JPS60127766A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPS60127766A
JPS60127766A JP23499783A JP23499783A JPS60127766A JP S60127766 A JPS60127766 A JP S60127766A JP 23499783 A JP23499783 A JP 23499783A JP 23499783 A JP23499783 A JP 23499783A JP S60127766 A JPS60127766 A JP S60127766A
Authority
JP
Japan
Prior art keywords
pressure
base
diaphragm
hole
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23499783A
Other languages
Japanese (ja)
Inventor
Takeshi Murayama
健 村山
Kiyoshi Nagasawa
潔 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP23499783A priority Critical patent/JPS60127766A/en
Publication of JPS60127766A publication Critical patent/JPS60127766A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To employ a back surface pressurizing groove and to obtain high reliability for high pressure by selectively forming a piezoelectric resistance element on one surface of a semiconductor crystal substrate, forming an annular with film, bonding the thick portion of the substrate to a base which is opened with a pressure applying hole, and communicating the hole with a thin portion. CONSTITUTION:When a pressure P is applied to a pressure applying hole 6, the pressure P is transmitted through the hole 6 and a pressure guiding slot 9 to a recess 8. Accordingly, a thin portion 3 is deformed, the resistance value of a piezoelectric element 7 is varied, thereby obtaining an electric output proportional to the pressure P. Since the center of a diaphragm 1 is secured to a base 5 to increase the rigidity of the diaphragm, the maximum stress sigmaa of the bonding surface is reduced as compared with a conventional thin central shape, and when a borosilicate glass which has substantially equal thermal expansion to the silicon is used for the base 5, the strength of the glass is weak, and it is particularly advantageous, thereby performing the increase in the pressure.

Description

【発明の詳細な説明】 本発明は、建設機械の油圧検出用等に用いられる圧力セ
ンサに係り、特に半導体をダイアフラムとした半導体圧
力センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure sensor used for detecting oil pressure of construction machinery, and more particularly to a semiconductor pressure sensor using a semiconductor as a diaphragm.

従来より、半導体からなるダイアフラムに薄肉の起歪部
を設け、この起歪部にピエゾ抵抗素子全形成した半導体
圧力センサが提供されている。このような半導体圧力セ
ンサにおいては、その測定範囲が数10−100気圧と
^耐圧になると、出力特性と同時に谷部の強度が問題と
なってくる。
Conventionally, semiconductor pressure sensors have been provided in which a diaphragm made of a semiconductor is provided with a thin strain-generating portion, and a piezoresistive element is entirely formed on the strain-generating portion. In such a semiconductor pressure sensor, when the measurement range becomes several tens to 100 atmospheres, the strength of the valley becomes a problem as well as the output characteristics.

特に、ダイアフラムの表面に形成したピエゾ抵抗素子が
被測定流体中にある場合、被測定流体中の酸やアルカリ
等によってピエゾ抵抗素子が劣化するおそれがあるので
保護構造を必要とするが、かかる保護構造を高耐圧構造
としなくてはならないため、低コスト化が困難になると
いう問題がある。
In particular, when a piezoresistive element formed on the surface of a diaphragm is placed in a fluid to be measured, a protective structure is required because the piezoresistive element may be deteriorated by acid, alkali, etc. in the fluid to be measured. Since the structure must have a high voltage resistance structure, there is a problem in that it is difficult to reduce costs.

そこで、このような問題を解決するために、ダイアフラ
ムの裏面に接合したベースに圧力導入用の穴會芽設し、
被測定流体音この穴からピエゾ抵抗素子の裏面へ導く裏
面加圧構造の生得体圧力センサが開発されている。
Therefore, in order to solve this problem, we created a hole for pressure introduction in the base bonded to the back of the diaphragm.
An innate pressure sensor with a back-pressure structure has been developed in which the sound of the fluid to be measured is guided from this hole to the back surface of the piezoresistive element.

第1図はかかる袋面加圧構造ケ採用した従来の半導体圧
力センサの一例を示す平面図、第2図(a)は応力分布
図、第2図(b)は第1図に示す半導体圧力センサの断
面図である。これらの図において、平板状のシリコン単
結晶からフよるダイアフラム1は、裏面に平面形状が円
形の凹部2を設けたことによって形成された薄肉部3と
、この薄肉部3の周囲に形成された厚肉部4とを有して
いる。このダイアフラムlの厚肉部4の下面−は、シリ
コンと熱膨張係数がほぼ等しいベース5に固定され、こ
のベース5の中心部には圧力tダイアフラムlに導くた
めの圧力導入穴6が穿設されている。また、ダイアフラ
ムlの主表面の前記薄肉部3領域内の周縁近傍には、半
径方向と接線方向に一双させた2組のピエゾ抵抗系子7
が拡散法またはイオン打込法により合計4個形成され、
これらピエゾ抵抗素子7はブリッジ結線されている。
Figure 1 is a plan view showing an example of a conventional semiconductor pressure sensor employing such a bag surface pressure structure, Figure 2 (a) is a stress distribution diagram, and Figure 2 (b) is the semiconductor pressure shown in Figure 1. FIG. 3 is a cross-sectional view of the sensor. In these figures, a diaphragm 1 made of a flat silicon single crystal has a thin part 3 formed by providing a recess 2 with a circular planar shape on the back surface, and a diaphragm 1 formed around this thin part 3. It has a thick part 4. The lower surface of the thick part 4 of this diaphragm l is fixed to a base 5 whose coefficient of thermal expansion is approximately equal to that of silicon, and a pressure introduction hole 6 is bored in the center of this base 5 to lead the pressure t to the diaphragm l. has been done. Further, near the periphery of the thin wall portion 3 region of the main surface of the diaphragm l, there are two sets of piezoresistive elements 7 arranged in a radial direction and a tangential direction.
A total of 4 are formed by diffusion method or ion implantation method,
These piezoresistive elements 7 are bridge-connected.

このように構成された半導体出力センサにおいて、第2
図(b)に示すようにベース5の圧力導入穴6に被測定
圧力Pが印加されると、この印加圧力Pによって起歪部
である薄肉部3が変形し、そのためピエゾ抵抗素子7の
抵抗値が変化して印加圧力Pに比例した電気出力を得る
ことができる。第2図(a) &!、ダイアフラムlと
ベース5との接合面に生じる応力分布状態を示すもので
あるが、この図に示すように、薄肉部3と厚内部4の境
界部分に最大応力σaが発生する。
In the semiconductor output sensor configured in this way, the second
When a measured pressure P is applied to the pressure introduction hole 6 of the base 5 as shown in FIG. By changing the value, an electrical output proportional to the applied pressure P can be obtained. Figure 2 (a) &! , which shows the state of stress distribution occurring at the joint surface between the diaphragm l and the base 5. As shown in this figure, the maximum stress σa occurs at the boundary between the thin wall portion 3 and the thick interior portion 4.

しかしながら、上述しtこ従来の半導体出力センサでは
、印加圧力Pが数10〜100気圧と篩土になると前記
最大応力σaが著しく大きくなり、ベース5に大きな引
張応力が発生する。このベース5にはシリコンとほぼ等
しい熱膨張係敷金もつホウケイ酸ガラスが用いられるが
、その強度は弱いため、数10〜100気圧の高圧下で
はダイアフラム1とベース5の接合面に発生する応力に
よってベース5が破壊するという欠点がめった。
However, in the above-mentioned conventional semiconductor output sensor, when the applied pressure P becomes a sieve of several tens to 100 atmospheres, the maximum stress σa becomes significantly large, and a large tensile stress is generated in the base 5. This base 5 is made of borosilicate glass, which has a thermal expansion bond almost equal to that of silicon, but its strength is weak, so under high pressures of several tens to 100 atmospheres, the stress generated at the joint surface of the diaphragm 1 and the base 5 The drawback was that base 5 was often destroyed.

本発明の目的は、上述した従来技術の欠点會除き、低コ
スト化に有利な裏面加圧栴造娑抹用でき。
The object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a back-pressure sanding machine which is advantageous in terms of cost reduction.

かつ高圧に対する信頼性の高い半導体圧力士ンサr提供
するにある。
The present invention also provides a highly reliable semiconductor pressure sensor for high pressure.

この目的全達成するために、本発明は、半導体結晶から
なる基板の一方の面にピエゾ抵抗系子を選択的に形成し
、該基板の他面に中央部と外周部が厚肉部となるように
塊状の薄肉部【形成し、出力導入大音穿設したベースに
前記基板の厚肉部を接合すると共に、該圧力尋人穴と前
記薄肉部とを連通させたことt%可とする。
In order to achieve all of these objectives, the present invention selectively forms a piezoresistive element on one side of a substrate made of semiconductor crystal, and thickens the center and outer periphery on the other side of the substrate. It is possible to join the thick part of the board to the base which has been formed with a massive thin part and drilled with a loud output, and to communicate the pressure hole and the thin part. .

以下、本発明の実施例を図面に基づき説明する。Embodiments of the present invention will be described below based on the drawings.

第3図は本発明による半導体圧力センサの一実施例を示
す平面図、第4図(a)は応力分布図、第4図(b)は
第3図に示1−半導体圧力センサの断面図であり、8は
凹陥部、9は圧力導入用溝であって、第1図および第2
図に対応する部分には同一符号を付けである。
3 is a plan view showing an embodiment of the semiconductor pressure sensor according to the present invention, FIG. 4(a) is a stress distribution diagram, and FIG. 4(b) is a sectional view of the semiconductor pressure sensor shown in FIG. 3. 8 is a concave portion and 9 is a pressure introduction groove, as shown in FIGS. 1 and 2.
Parts corresponding to the figures are given the same reference numerals.

平板状のシリコン単結晶からなるダイアフラムlは、そ
の裏面において、中央部と外周部が厚肉部4となるよう
に例えば円環状の凹陥部8が形成され、この凹陥部8に
対応して円環状の薄肉部3が形成されている。このダイ
アフラムlの形状は例えば厚内部板厚0.18rom、
外周形状は1辺が3nlnl角である。ダイアフラムl
の主表面には、前記薄肉部3が形成されている領域にお
いて4個のピエゾ抵抗系子7が拡散形成されており、こ
のうち1組は接線方向に、他の1組は半径方向に一致す
るように配置さ庇でいる。これら各ピエゾ抵抗素子7は
フルブリッジに組まれるようになっており、それらはダ
イアフラムlの表面に蒸着したアルミニウム電極(図示
せず)等によって外部に引き出されている。
A diaphragm l made of a flat silicon single crystal is formed with, for example, an annular recess 8 on its back surface so that the central part and the outer periphery are the thick part 4. An annular thin wall portion 3 is formed. The shape of this diaphragm l is, for example, an internal plate thickness of 0.18 rom,
One side of the outer peripheral shape is 3nlnl angle. diaphragm l
Four piezoresistive elements 7 are diffused and formed on the main surface in the region where the thin wall portion 3 is formed, one set of which coincides in the tangential direction and the other set coincides with the radial direction. The eaves are arranged to look like this. Each of these piezoresistive elements 7 is assembled into a full bridge, and they are drawn out to the outside by an aluminum electrode (not shown) deposited on the surface of the diaphragm l.

前記ダイアフラム1は、凹陥部8の形成領域における薄
肉部3にあって起歪部を構成し、この起歪部に画された
外周が外周部厚肉部4aとなり、また内周が中央部厚肉
部4bとなっており、この中央部厚肉s4bの中心位置
から前記凹陥部8にかけて圧力導入用溝9が形成されて
いる。この圧力導入用溝9と凹陥部8は、例えばアルカ
リエツチング法を用いて形成するようにすれは同時形成
が可能である。
The diaphragm 1 constitutes a strain-generating portion in the thin-walled portion 3 in the region where the concave portion 8 is formed. A pressure introduction groove 9 is formed from the center position of the central thick wall s4b to the recessed portion 8. The pressure introducing groove 9 and the concave portion 8 can be formed simultaneously, for example, by using an alkali etching method.

ベース5は例えばホウケイ酸ガラスが用いられ、このベ
ース5の中心位置には圧力尋人穴6が穿設されている。
The base 5 is made of, for example, borosilicate glass, and a pressure hole 6 is bored in the center of the base 5.

前記ダイアフラムlの外周部厚内部4aと中央部厚肉g
4bは、このベース5の主表面に低融点カラス等の接着
剤r用いて接合され、ベース5の圧力導入穴6とダイア
フラム1の凹陥部8とは圧力尋人用溝9を介して連通さ
れる。
The outer circumference thickness inside 4a and the central thickness g of the diaphragm l
4b is bonded to the main surface of the base 5 using an adhesive such as low melting point glass, and the pressure introduction hole 6 of the base 5 and the recessed part 8 of the diaphragm 1 are communicated via a pressure gauge groove 9. Ru.

このように構成された半導体圧力センサeこおいて、圧
力導入穴6に圧力Pが印加されると、この圧力Pは圧力
尋人穴6および圧力尋人用(?79 k介して凹陥部8
に伝達されるので薄肉部3が変形し、ピエゾ抵抗素子7
の抵抗値が変、化して、圧力Pに比例した眠気出力を得
ることができる。第4図(a)は、ダイアフラム1とベ
ース5との接合面に生じる応力分布状態r示しでいるが
、中央部tベース5に固定してダイアフラムの剛性金高
めているため、従来の中央薄肉杉に比べて接合面の最大
応力σaが低減されていることがわかる。このことは、
ベース5にシリコンとほぼ熱膨張の等しいホウ勿イ酸ガ
ラスを用いる場合には、ホウケイばガラスの強度が弱い
ため特に有利であり、これにより畠王化が可能となる。
In the semiconductor pressure sensor e configured in this manner, when pressure P is applied to the pressure introduction hole 6, this pressure P is transferred to the pressure hole 6 and the recessed portion 8 through the pressure hole 6 and the pressure hole 6.
, the thin wall portion 3 deforms, and the piezoresistive element 7
The resistance value changes, and a drowsiness output proportional to the pressure P can be obtained. FIG. 4(a) shows the stress distribution state r occurring at the joint surface between the diaphragm 1 and the base 5. Since the center part t is fixed to the base 5 to increase the rigidity of the diaphragm, it is different from the conventional thin center part. It can be seen that the maximum stress σa at the joint surface is reduced compared to cedar. This means that
It is particularly advantageous to use borosilicate glass, which has almost the same thermal expansion as silicon, for the base 5, since borosilicate glass has a weak strength, and this makes it possible to use borosilicate glass.

なお5本実施例においては、圧力4本尺6tベース5の
中央部に!7!設してなるためベース5の加工コストを
低減でき、しかも圧力導入用溝9と凹陥部8とにアルカ
リエツチング法等により一体形成したため、低コスト化
において非常に有利なものとなる。
In addition, in this embodiment, the pressure is applied to the center of the 4-bar 6-t base 5! 7! Since the pressure introducing groove 9 and the concave portion 8 are integrally formed by an alkali etching method or the like, it is very advantageous in terms of cost reduction.

第5図は本発明による半導体圧力センサの他の実施例を
本す平向図であり、第3図に対応する部分には同一符号
を付けである。本実施例が第1の実施例と異なる点は、
圧力導入用溝9會中央部厚肉部4bの中心位置から各ピ
エゾ抵抗素子7方向に向けて放射状に4本形成したこと
で必る。このように圧力導入用前9の数r増加てれは、
弔1笑施例における効果ケそのまま保持し、さらに、火
数本の圧力導入用溝9により、被6(1j定流体中の異
物による目詰り全防止することができる。
FIG. 5 is a plan view of another embodiment of the semiconductor pressure sensor according to the present invention, and parts corresponding to those in FIG. 3 are given the same reference numerals. The difference between this embodiment and the first embodiment is as follows.
This is possible because four pressure introducing grooves 9 are formed radially from the central position of the central thick portion 4b toward the direction of each piezoresistive element 7. In this way, the number r of 9 before pressure introduction increases.
The effects of the first embodiment are maintained as they are, and furthermore, the several pressure introduction grooves 9 completely prevent clogging due to foreign matter in the constant fluid.

第6図は本発明による半導体圧力センサのさらに他の実
施例を示す平面図、第7図は断面図であり、第3図およ
び第4図に対応する部分には同一符号ケ付けておる。本
芙元側が上記した第lおよび第2の実施例と異なる点は
、出力尋人穴6?r:′ベース5の中心から偏倚した位
fit(K弁膜し、この出力導入穴6tダイアフラム1
の凹陥部8vc直桜連通させて圧力導入用jg 9 ’
E鳴略したことである。
FIG. 6 is a plan view showing still another embodiment of the semiconductor pressure sensor according to the present invention, and FIG. 7 is a sectional view, in which parts corresponding to FIGS. 3 and 4 are given the same reference numerals. The difference between this embodiment and the above-mentioned first and second embodiments is that the output is 6? r: 'Fit the position offset from the center of the base 5 (K valve membrane, this output inlet hole 6t diaphragm 1
The concave part 8VC is connected directly to the pressure introduction jg 9'
E is omitted.

このようにすれば、被測定流体中の@物による目詰りを
防止することができ、さらに、中央部厚肉部4bとベー
ス5の玉表面との接合面稙が大きくなるので、ダイアフ
ラムlの剛性*−tm aめることができる。
In this way, it is possible to prevent clogging caused by @objects in the fluid to be measured, and furthermore, since the joint surface between the central thick part 4b and the ball surface of the base 5 becomes large, the diaphragm l Stiffness *-tm a can be reduced.

以上説明したように、本発明によれば、被d111定流
体をベースの圧力導入穴からピエゾ抵抗集子の裏面へ導
く裏面加圧構造を採用できるので低コスト化に有利であ
り、しかもダイアフラムとベースとの接合面に生じる応
力全低減できるので、高圧用の半導体圧力センサを提供
できる。
As explained above, according to the present invention, it is possible to adopt a back pressure structure that guides the d111 constant fluid from the pressure introduction hole of the base to the back surface of the piezoresistive collector, which is advantageous for cost reduction. Since the stress generated at the joint surface with the base can be completely reduced, a semiconductor pressure sensor for high pressure can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の半導体出力センサの一例を
示す構成図で、第1図は平向図、第2図(a)は応力分
布図、第2図(b)は断面図、第3図および第4図は本
発明による半導体圧力センサの編1実施例を示す構成図
で、第3図は平面図、第4図(a)は応力分布図、第4
図(b)は断面図、第5図は本発明による半導体圧力セ
ンサの第2笑施例を示す平面図、第6図および第7図は
本発明による半導体圧力センサの第3実施例を示す構成
図で、第6図は平面図、第7図は断面図である。 l・・・・・・ダイアフラム、3・・・・・・薄肉部、
4a・・・・・・外周部厚肉@s、4b・・・・・・中
央部厚肉部、5・・・・・・ベース、6・・・・・・圧
力尋人人、7・・・・・・ピエゾ抵抗素子、8・・・・
・・凹陥部、9・・・・・・圧力導入用溝。 第1図 7 第2図 第3図 第4図 第6図 7 第7図
1 and 2 are configuration diagrams showing an example of a conventional semiconductor output sensor, in which FIG. 1 is a plan view, FIG. 2(a) is a stress distribution diagram, and FIG. 2(b) is a cross-sectional view. 3 and 4 are configuration diagrams showing the first embodiment of the semiconductor pressure sensor according to the present invention, in which FIG. 3 is a plan view, FIG. 4(a) is a stress distribution diagram, and FIG.
Figure (b) is a sectional view, Figure 5 is a plan view showing a second embodiment of the semiconductor pressure sensor according to the invention, and Figures 6 and 7 are a third embodiment of the semiconductor pressure sensor according to the invention. In the configuration diagrams, FIG. 6 is a plan view and FIG. 7 is a sectional view. l...Diaphragm, 3...Thin wall part,
4a...Thick wall at outer periphery @s, 4b...Thick wall at center, 5...Base, 6...Pressure base, 7. ...Piezoresistance element, 8...
... Concave portion, 9... Pressure introduction groove. Figure 1 7 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 半導体結晶からなる基板の一方の面にピエゾ抵抗素子?
!−選択的に形成し、該基板の他面に中央部と外周部が
厚肉部となるように環状の薄肉部を形成し、圧力導入穴
を穿設したベースに前記基板の厚肉部を接合すると共に
、該圧力導入穴と前記薄肉部と?]l一連通させたこと
t%敵とする半導体圧力センサ。
A piezoresistive element on one side of a substrate made of semiconductor crystal?
! - selectively forming an annular thin part on the other surface of the substrate so that the central part and the outer peripheral part are thick parts, and attaching the thick part of the board to the base having a pressure introduction hole. At the same time, the pressure introduction hole and the thin wall portion are connected to each other. ]l Semiconductor pressure sensor with t% of connections.
JP23499783A 1983-12-15 1983-12-15 Semiconductor pressure sensor Pending JPS60127766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23499783A JPS60127766A (en) 1983-12-15 1983-12-15 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23499783A JPS60127766A (en) 1983-12-15 1983-12-15 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS60127766A true JPS60127766A (en) 1985-07-08

Family

ID=16979526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23499783A Pending JPS60127766A (en) 1983-12-15 1983-12-15 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS60127766A (en)

Similar Documents

Publication Publication Date Title
US4680606A (en) Semiconductor transducer
US4103273A (en) Method for batch fabricating semiconductor devices
US3739315A (en) Semiconductor transducers having h shaped cross-sectional configurations
JPH0264430A (en) Semiconductor pressure converter
US4852408A (en) Stop for integrated circuit diaphragm
US6066882A (en) Semiconductor pressure detecting device
JPS61500633A (en) pressure transducer
US4825684A (en) Method of testing semiconductor pressure sensor
US4861420A (en) Method of making a semiconductor transducer
JPH03289528A (en) Semiconductor pressure sensor and manufacture thereof
JPS60127766A (en) Semiconductor pressure sensor
JPH11304612A (en) Semiconductor pressure detector
JP2001332746A (en) Method for manufacturing semiconductor pressure sensor
JPH11230845A (en) Semiconductor pressure detection device
JP2516211B2 (en) Semiconductor pressure sensor
JPH0269630A (en) Semiconductor pressure sensor
JPS6318231A (en) Semiconductor pressure sensor
JPS6079242A (en) Pressure converter
JPH01114731A (en) Semiconductor pressure transducer
JPS6141252Y2 (en)
JPH0688762A (en) Semiconductor pressure sensor
JPH0341777A (en) Compound functional high differential pressure sensor
JPH11223568A (en) Semiconductor pressure-detecting device
JPH08240494A (en) Pressure sensor and its manufacture
JPS5821380A (en) Manufacture of semiconductor pressure transducer