above alloy is an Fe-base superfine-crystal alloy with low loss having a composition represented by a general formula Fe100-a-x-y-zMaAuxSiyBz (where M means one or more elements among Hf, V, Nb, Ta, Cr, Mo, and W, the symbols (a), (x), (y), and (z) stand for 0.5-3, 0.5-3, 5-19, and 5-25, respectively, and 15<=y+z<=30), and this alloy has a fine and uniform crystalline structure containing the above alloying elements to supersaturation and consisting of alpha-Fe. The above Fe-base superfine-crystal alloy can be obtained by preparing an alloy with the prescribed composition by liquisol quenching, such as chill block melt spinning, and then carrying out annealing under the conditions appropriate for the crystallization of amorphous phase into alpha-Fe. The above alloy is reduced in loss under high-frequency waves and excellent in magnetic permeability and is suitable for use in high-frequency transformer, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、20kHz以上の高い周波数において使用さ
れる各種チョークコイル、高周波トランス、過飽和リア
クトルその他の電子部品の磁心材料として好適の超微細
結晶m織からなるFe基基磁磁性合金係わるものである
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to ultrafine crystal m that is suitable as a magnetic core material for various choke coils, high frequency transformers, supersaturation reactors, and other electronic components used at high frequencies of 20 kHz or higher. This relates to a Fe-based magnetomagnetic alloy consisting of a woven fabric.

(従来の技術) 従来、高周波のトランス、チョークコイルなどの磁心材
料としては、高抵抗であって渦電流損が少ないなどの利
点を有するため、フェライトがおもに用いられてきた。
(Prior Art) Conventionally, ferrite has been mainly used as a magnetic core material for high frequency transformers, choke coils, etc. because it has advantages such as high resistance and low eddy current loss.

しかし、フェライトは飽和磁束密度が低くキュリー温度
が低いために、動作磁束が大きくなると磁心が大きくな
るという欠点があった。
However, since ferrite has a low saturation magnetic flux density and a low Curie temperature, it has the disadvantage that as the operating magnetic flux increases, the magnetic core becomes larger.

一方、飽和磁束密度、キュリー温度がフェライトよりも
高い磁心としてはパーマロイがあるが、パーマロイは電
気抵抗が小さいために、高周波領域では鉄損が大きくな
るという欠点があった。
On the other hand, permalloy is a magnetic core with a higher saturation magnetic flux density and Curie temperature than ferrite, but because permalloy has low electrical resistance, it has the disadvantage of high iron loss in the high frequency range.

近年、従来の磁心材料に対抗できる可能性があるものと
して非晶質合金は高い飽和磁束密度を有するため、優れ
た磁心材料として有望視されている。
In recent years, amorphous alloys have been viewed as promising as excellent magnetic core materials because of their high saturation magnetic flux density, which has the potential to compete with conventional magnetic core materials.

しかしながら、Pe系の非晶質合金(例えばFe −5
i−B)は、−m的に高周波の鉄損が大きいという問題
点がある。一方磁歪零のCo系の非晶質合金(例えばC
o−Re−5t −B )は、Fe系の非晶質合金に比
べて透磁率が高く鉄損も小さいため高周波特性に優れる
が、一般に透磁率及び鉄損の経時変化があり実用上問題
がある。
However, Pe-based amorphous alloys (e.g. Fe-5
i-B) has a problem in that -m has a large iron loss at high frequencies. On the other hand, Co-based amorphous alloys with zero magnetostriction (e.g. C
o-Re-5t-B) has higher magnetic permeability and lower iron loss than Fe-based amorphous alloys, so it has excellent high-frequency characteristics, but generally the magnetic permeability and iron loss change over time, which poses a practical problem. be.

そこで、Fe系の非晶質合金の低損失化を図るため、非
晶質合金中に熱処理によってα−Fe結晶粒子を微細に
析出させ磁区の微細化を図って低損失とする方法(特開
昭57−94554号公報参照)、非晶質合金中に未固
溶のCuを微細に分散させて同様の効果を得る方法(特
開昭60−52557号公報参照)、非晶質合金中にM
oまたはNbを添加させることによって低磁歪化を図り
、併せて低損失化する試みがなされている。
Therefore, in order to reduce the loss of Fe-based amorphous alloys, a method of precipitating fine α-Fe crystal grains through heat treatment in the amorphous alloy to refine the magnetic domains and reduce the loss (Unexamined Japanese Patent Publication No. (Refer to Japanese Patent Application Laid-Open No. 1983-52554), A method of obtaining the same effect by finely dispersing undissolved Cu in an amorphous alloy (Refer to Japanese Unexamined Patent Publication No. 60-52557), M
Attempts have been made to reduce magnetostriction and loss by adding o or Nb.

(発明が解決しようとする課題) しかし、未だ必ずしも十分な特性を有せず、磁歪零のC
o系の非晶質合金と比べると著しく鉄損が大きいという
問題点があった。
(Problem to be solved by the invention) However, it still does not necessarily have sufficient characteristics, and C
There was a problem in that iron loss was significantly larger than that of o-based amorphous alloys.

このようにFe系の非晶質合金は、Co系の非晶質合金
に比べて経時変化が小さいという特長を有するものの、
高周波における鉄損がCo系の非晶質合金に比べて大き
いため、高周波になるにしたがって鉄損の増加による磁
心部の温度上昇が増加する。
In this way, although Fe-based amorphous alloys have the advantage of less change over time compared to Co-based amorphous alloys,
Since the iron loss at high frequencies is larger than that of a Co-based amorphous alloy, the temperature rise in the magnetic core increases as the frequency increases due to the increase in iron loss.

(課題を解決するための手段) 本発明は、かかる従来技術の問題点を解決し、高周波特
に59k)lz以上の周波数の用途に用いる各種チョー
クコイル、高周波トランス、過飽和リアクトルなどの磁
−心に好適な材料として、超微細結晶組織からなるFe
基基磁磁性合金提供することを目的としてなされたもの
であって、Fe−3i−B系非晶質合金にM元素(If
f、 V、 Nbl Ta、 Crt Mo2賀)およ
びAuを添加し、この合金を熱処理することによってC
o系非晶質合金と同等程度の低損失特性を有する、Fe
基超超微細結晶合金したことを特徴とするものである。
(Means for Solving the Problems) The present invention solves the problems of the prior art and provides magnetic cores for various choke coils, high frequency transformers, supersaturation reactors, etc. used for high frequency applications, particularly at frequencies of 59k)lz or higher. Fe, which has an ultrafine crystal structure, is a suitable material.
This was made for the purpose of providing a magneto-magnetic alloy based on Fe-3i-B based amorphous alloy with M element (If
C by adding f, V, NblTa, CrtMo2Ga) and Au and heat treating this alloy.
Fe has low loss characteristics comparable to o-based amorphous alloys.
It is characterized by having a base ultra-ultra fine crystal alloy.

すなわち、本発明の合金は、次の組成式で表され、合金
元素を過飽和に含んだα−Feからなる均一4に細な結
晶組織を持つことを特徴とするものである。
That is, the alloy of the present invention is represented by the following compositional formula, and is characterized by having a uniform 4-fine crystal structure consisting of α-Fe containing supersaturated alloying elements.

Fe+00−a−x−y−m M^u、 si、 B。Fe+00-a-x-y-m M^u, si, B.

ここで、MはHf、 L Nb、 Ta+ Cr、 M
o+−の内の1種または2種以上であり、かつ0.5≦
a≦3゜0.5≦X≦3.5≦y≦19.5≦2≦25
.15≦y+2≦30である。
Here, M is Hf, L Nb, Ta+ Cr, M
One or more of o+-, and 0.5≦
a≦3゜0.5≦X≦3.5≦y≦19.5≦2≦25
.. 15≦y+2≦30.

Fe系の非晶質合金は、磁歪がCo系の非晶質合金にく
らべて大きいために、飽和磁束密度が大きく経時変化が
ないという特長を持ちながら、高周波での鉄損がCo系
の非晶質合金より劣る。
Fe-based amorphous alloys have a larger magnetostriction than Co-based amorphous alloys, so they have a large saturation magnetic flux density that does not change over time, but iron loss at high frequencies is lower than that of Co-based non-crystalline alloys. Inferior to crystalline alloys.

一方、Siを含んだα−Peからなるけい素鋼は磁歪が
Pe系の非晶質合金よりも小さいが、結晶磁気異方性を
持つために高周波での鉄損がFe系の非晶質合金より劣
る。また結晶質磁性薄膜の分野では微細結晶組織が得ら
れる条件で成膜することによって軟磁気特性が著しく改
善されることが知られている。
On the other hand, silicon steel made of α-Pe containing Si has smaller magnetostriction than Fe-based amorphous alloys, but because it has magnetocrystalline anisotropy, iron loss at high frequencies is lower than that of Fe-based amorphous alloys. Inferior to alloys. Furthermore, in the field of crystalline magnetic thin films, it is known that soft magnetic properties are significantly improved by forming the film under conditions that allow a fine crystal structure to be obtained.

そこで、Fe−5i−B系の合金中にAuを1原子%程
度添加して液体急冷を施すことによりマトリックス中に
Au粒子を固溶させ、さらにこの非晶質合金を熱処理に
よってα−Fe結晶組織とする際、このα−Feを安定
化しその結晶粒成長を抑制する効果を持つHf、 Vt
 Nbl Ta、 Crt Mo+−のうちの1種また
は2種以上を添加することによって、得られる合金全体
がα−Feからなる微細結晶組織となり、Co系の非晶
質合金に匹敵する低損失の軟磁性合金が得られることを
見いだした。これは、微細な結晶組織となることによっ
て見かけ主結晶磁気異方性が相殺され、かつα−Fe中
にStを含んでいるため磁歪が小さくなっているためと
考えられる。
Therefore, Au particles are dissolved in the matrix by adding about 1 atomic % of Au to Fe-5i-B alloy and performing liquid quenching, and then this amorphous alloy is heat-treated to form α-Fe crystals. When forming a structure, Hf and Vt have the effect of stabilizing this α-Fe and suppressing its crystal grain growth.
By adding one or more of NblTa and CrtMo+-, the resulting alloy as a whole becomes a microcrystalline structure consisting of α-Fe, resulting in a soft, low-loss alloy comparable to Co-based amorphous alloys. It was discovered that a magnetic alloy can be obtained. This is considered to be because the apparent main magnetocrystalline anisotropy is offset by the fine crystal structure, and the magnetostriction is reduced because α-Fe contains St.

ここで、Auは熱処理によって生成するα−Peの結晶
の微細化のために必須の元素であり、その含有量を0.
5−3原子%に制限したのは、0.5原子%より小さい
とAu添加の効果がなく、一方3原子%より大きいとA
uの均一分散が困難となり微細な結晶組織が得られず目
的の軟磁気特性が得られないためである。
Here, Au is an essential element for the refinement of α-Pe crystals produced by heat treatment, and its content is reduced to 0.
The reason for limiting it to 5-3 atomic % is that if it is smaller than 0.5 atomic %, there is no effect of adding Au, whereas if it is larger than 3 atomic %, Au addition will not be effective.
This is because uniform dispersion of u becomes difficult and a fine crystal structure cannot be obtained, making it impossible to obtain the desired soft magnetic properties.

また、Feの一部を置換する添加成分Mの含有量を0.
5−3原子%に限定したのは、0.5原子%より小さい
とMを添加したことによるα−Fe結晶粒成長抑制効果
がなく、3原子%よりも大きいと飽和磁束密度の著しい
低下を招くためである。
Further, the content of the additive component M that replaces a part of Fe was set to 0.
The reason for limiting it to 5-3 atomic % is that if it is smaller than 0.5 atomic %, there will be no effect of suppressing α-Fe crystal grain growth by adding M, and if it is larger than 3 atomic %, the saturation magnetic flux density will decrease significantly. It is to invite.

また本発明におけるy及び2の限定理由は、主として前
記yが5〜19原子%、2が5−25原子%でしかもy
+zが15〜30原子%の範囲を外れると液体急冷を行
った後の脆化が激しく、非品質合金の作製が困難となる
ためである。
Further, the reason for limiting y and 2 in the present invention is mainly that y is 5 to 19 atom%, 2 is 5 to 25 atom%, and y
This is because if +z is outside the range of 15 to 30 at%, embrittlement will be severe after liquid quenching, making it difficult to produce a non-quality alloy.

本発明の合金は、前記の組成の合金を片ロール法、双ロ
ール法、その他の公知の液体急冷法により作製した後、
非晶質相がα−Feに結晶化する適切な温度と時間で焼
きなましを行うことにより製造できるものである。
The alloy of the present invention is produced by producing an alloy having the above-mentioned composition by a single roll method, a twin roll method, or other known liquid quenching method, and then
It can be manufactured by annealing at an appropriate temperature and time so that the amorphous phase crystallizes into α-Fe.

(実施例) 第1表は、本発明によるFe−3i−B系超微細結晶合
金と従来の磁心材料であるFe基非晶質合金、Co基非
晶質合金及びMn −Znフェライトの鉄損を比較した
表である。本実施例においては、片ロール法によって幅
5龍、厚さ約20μmの急冷凝固合金リボンを作製した
。この組織をX線回折法により調べたところ、非晶質状
であった。このリボンをコイル状に巻き、内径15m、
外形19鶴の巻磁心とし、窒素ガス雰囲気中で合金組成
によって適時選ばれた温度で60分間焼きなまし処理を
行った後、U関数針により磁束密度の波高値Bmが2k
G、周波数fが100kHzまでにおける鉄損−z/1
00kを測定した。
(Example) Table 1 shows the iron loss of the Fe-3i-B ultrafine crystal alloy according to the present invention, conventional magnetic core materials such as Fe-based amorphous alloy, Co-based amorphous alloy, and Mn-Zn ferrite. This is a table comparing. In this example, a rapidly solidified alloy ribbon having a width of 5 mm and a thickness of about 20 μm was produced by a single roll method. When this structure was examined by X-ray diffraction, it was found to be amorphous. This ribbon was wound into a coil with an inner diameter of 15 m.
A wound magnetic core with an outer diameter of 19 cranes was used, and after annealing for 60 minutes in a nitrogen gas atmosphere at a temperature appropriately selected according to the alloy composition, the peak value Bm of the magnetic flux density was set to 2k using a U function needle.
G, iron loss at frequency f up to 100kHz -z/1
00k was measured.

焼きなまし後のリボンの組織をX線回折法により調べた
ところ、どの実施例の場合においても、α−Feのピー
クのみが認められた。また、本発明合金の結晶Mn織を
透過型電子顕微鏡にて観察したところ、どの実施例の場
合においてもいずれも第1表に示すように50nm以下
の超微細結晶となっていた。
When the structure of the ribbon after annealing was examined by X-ray diffraction, only the α-Fe peak was observed in all of the examples. Furthermore, when the crystalline Mn texture of the alloy of the present invention was observed using a transmission electron microscope, it was found that in all Examples, as shown in Table 1, it was an ultrafine crystal of 50 nm or less.

第1表かられかるように、本発明合金の鉄損は、従来の
Fe基非晶質合金やフェライトなどに比べて鉄損が小さ
く優れている。
As can be seen from Table 1, the iron loss of the alloy of the present invention is smaller than that of conventional Fe-based amorphous alloys, ferrites, and the like.

なお、本実施例においては片ロール法によって合金を作
製したが、片ロール法に限ることなく他の公知の液体急
冷法によっても、本発明の合金を作製することが可能で
ある。
In this example, the alloy was produced by the single roll method, but the alloy of the present invention is not limited to the single roll method, and the alloy of the present invention can also be produced by other known liquid quenching methods.

(発明の効果) 以上述べたように本発明のFe基徽細結晶合金は、従来
のFe基非晶質合金より高周波における損失が低く透磁
率が優れているため、高周波トランス、チョークコイル
、過飽和リアクトルなどに用いた場合価れた特性が得ら
れるものである。
(Effects of the Invention) As described above, the Fe-based fine crystal alloy of the present invention has lower loss at high frequencies than conventional Fe-based amorphous alloys, and has excellent magnetic permeability. When used in reactors, etc., excellent characteristics can be obtained.

出願人代理人  河  内  潤Applicant's agent Jun Kawauchi

Claims (1)

【特許請求の範囲】 その組成が、一般式 Fe_1_0_0_−_a_−_x_−_y_−_zM
Au_xSi_yB_z〔ここで、MはHf、V、Nb
、Ta、Cr、Mo、Wの内の1種または2種以上であ
り、かつ0.5≦a≦3、0.5≦x≦3、5≦y≦1
9、5≦z≦25、15≦y+z≦30〕であることを
特徴とする低損失Fe基超微細結晶合金。
[Claims] The composition has the general formula Fe_1_0_0_-_a_-_x_-_y_-_zM
Au_xSi_yB_z [Here, M is Hf, V, Nb
, Ta, Cr, Mo, and W, and 0.5≦a≦3, 0.5≦x≦3, 5≦y≦1
9, 5≦z≦25, 15≦y+z≦30] A low-loss Fe-based ultrafine crystal alloy.
JP1060766A 1989-03-15 1989-03-15 Fe-base superfine-crystal alloy with low loss Pending JPH02240243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060766A JPH02240243A (en) 1989-03-15 1989-03-15 Fe-base superfine-crystal alloy with low loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060766A JPH02240243A (en) 1989-03-15 1989-03-15 Fe-base superfine-crystal alloy with low loss

Publications (1)

Publication Number Publication Date
JPH02240243A true JPH02240243A (en) 1990-09-25

Family

ID=13151730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060766A Pending JPH02240243A (en) 1989-03-15 1989-03-15 Fe-base superfine-crystal alloy with low loss

Country Status (1)

Country Link
JP (1) JPH02240243A (en)

Similar Documents

Publication Publication Date Title
Yoshizawa et al. New Fe‐based soft magnetic alloys composed of ultrafine grain structure
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP2013060665A (en) Soft magnetic alloy, and magnetic component manufactured using the same
JPH044393B2 (en)
JPH01242755A (en) Fe-based magnetic alloy
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3231149B2 (en) Noise filter
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JPH01294847A (en) Soft-magnetic alloy
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JP2823203B2 (en) Fe-based soft magnetic alloy
JPH0277555A (en) Fe-base soft-magnetic alloy
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JP2009293132A (en) Soft magnetic thin band, magnetic core, magnetic component and method for producing soft magnetic thin band
JPH02240243A (en) Fe-base superfine-crystal alloy with low loss
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH01290746A (en) Soft-magnetic alloy
JPH03271346A (en) Soft magnetic alloy
JPS59150415A (en) Choke coil
KR0153174B1 (en) Fe-al based feeble magnetic alloy having high magnetic permeability
JPH01156452A (en) Fe-based magnetic alloy
JPH04272159A (en) Ferrous magnetic alloy
JPH08948B2 (en) Fe-based magnetic alloy
JP2713980B2 (en) Fe-based soft magnetic alloy