JPS6012783A - Electromagnetic conversion element - Google Patents

Electromagnetic conversion element

Info

Publication number
JPS6012783A
JPS6012783A JP59060277A JP6027784A JPS6012783A JP S6012783 A JPS6012783 A JP S6012783A JP 59060277 A JP59060277 A JP 59060277A JP 6027784 A JP6027784 A JP 6027784A JP S6012783 A JPS6012783 A JP S6012783A
Authority
JP
Japan
Prior art keywords
current path
current
strip elements
output terminal
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59060277A
Other languages
Japanese (ja)
Inventor
Yoshimi Makino
牧野 好美
Tsutomu Okamoto
勉 岡本
Iwao Kamiya
神谷 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59060277A priority Critical patent/JPS6012783A/en
Publication of JPS6012783A publication Critical patent/JPS6012783A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Abstract

PURPOSE:To obtain the titled element having three terminals of extremely compact size and high accuracy by a method wherein a plurality of magnetic resistors are arranged in series to a required shape, and then bias current terminals and an output terminal are attached at fixed positions. CONSTITUTION:Ferromagnetic substances A and B of 80 Ni-20 Co alloy are formed on an insulation substrate 7, parallel linear parts 8 and 9 being successively connected in zigzag form, respectively; and bent parts 10 and 11 then being made parallel to one another. The substances A and B are connected in series at ends 8a and 9a of the linear parts, and the output terminal 4 is attached at this part, and the current terminals 2 and 3 at the other ends. Accordingly, the full length of the magnetic substance becomes longer, and the resistance larger, resulting in the miniaturization of the element 1; therefore the output voltage can be increased by the inhibition of consumed power. The linear parts 8 and 9 are so arranged as to be in the same number and to intersect each other rectangularly, and the bent parts 10 and 11 to intersect the respective linear parts rectangularly. The resistances at the time of saturated magnetization in the direction vertical and horizontal to that of the current simultaneously vary with temperatures, respectively; consequently zero point drift hardly occurs. Thus, the title element having three terminals of small size and high accuracy can be obtained while holding each characteristic of a hall element and a magnetic resistance element.

Description

【発明の詳細な説明】 本発明は磁電変換素子に関するものであって、特に無刷
子モータ等に適用するのに最適な磁電変換素子を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetoelectric transducer, and particularly provides a magnetoelectric transducer that is most suitable for application to brushless motors and the like.

無刷子モータにおいて、ステータコイルに流れる電流を
順次スイッチングするために、磁電変換素子を使用して
回転子の位置検出を行なう事が従来より知られている。
2. Description of the Related Art In brushless motors, it has been known to detect the position of a rotor using a magneto-electric conversion element in order to sequentially switch the current flowing through the stator coil.

この磁電変換素子としては例えば、半導体ホール素子、
半導体磁気抵抗素子、プレーナボール素子、磁性体磁気
抵抗素子等がある。これらのうち、半導体を使用した素
子はキャリアの数及び易動度の温度変化が大きくて温度
特性が悪いので、温度補償用の外部回路を必要とする。
Examples of this magnetoelectric conversion element include a semiconductor Hall element,
There are semiconductor magnetoresistive elements, planar ball elements, magnetic magnetoresistive elements, and the like. Among these, elements using semiconductors have poor temperature characteristics due to large temperature changes in the number and mobility of carriers, and therefore require an external circuit for temperature compensation.

また出力信号の大きさが磁場の強さによって変わるので
、無刷子モータの如く磁界の方向を検知するスイッチン
グ素子として使用する場合には、信号磁界形成手段の磁
気特性及び機械的精度を高めるか、外部回路にリミック
作用を付与する必要があり、いづれにしてもコストの面
で不利である。
Furthermore, since the magnitude of the output signal changes depending on the strength of the magnetic field, when used as a switching element that detects the direction of the magnetic field, such as in a brushless motor, it is necessary to improve the magnetic properties and mechanical precision of the signal magnetic field forming means. It is necessary to provide a remic effect to the external circuit, which is disadvantageous in terms of cost in any case.

一方、磁性体を使用した素子では、普通、金属磁性体を
使用するので、抵抗率及び磁気抵抗係数の温度変化は小
さくて、温度特性は良好である。
On the other hand, since an element using a magnetic material usually uses a metal magnetic material, temperature changes in resistivity and magnetoresistance coefficient are small, and the temperature characteristics are good.

また磁性体そのものの性質として、信号磁界がある程度
以上となると飽和するので、信号磁界の大きさの変動に
対してリミソク作用をもっている。
Furthermore, as a property of the magnetic material itself, it becomes saturated when the signal magnetic field exceeds a certain level, so it has a reversing effect on fluctuations in the magnitude of the signal magnetic field.

従って、無刷子モータのように磁界の方向を検知するス
イッチング素子として利用する場合には、半導体を使用
した素子よりも磁性体を使用した素子の方が木質的に有
利であるといえる。しかしながら、従来の磁性体を使用
した磁電変換素子のうち、プレーナホール素子は出力電
圧が小さくて、無刷子モータの駆動のような目的に用い
るには、高利得の増幅器等の特殊な周辺回路を必要とす
るという欠点がある。また磁気抵抗素子は出力電圧を大
きくとれるが、2端子素子であるために出力電圧に較べ
て不平衡電圧が2桁程度大きいので、抵抗率の温度変化
が小さいとはいえ、抵抗率の温度変化から生ずる不平衡
電圧の変動は出力電圧に較べて無視できず、このため温
度変化による零点ドリフトが実用上問題となる。
Therefore, when used as a switching element that detects the direction of a magnetic field, such as in a brushless motor, it can be said that an element using a magnetic material is more advantageous than an element using a semiconductor in terms of wood quality. However, among conventional magnetoelectric conversion elements using magnetic materials, planar Hall elements have a small output voltage, and require special peripheral circuits such as high-gain amplifiers to be used for purposes such as driving brushless motors. It has the disadvantage of being necessary. Furthermore, although magnetoresistive elements can provide a large output voltage, since they are two-terminal elements, the unbalanced voltage is about two orders of magnitude larger than the output voltage. Fluctuations in the unbalanced voltage caused by this cannot be ignored compared to the output voltage, and therefore zero point drift due to temperature changes becomes a practical problem.

本発明は複数の磁気抵抗素子を組合せることによってプ
レーナホール素子の特徴と磁気抵抗素子の特徴とを保持
したまま上述の欠点を除くと共に極めてコンパクトに構
成することが出来かつ高精度のものを容易に提供し得る
ようにした3端子磁電変換素子に係るものである。
By combining a plurality of magnetoresistive elements, the present invention eliminates the above-mentioned drawbacks while retaining the features of a planar Hall element and magnetoresistive elements, and can be configured extremely compactly and easily manufactured with high precision. The present invention relates to a three-terminal magnetoelectric transducer that can be provided.

次に本発明の磁電変換素子の基本原理及び構成を第1図
及び第2図に付き述べる。
Next, the basic principle and structure of the magnetoelectric conversion element of the present invention will be described with reference to FIGS. 1 and 2.

第1図において、磁電変換素子(1)は磁気抵抗効果を
有する平板状の強磁性体A、Bからなっている。強磁性
体A、Bは互いにその長平方向が直交するように配され
かつ電気的に直列回路を構成するように接続されている
。この直列回路の両端にはバイアス電流供給用の電流端
子(2) 、(3)が、また接続中点には出力電圧取出
し用の出力端子(4)がそれぞれ設けられている。電流
端子(2)、(3)は電源(5)に接続され、その一方
の電流端子(3)はアースされて、全体として磁電変換
回路(6)が構成されている。
In FIG. 1, a magnetoelectric transducer (1) consists of flat ferromagnetic materials A and B having a magnetoresistive effect. The ferromagnetic materials A and B are arranged so that their longitudinal directions are perpendicular to each other, and are electrically connected to form a series circuit. Current terminals (2) and (3) for supplying bias current are provided at both ends of this series circuit, and an output terminal (4) for taking out the output voltage is provided at the midpoint of the connection. The current terminals (2) and (3) are connected to a power source (5), and one of the current terminals (3) is grounded, forming a magnetoelectric conversion circuit (6) as a whole.

この強磁性体A、13を飽和硼化させるに充分な磁界T
−1を、強磁性体A、Hのなす平面において強磁性体A
の長平方向、つまり電流方向に対して角度θで交差する
方向に加える。一般に、飽和磁化したとき、強磁性体の
抵抗は磁気抵抗の異方性によって変わるので、磁界I]
のなす角度θに応じて、強磁性体A、Bの抵抗ρ、及び
ρ8は次の式%式% (1) (2) なお上述の(1)及び(2)式において、ρ□は強磁性
体を電流と垂直方向に飽和磁化したときの抵抗、ρ7ば
強磁性体を電流と平行方向に飽和磁化したときの抵抗を
夫々示している。
Magnetic field T sufficient to saturate this ferromagnetic material A, 13
-1 in the plane formed by ferromagnetic materials A and H, ferromagnetic material A
It is applied in the longitudinal direction of , that is, in the direction intersecting the current direction at an angle θ. Generally, when saturated magnetized, the resistance of a ferromagnetic material changes depending on the anisotropy of magnetic resistance, so the magnetic field I]
Depending on the angle θ formed by ρ7 represents the resistance when the magnetic material is saturated magnetized in the direction perpendicular to the current, and ρ7 represents the resistance when the ferromagnetic material is saturated magnetized in the direction parallel to the current.

一方、第1図の等価回路は第2図のようになるので、出
力端子(4)におりる電圧V(θ)は、となる。この(
3)式に上記(1) (2)式を代入して整理すると、 (但しΔρ=ρ7−ρ□とする) となる。この(4)式において右辺第1項は基準電圧V
S (VSFVO/2)を、第2項は変化量ΔV(θ)
をそれぞれ示している。今度化■ΔV(θ)に着目する
と、 となる。但し2ρ。=ρ7+ρよであり、ρ0は磁界を
加えない状態における抵抗である。
On the other hand, since the equivalent circuit of FIG. 1 is as shown in FIG. 2, the voltage V(θ) at the output terminal (4) is as follows. this(
Substituting the above equations (1) and (2) into equation 3) and rearranging, we get (where Δρ=ρ7−ρ□). In this equation (4), the first term on the right side is the reference voltage V
S (VSFVO/2), the second term is the amount of change ΔV(θ)
are shown respectively. If we focus on the current transformation ■ΔV(θ), we get the following. However, 2ρ. =ρ7+ρ, where ρ0 is the resistance when no magnetic field is applied.

従って出力端子(4)には磁界Hの方向に応じた出力変
化が表れ、θが0度又は180度、及び90度又は27
0度の時に夫々最大値となる。但し変化の方向は反対と
なるので、θが0度及び90度となる2つの磁界を用い
ると変化量が最大となり、スイッチング動作をさせるの
に最適である事が分る。
Therefore, the output terminal (4) shows an output change depending on the direction of the magnetic field H, and θ is 0 degrees or 180 degrees, and 90 degrees or 27 degrees.
Each reaches its maximum value at 0 degrees. However, since the direction of change is opposite, it can be seen that using two magnetic fields with θ of 0 degrees and 90 degrees maximizes the amount of change and is optimal for performing a switching operation.

上述の(5)式から分るように、出力電圧の変化ば磁界
の強さには関係しないので、磁界I]の強さがその方向
によって変化したとしても、この変化に関係なく磁界H
の方向に応した出力を発生できる。但し、磁界Hの強さ
は強磁性体A、Bを飽和磁化できるものでなければなら
ないのは勿論である。
As can be seen from equation (5) above, changes in the output voltage are unrelated to the strength of the magnetic field, so even if the strength of the magnetic field I changes depending on its direction, the magnetic field H will change regardless of this change.
It is possible to generate an output according to the direction of the direction. However, it goes without saying that the strength of the magnetic field H must be such that the ferromagnetic materials A and B can be magnetized to saturation.

更に、上述の(5)式から分るように、この素子(1)
の磁界方向に対する出力電圧変化を太き(するためには
、強磁性体A、BをΔρ/ρ。の大きい磁性材料で構成
する必要がある。例えば’If; 7j%でΔρ/ρ。
Furthermore, as can be seen from equation (5) above, this element (1)
In order to increase the change in output voltage with respect to the direction of the magnetic field, it is necessary to configure the ferromagnetic materials A and B with magnetic materials with a large Δρ/ρ. For example, 'If; Δρ/ρ at 7j%.

が2%以上の強磁性金属として次の様なものが知られて
おり、これ等は本発明の素子の材料として使用し得る。
The following ferromagnetic metals with a magnetic flux of 2% or more are known, and these can be used as materials for the element of the present invention.

(以下余白、次頁につづく。) この中でも8ONi−20Co合金はΔρ/ρ。が6.
48%で一番大きく、しかもNi−Fe合金に比べて耐
酸化性に優れかつコストも安く、またハンダの乗りが良
いので、実用上は最も優れた材料である。
(The following is a margin, continued on the next page.) Among these, 8ONi-20Co alloy has Δρ/ρ. 6.
It is the most excellent material at 48%, and is the most excellent material in practical use because it has better oxidation resistance and lower cost than Ni-Fe alloys, and also has good solderability.

(5)式から分るように、出力電圧変化を大とするため
の他の用件は電源電圧■。で、これを高くすれば材料の
選定と同様に高出力電圧化が可能である。しかし高い電
源電圧で使用すると、一般に素子(1)の消費電力が増
大して発熱するので好ましくない。消費電力WはV。0
2乗に比例し、インピーダンスρ。に反比例する<W”
Vo”/2ρ。)ので、素子(1)のインピーダンスも
同時に高くすれば、消費電力を増加させずに出力電圧を
大きくできる。
As can be seen from equation (5), the other requirement for increasing the output voltage change is the power supply voltage ■. By increasing this value, it is possible to increase the output voltage by selecting the right material. However, when used at a high power supply voltage, the power consumption of the element (1) generally increases and heat is generated, which is not preferable. Power consumption W is V. 0
Proportional to the square of impedance ρ. is inversely proportional to <W”
Vo''/2ρ.) Therefore, if the impedance of element (1) is also increased at the same time, the output voltage can be increased without increasing power consumption.

本発明の磁電変換素子(1)では、強磁性体A、BのF
Jみを変えなくとも電流通路の幅を狭くで入るので、上
述のインピーダンスρ。を容易に高くでき、このため従
来のプレーナホール素子の出力電圧よりも1〜2桁人な
る出力電圧を得る事が出来る。
In the magnetoelectric conversion element (1) of the present invention, F of the ferromagnetic materials A and B
Since the width of the current path can be narrowed without changing J, the impedance ρ mentioned above. can be easily increased, and therefore an output voltage that is one to two orders of magnitude higher than the output voltage of a conventional planar Hall element can be obtained.

また上述の(3)式においてρ7及びρ□は夫々温度に
依存して変化するが、この変化の際、ρ7及びρよは同
時に変化するので、Δρ及びρ。の温度変化ば極めて小
となって、出力電圧変化量ΔV(θ)はほとんど影響を
受けない。
Furthermore, in the above equation (3), ρ7 and ρ□ each change depending on the temperature, but when they change, ρ7 and ρ change simultaneously, so Δρ and ρ. If the temperature change is extremely small, the output voltage change amount ΔV(θ) is hardly affected.

また磁電変換素子(1)は3端子の素子であるので、電
流端子(3)を出力端子の共通端子としてアースでき、
このため電源回路等の周辺回路を簡単化できる。
Also, since the magnetoelectric conversion element (1) is a three-terminal element, the current terminal (3) can be grounded as a common terminal for the output terminals.
Therefore, peripheral circuits such as a power supply circuit can be simplified.

次に本発明による磁電変換素子(1)の具体例を第3図
に示す。
Next, a specific example of the magnetoelectric transducer (1) according to the present invention is shown in FIG.

磁電変換素子(1)は、表面清浄化処理が施されたスラ
イドガラス又は写真乾板等の絶縁基板(7)と、この基
板(7)の表面に8ONi−20Go合金を600〜1
000人の厚さに蒸着した後に不要部分をエツチング除
去して形成された折線状若しくはジグザグ状の強磁性体
A、Bと、これらの強磁性体A、Bのほぼ中間に形成さ
れている出力端子(4)と、強磁性体A、Bの他端側に
形成されている電流端子(2) 、(3)とによって構
成されている。強磁性体式、Bば夫々17木の主電流通
路となる直線部即ち細条要素(8) 、(9)とこれら
の直線部(8)、(9)をその一端にて互いに連結して
いる折曲部即ち接続部(10)、(11)とからなって
いる。即ち、強磁性体A、Bは、それぞれジグザグ状に
なるように、互いに平行に延びる複数の直線部(8) 
、(9)と、これら複数の直線部(8) 、(9)を順
次接続しかつ互いに平行に延びる複数の折曲部(10)
、(11)とからなっている。なお直線部(8) 、(
9)の端部(8a)、(9a)において強磁性体Δ、B
は互いに直列に接続されていて、この接続部分から出力
端子(4)が取り出されている。
The magnetoelectric transducer (1) includes an insulating substrate (7) such as a slide glass or a photographic plate that has been subjected to surface cleaning treatment, and an 8ONi-20Go alloy coated on the surface of the substrate (7) with 600 to 1
The ferromagnetic materials A and B have a polygonal or zigzag shape formed by vapor deposition to a thickness of 1,000 mm and then remove unnecessary parts, and the output formed approximately in the middle of these ferromagnetic materials A and B. It consists of a terminal (4) and current terminals (2) and (3) formed at the other ends of the ferromagnetic bodies A and B. Ferromagnetic type, B has 17 straight sections, i.e. strip elements (8) and (9), which serve as main current paths, and these straight sections (8) and (9) are connected to each other at one end. It consists of bent parts, that is, connecting parts (10) and (11). That is, the ferromagnetic materials A and B each have a plurality of straight portions (8) extending parallel to each other in a zigzag shape.
, (9), and a plurality of bent portions (10) sequentially connecting these plurality of straight portions (8) and (9) and extending parallel to each other.
, (11). In addition, the straight part (8), (
9) At the ends (8a) and (9a) of the ferromagnetic material Δ, B
are connected to each other in series, and an output terminal (4) is taken out from this connection.

このように構成したのは、強磁性体A、Bの全長を非常
に長くするためである。この結果、強磁性体Δ、Bの抵
抗を人にすることが出来て素子(I、)のインピーダン
スを高くすることが出来ると共に、素子(1)を小型化
することも可能となる。従って前述したように、消費電
力の増加を押さえかつ出力電圧を大とすることができる
The reason for this configuration is to make the total length of the ferromagnetic materials A and B extremely long. As a result, it is possible to reduce the resistance of the ferromagnetic material Δ, B, thereby increasing the impedance of the element (I,), and also making it possible to downsize the element (1). Therefore, as described above, it is possible to suppress an increase in power consumption and increase the output voltage.

また強磁性体Aの直線部(8)が電流端子(2)側から
出力端子(4)側に向って順次配列される配列方向に沿
った直線部(8)の両端部のそれぞれの包絡線は直線部
(9)とほぼ平行即ち第3図における垂直方向である。
In addition, the respective envelopes of both ends of the linear portions (8) along the arrangement direction in which the linear portions (8) of the ferromagnetic material A are sequentially arranged from the current terminal (2) side to the output terminal (4) side. is substantially parallel to the straight line portion (9), that is, in the vertical direction in FIG.

また強磁性体Bの直線部(9)が電流端子(3)側から
出力端子(4)側に向イて順次配列される配列方向に沿
った直線部(9)の両端部のそれぞれの包絡線は直線部
(8)とほぼ平行即ち第3図における水平方向である。
In addition, the envelopes of both ends of the straight parts (9) of the ferromagnetic material B along the arrangement direction in which the straight parts (9) of the ferromagnetic material B are sequentially arranged from the current terminal (3) side to the output terminal (4) side. The line is approximately parallel to the straight section (8), ie in the horizontal direction in FIG.

故に強磁性体Aの電流端子(2)側に最も近い直線部分
(8)と強磁性体Bの電流端子(3)側に最も近い直線
部分(9)とが互いに適当間隔Mlすれ且つ出力端子(
4)からも適当間隔離れた位置に配置されることになる
。従って第3図から明らかなように、出力端子(4)を
素子(1)の中間位置に、また一対の電流端子(2)、
(3)を素子(1)の両側に配置することが出来、この
ためリード線をこれらの端子(2) 、(3) 、(4
)に接続する配線処理が極めて容易である。
Therefore, the straight line portion (8) closest to the current terminal (2) side of ferromagnetic material A and the straight line portion (9) closest to the current terminal (3) side of ferromagnetic material B are spaced apart from each other by an appropriate distance Ml, and the output terminal (
It will also be placed at a suitable distance from 4). Therefore, as is clear from FIG. 3, the output terminal (4) is located in the middle of the element (1), and the pair of current terminals (2),
(3) can be placed on both sides of the element (1), so that the lead wires can be connected to these terminals (2), (3), (4).
) is extremely easy to wire.

−また直線部(8ン と直線部(9)とは互いに同数で
あると共に互いにほぼ直交するように配され、また折曲
部(lO)と直線部(8)とは互いにほぼ直交するとと
もに折曲部(11)と直線部(9)とは互いにほぼ直交
するように配されている。従って強磁性体Aの抵抗ρA
(θ)と強(〃外体Bの抵抗ρ、l(θ)との和を磁界
Hのなす角度θに無関係に正確に一定にするのが極めて
容易である。
- In addition, the straight portions (8) and the straight portions (9) are the same in number and are arranged to be approximately orthogonal to each other, and the bent portions (lO) and the straight portions (8) are approximately orthogonal to each other and are arranged to be approximately perpendicular to each other. The curved part (11) and the straight part (9) are arranged to be substantially orthogonal to each other.Therefore, the resistance ρA of the ferromagnetic material A
(θ) and the resistance ρ of the external body B, it is extremely easy to make the sum of l(θ) exactly constant regardless of the angle θ formed by the magnetic field H.

また強(11性体A、Bは全体としてそれぞれ長方形の
形状に構成されている。なお強磁性体A、Bの全体形状
を特に夫々正方形とすると、これらの強磁性体Δ、Bを
互いにほぼ同形にしかつ90゜回転した状態で隣接させ
ることによって、2つの強磁性体A、Bの全体は、長辺
と短辺との比が2:lの長方形の形状となって非常にコ
ンパクトになる。
In addition, the ferromagnetic materials A and B are each formed into a rectangular shape as a whole.If the overall shape of the ferromagnetic materials A and B is particularly square, then these ferromagnetic materials Δ and B are approximately connected to each other. By making the two ferromagnetic materials A and B adjacent to each other in the same shape and rotating them by 90 degrees, the entire structure of the two ferromagnetic materials A and B becomes a rectangular shape with a long side to short side ratio of 2:l, making it extremely compact. .

次に第3図に示す素子(1)の′1.X性を述べる。強
磁性体A、Bの膜厚が例えば(li00人である場合に
は、全抵抗2ρ0は2.5にΩとなり、また駆動電圧を
8Vにずれば160rnVの出力電圧を発生ずる。この
ときの飽和磁界は5000以上でありかつ消費電力は約
26InWであって、素子(1)を動作させるのに要す
る磁界の強さは低くて済み、しかも消費電力も少なくて
よい事が分る。この素子(1)の駆動電圧を12Vにし
た場合には、出力電圧は240mVとなりかつ消費電力
は約58mWとなる。また強磁性体A、Bの膜厚が例え
ば1000人である場合には、全抵抗2ρ。が1.4に
Ωとなり、駆動電圧を8Vにすれば180mVの出力電
圧を発生ずる。このときの飽和磁界は5000以上であ
りかつ消費電力は約47mWである。この素子(2)の
駆動電圧を12Vにした場合には出力電圧は27’Om
Vとなりかつ消費電力は約103mWとなる。
Next, '1' of element (1) shown in FIG. Describe X-ness. For example, if the film thickness of ferromagnetic materials A and B is (li00), the total resistance 2ρ0 becomes 2.5Ω, and if the driving voltage is shifted to 8V, an output voltage of 160rnV is generated. The saturation magnetic field is 5000 or more, and the power consumption is about 26 InW, which shows that the strength of the magnetic field required to operate element (1) is low, and the power consumption is also low.This element When the drive voltage in (1) is set to 12V, the output voltage is 240mV and the power consumption is approximately 58mW.Also, if the film thickness of the ferromagnetic materials A and B is, for example, 1000, the total resistance 2ρ becomes 1.4Ω, and if the drive voltage is set to 8V, an output voltage of 180mV is generated.The saturation magnetic field at this time is 5000 or more, and the power consumption is about 47mW. When the drive voltage is 12V, the output voltage is 27'Om.
V, and the power consumption is approximately 103 mW.

次に膜厚1000人の素子(1)を3KOeの磁界中に
置いた場合の出力電圧の磁界の角度に対する依存性を第
4図に示す。この図中においては、縦軸に出力電圧の変
化量Δ■(θ)を取りかつ横軸に角度θを取っている。
Next, FIG. 4 shows the dependence of the output voltage on the angle of the magnetic field when the element (1) with a film thickness of 1000 is placed in a magnetic field of 3 KOe. In this figure, the vertical axis represents the amount of change Δ■(θ) in the output voltage, and the horizontal axis represents the angle θ.

なお角度原点は第2図における点からπ/4だけずれて
いる。この第4図から明らかなように、出力電圧変化は
ザインカーブとなり、上述の(5)式が正しい事が分る
。θが・−π/4で出力電圧は104mV、θが零即ち
角度原点において出力電圧が零、θがπ/4で出力電圧
が約−103mV、θがπ/2で出力電圧が零、θが3
π/4で出力電圧が104rnV、θがπで出力電圧が
零であった。
Note that the angular origin is shifted by π/4 from the point in FIG. As is clear from FIG. 4, the output voltage change becomes a sine curve, and it can be seen that the above equation (5) is correct. When θ is -π/4, the output voltage is 104 mV, when θ is zero, that is, the output voltage is zero at the angle origin, when θ is π/4, the output voltage is approximately -103 mV, when θ is π/2, the output voltage is zero, and θ is 3
At π/4, the output voltage was 104 rnV, and when θ was π, the output voltage was zero.

以上本発明を一実施例に基づいて説明したが、本発明の
技11’r的思想に基づいて更に変形が可能であること
が理解されよう。例えば、不均一な磁界を加えるときな
どには、強磁性体Bを基板(7)の裏側面に設&Jて強
磁性体Aと基板(7)をへだてて対向させることも勿論
可能である。また第5図に等価回路図で示すように、た
がいに等価の例えば3つの磁電変換素子(1)を並列に
接続して電源(5)を共通に使うことも出来る。この場
合、抵抗ρA (θ)1 ρB (θ)−ρ7+ρ□−
2ρ0、ρ。−一定であるので、各素子がそれぞれ異な
る動作をしても各素子間の相互干渉を生じることがない
。なお複数の素子(1)を直列に接続することも勿論可
能である。また強磁性体Δ、BをNt−G。
Although the present invention has been described above based on one embodiment, it will be understood that further modifications can be made based on the idea of technique 11'r of the present invention. For example, when applying a non-uniform magnetic field, it is of course possible to provide the ferromagnetic material B on the back side of the substrate (7) and to separate the ferromagnetic material A and the substrate (7) so that they face each other. Further, as shown in the equivalent circuit diagram in FIG. 5, for example, three equivalent magnetoelectric transducers (1) can be connected in parallel and a power source (5) can be used in common. In this case, resistance ρA (θ)1 ρB (θ)−ρ7+ρ□−
2ρ0, ρ. -Since it is constant, mutual interference between the elements does not occur even if each element operates differently. Note that it is of course possible to connect a plurality of elements (1) in series. Also, the ferromagnetic material Δ, B is Nt-G.

合金以外にΔρ/ρ。が大である例えば8ONi−20
Fe等で構成することが出来、この場合は弱い信号磁界
でも磁化され易くなる。更にインピーダンスをより大き
くするために、強磁性体A、Bの直線部(8) 、(9
)の幅を更に小さくするなどのように、その形状を様々
に変化させることが出来る。
Δρ/ρ in addition to alloys. For example, 8ONi-20 where
It can be made of Fe or the like, and in this case it is easily magnetized even in a weak signal magnetic field. Furthermore, in order to further increase the impedance, the straight parts (8) and (9
) can be changed in various ways, such as by making the width even smaller.

なお本発明の磁電変換素子は無刷子モータのロータ位置
検出や、他のスイッチング動作、磁界方向検出等に応用
可能である。
The magnetoelectric conversion element of the present invention can be applied to detecting the rotor position of a brushless motor, other switching operations, detecting the direction of a magnetic field, etc.

更にまた、上述の例では、強磁性体として金属をもちい
たが、一般に磁気抵抗効果及び金属的電気伝導を兼ねそ
なえたものはすべて使用できる。
Furthermore, in the above example, metal is used as the ferromagnetic material, but in general, any material that has both magnetoresistive effect and metallic electrical conductivity can be used.

本発明は上述の如く、異方性のある磁気抵抗効果を有す
る強磁性体膜を基板の一面上に形成しているので、磁性
体を使用した磁電変換素子の特徴を有し、このため磁気
飽和特性を示して信号磁界の大きさの変動に対しリミッ
タ作用を有しており、スイッチング特性に極めてΦれた
ものとなる。しかも強磁性体膜を一面上に形成している
ことから、飽和磁化したときに磁気抵抗の異方性によっ
て抵抗が変わり、その面内での磁界の方向を検出するこ
とができる。
As described above, the present invention has a ferromagnetic film having an anisotropic magnetoresistive effect formed on one surface of the substrate, so it has the characteristics of a magnetoelectric transducer using a magnetic material, and therefore has the characteristics of a magnetoelectric transducer using a magnetic material. It exhibits saturation characteristics and has a limiter effect on fluctuations in the magnitude of the signal magnetic field, resulting in extremely poor switching characteristics. Moreover, since the ferromagnetic film is formed on one surface, the resistance changes depending on the anisotropy of the magnetic resistance when saturated magnetization occurs, and the direction of the magnetic field within that surface can be detected.

また強磁性体膜からなる第1及び第2の電流通路をほぼ
ジグザグ状に配しているので、強磁性体1模の厚みを変
えなくてもその幅を狭くすることによりインピーダンス
を容易に高くでき、しかも電流通路の全長を非雷に長く
してインピーダンスを高くすることができる。従って、
出力電圧を著しく大きくできると共に、消費電力の増加
を抑えることができる。
In addition, since the first and second current paths made of ferromagnetic films are arranged in a nearly zigzag pattern, the impedance can be easily increased by narrowing the width without changing the thickness of the ferromagnetic film. Moreover, the total length of the current path can be made longer than lightning, and the impedance can be increased. Therefore,
The output voltage can be significantly increased, and an increase in power consumption can be suppressed.

また、ρ7..及びρよは夫々温度に依存して同時に変
化するので、Δρ及びρ。の;X?を度変化は極めて小
となり、出力電圧変化量はほとんど影響を受けない。
Also, ρ7. .. Since Δρ and ρ vary simultaneously depending on the temperature, Δρ and ρ. ;X? The degree change is extremely small, and the amount of output voltage change is almost unaffected.

また、第1及び第2の電流通路の抵抗値の和を一定とし
ながら、磁場成分の方向の変化に応じてそれぞれの抵抗
値を変化さ−lているから、この変化に伴う出力電圧の
変化に基づいて磁場の角度をm的に決めることができる
Furthermore, while the sum of the resistance values of the first and second current paths is kept constant, each resistance value is changed according to the change in the direction of the magnetic field component, so the output voltage changes due to this change. The angle of the magnetic field can be determined based on m.

更にまた、第1及び第2の電流通路の接続点に出力端子
を、他端側に電流供給端子を設けたので、3端子の素子
となり、一方の電流供給端子を共通にアースでき、周辺
回路を簡単化できる。
Furthermore, since an output terminal is provided at the connection point of the first and second current paths and a current supply terminal is provided at the other end, it becomes a three-terminal element, and one current supply terminal can be commonly grounded, and the peripheral circuit can be simplified.

また第1の電流通路の複数の細条要素が第1の電流供給
端子側から出力一端子側に向かって順次配列される配列
方向に沿った第1の電流通路の複数の細条要素の両端部
のそれぞれの包絡35)は第2の電流通路の細条要素と
ほぼ平行に構成され、また第2の電流通路の複数の細条
要素が第2の電流供給端子側から出力端子側に向かって
順次配列される配列方向に沿った第2の電流iil路の
複数の細条要素の両端部のそれぞれの包絡線は第1の電
流通路の細条要素とほぼ平行に構成されている。故に一
対の電流供給端子を互いに適当間隔離して配置しかつこ
れらの電流供給端子と出力端子とを適当間隔離して配置
するのが極めて容易であり、従ってこれらの端子にリー
ド線などを接続するような配線処理を極めて容易に行う
ことが可能である。
Further, both ends of the plurality of strip elements of the first current path along the arrangement direction in which the plurality of strip elements of the first current path are sequentially arranged from the first current supply terminal side to the output one terminal side. The respective envelopes 35) of the sections are arranged substantially parallel to the strip elements of the second current path, and the strip elements of the second current path run from the second current supply terminal side to the output terminal side. The respective envelopes at both ends of the plurality of strip elements of the second current path along the arrangement direction that are sequentially arranged are substantially parallel to the strip elements of the first current path. Therefore, it is extremely easy to arrange a pair of current supply terminals to be separated from each other by an appropriate distance, and to arrange the current supply terminal and output terminal to be separated by an appropriate distance. It is possible to perform wiring processing extremely easily.

また第1及び第2の電流通路は、それぞれジグザグ状に
なるように、互いに平行に延びる複数の細条要素と、こ
れら複数の細条要素を順次接続しかつ互いに平行に延び
る複数の接続部とから成り、第1の電流通路の細条要素
と第2の電流通路の細条要素とは互いに同数であると共
に互いにほぼ直交するように配され、第1の電流通路の
接続部と第1の電流通路の細条要素とは互いにほぼ直交
すると共に第2の電流通路の接続部と第2の電流通路の
細条要素とは互いにほぼ直交するように配され、第1及
び第2の電流通路の複数の細条要素が第1及び第2の電
流供給端子側から前記出力端子側に向かって順次配列さ
れる配列方向に沿った第1及び第2の電流通路の複数の
細条要素の両端部のそれぞれの包絡線は第2及び第1の
電流通路の細条要素とほぼ平行に構成されている。故に
第1の電?Ji通路の抵抗と第2の電流通路の抵抗との
和を&’を場成分の角度にjJH%関係に正確に一定に
するのが極めて容易である。
The first and second current paths each include a plurality of strip elements extending parallel to each other in a zigzag shape, and a plurality of connecting portions sequentially connecting these strip elements and extending parallel to each other. The strip elements of the first current path and the strip elements of the second current path are the same in number and are arranged to be substantially orthogonal to each other, and the connecting portion of the first current path and the strip element of the second current path are The strip elements of the current path are arranged to be substantially orthogonal to each other, and the connection portion of the second current path and the strip element of the second current path are arranged to be substantially orthogonal to each other. Both ends of the plurality of strip elements of the first and second current paths along the arrangement direction in which the plurality of strip elements are sequentially arranged from the first and second current supply terminal side toward the output terminal side. The respective envelopes of the sections are configured substantially parallel to the strip elements of the second and first current paths. Therefore, the first electricity? It is extremely easy to make the sum of the resistance of the Ji path and the resistance of the second current path exactly constant in the jJH% relationship, where &' is the angle of the field component.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁電変換素子の概略原理図、第2図は
第1図に示す素子の等価回路図、第3図は磁電変換素子
の具体例の平面図、第4図は出力電圧変化量の磁界角度
依存性を示す曲線図、第5図は3つ磁電変換素子を並列
に接続した場合の電源供給方式を示す等価回路図である
。 なお図面に用いられた符号において、(1)は磁電変換
素子、(2) 、(3)は電流端子、(4)は出力端子
、A、Bば磁気抵抗特性を有する強磁性体である。 代理人 土圧 勝 〃 常包芳男
Figure 1 is a schematic principle diagram of the magnetoelectric conversion element of the present invention, Figure 2 is an equivalent circuit diagram of the element shown in Figure 1, Figure 3 is a plan view of a specific example of the magnetoelectric conversion element, and Figure 4 is the output voltage. A curve diagram showing the magnetic field angle dependence of the amount of change, and FIG. 5 is an equivalent circuit diagram showing a power supply system when three magnetoelectric conversion elements are connected in parallel. In the symbols used in the drawings, (1) is a magnetoelectric conversion element, (2) and (3) are current terminals, (4) is an output terminal, and A and B are ferromagnetic materials having magnetoresistive characteristics. Agent: Masaru Doatsu〃 Yoshio Tsunekami

Claims (1)

【特許請求の範囲】 (a)、それぞれ異方性のある磁気抵抗効果を有しかつ
基板の一面上に設けられた強磁性体膜がらなり、互いに
直列に接続された第1及び第2の電流通路、 (1)) 、前記第1及び第2の電流通路のそれぞれの
一端をつなぐ接続点に設けられた出力端子、(C)、前
記第1及び第2の電流通路のそれぞれの他端側に設けら
れた第1及び第2の電流供給端子、 をそれぞれ具備し、前記第1及び第2の電流通路は、そ
れぞれジグザグ状になるように、互いに平行に延びる複
数の細条要素と、これら複数の細条要素を順次接続しか
つ互いに平行に延びる複数の接続部とから成り、前記第
1の電流通路の細条要素と前記第2の電流通路の細条要
素とは互いに同数であると共に互いにほぼ直交するよう
に配され、前記第1の電流通路の接続部と前記第1の電
流通路の細条要素とは互いにほぼ直交すると共に前記第
2の電流通路の接続部と前記第2の電流通路の細条要素
とは互いにほぼ直交するように配され、前記第1の電流
通路の複数の細条要素が前記第1の電流供給端子側から
前記出力端子側に向かって順次配列される配列方向に沿
った前記第1の電流通路の複数の細条要素の両端部のそ
れぞれの包絡線は前記第2の電流通路の細条要素とほぼ
平行に構成され、前記第2の電流通路の複数の細条要素
が前記第2の電流供給端子側から前記出力端子側に向か
って順次配列される配列方向に沿った前記第2の電流通
路の複数の細条要素の両端部のそれぞれの包絡″に石)
は前記第1の電流通路の細条要素とほぼ平行に(1:¥
成され、前記基板の面にほぼ平行な′磁場成分の方向の
変化に応じて、前記第1及び第2の電流、iI回路の抵
抗値の和を一定にしながら、これらの抵抗値のそれぞれ
が変化し、この変化に伴う前記出力端子の電圧の変化を
検出するように構成したことを特徴とする磁電変換素子
[Scope of Claims] (a) First and second ferromagnetic films each having an anisotropic magnetoresistive effect and provided on one surface of a substrate and connected in series to each other; a current path; (1)) an output terminal provided at a connection point connecting one end of each of the first and second current paths; (C) another end of each of the first and second current paths; a plurality of strip elements extending parallel to each other so that the first and second current paths each have a zigzag shape; The plurality of strip elements are sequentially connected and are made up of a plurality of connecting portions extending parallel to each other, and the strip elements of the first current path and the strip elements of the second current path are the same in number. and are arranged to be substantially perpendicular to each other, and the connecting portion of the first current path and the strip element of the first current path are approximately perpendicular to each other, and the connecting portion of the second current path and the strip element of the first current path are substantially perpendicular to each other. The strip elements of the current path are arranged to be substantially orthogonal to each other, and the plurality of strip elements of the first current path are arranged sequentially from the first current supply terminal side toward the output terminal side. Envelopes at both ends of the plurality of strip elements of the first current path along the arrangement direction are configured to be substantially parallel to the strip elements of the second current path, and The plurality of strip elements of the second current path are arranged sequentially from the second current supply terminal side toward the output terminal side at both ends of the plurality of strip elements of the second current path along the arrangement direction. stone)
is approximately parallel to the strip element of the first current path (1:\
In response to a change in the direction of the magnetic field component substantially parallel to the surface of the substrate, each of the resistance values of the first and second currents and the iI circuit changes while keeping the sum of the resistance values of the iI circuit constant. 1. A magnetoelectric transducer, characterized in that the magnetoelectric transducer is configured to detect a change in voltage at the output terminal due to the change in voltage.
JP59060277A 1984-03-28 1984-03-28 Electromagnetic conversion element Pending JPS6012783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060277A JPS6012783A (en) 1984-03-28 1984-03-28 Electromagnetic conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060277A JPS6012783A (en) 1984-03-28 1984-03-28 Electromagnetic conversion element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7965573A Division JPS575067B2 (en) 1973-07-13 1973-07-13

Publications (1)

Publication Number Publication Date
JPS6012783A true JPS6012783A (en) 1985-01-23

Family

ID=13137482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060277A Pending JPS6012783A (en) 1984-03-28 1984-03-28 Electromagnetic conversion element

Country Status (1)

Country Link
JP (1) JPS6012783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301113A (en) * 1988-05-30 1989-12-05 Shicoh Eng Co Ltd Signal processing circuit for magneto-resistance element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879655A (en) * 1972-01-28 1973-10-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879655A (en) * 1972-01-28 1973-10-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301113A (en) * 1988-05-30 1989-12-05 Shicoh Eng Co Ltd Signal processing circuit for magneto-resistance element

Similar Documents

Publication Publication Date Title
JP3465059B2 (en) Magnetic field sensor comprising magnetization reversal conductor and one or more magnetoresistive resistors
EP0721563B1 (en) Magnetoresistive linear displacement sensor, angular displacement sensor, and variable resistor
US3928836A (en) Magnetoresistive element
JP3210192B2 (en) Magnetic sensing element
US3286161A (en) Magneto-resistive potentiometer
JP3560821B2 (en) Encoder with giant magnetoresistive element
GB2052855A (en) Magnetoresistive transducers
JPS58154615A (en) Magnetic detector
US6556007B1 (en) Bearing sensor having magneto resistive elements
EP3173806B1 (en) Magnetic sensor
JP4853807B2 (en) Current sensing device
JPS6022726B2 (en) displacement detector
JP2000512763A (en) Magnetic field sensor with Wheatstone bridge
EP3130929A1 (en) Current detection device
JPS6012783A (en) Electromagnetic conversion element
JP2003179283A (en) Magnetic sensor
JP2002131407A (en) Thin film magnetic field sensor
KR830000135B1 (en) A rotating conversion element (a magnetic conversion element)
JP4501858B2 (en) Magneto-impedance element and current / magnetic field sensor
JPS5858781A (en) Magnetoelectric transducer
JPH0311898Y2 (en)
US11719767B2 (en) Magnetic sensor
JP3555412B2 (en) Magnetoresistive sensor
US4301418A (en) Magnetoresistive power amplifier
JP2620943B2 (en) Non-contact potentiometer