JPS60127391A - Gasifier of jet flow layer - Google Patents

Gasifier of jet flow layer

Info

Publication number
JPS60127391A
JPS60127391A JP23687183A JP23687183A JPS60127391A JP S60127391 A JPS60127391 A JP S60127391A JP 23687183 A JP23687183 A JP 23687183A JP 23687183 A JP23687183 A JP 23687183A JP S60127391 A JPS60127391 A JP S60127391A
Authority
JP
Japan
Prior art keywords
slag
water
differential pressure
water tank
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23687183A
Other languages
Japanese (ja)
Inventor
Tomohiko Miyamoto
知彦 宮本
Shuntaro Koyama
俊太郎 小山
Atsushi Morihara
淳 森原
Shinji Tanaka
真二 田中
Jinichi Tomuro
戸室 仁一
Makoto Nishimura
西村 真琴
Sadao Takahashi
高橋 貞夫
Hiroshi Miyadera
博 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP23687183A priority Critical patent/JPS60127391A/en
Publication of JPS60127391A publication Critical patent/JPS60127391A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To discharge the fittest slag without being influenced by kinds of coal and operating conditios, by setting a flowing water tank between a gasifying reactor and a hopper, measuring pressure difference in the water tank at three positions to find the height of slag. CONSTITUTION:Water is sent from the water feed pipe 18 to the flowing water tank 15, and the water tank 3' at the bottom of the gasifying reactor 1 is filled with water to the top. Water is circulated through the liquid cyclone 19, the water pipe 20, and the cooler 21, and the water gauge of the water tank 3' is linked to the pipe 18 to carry out control of liquid level. The gate valves 10' and 11' of the hopper 4' are closed, the waste pipe 7' is opened, the hopper 4' is charged with water from the water pipe 5', the waste pipe 7' is closed. When the hopper has the same pressure as that of the water tank 15, the water pipe 5' is closed. At this stage when a gasficiation reaction in the reactor 1 is started, the slag 14 is dropped, stored in the water tank 15, the rise in pressure difference of the pressure difference oscillators 22 and 23 is subjected to CPU treatment by the slag discharge controller 27, the height of slag layer and the amount of slag are calculated. When the slag layer reaches the set height, the slag is dropped to the hopper 4'.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、石炭の噴流層ガス化装置、特にガス化時に副
生ずるスラグを排出しつつ行なわれる石炭の噴流層ガス
化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a spouted bed gasification apparatus for coal, and particularly to a spouted bed gasification apparatus for coal that is carried out while discharging slag produced as a by-product during gasification.

〔発明の背景〕[Background of the invention]

石炭を微粉砕し、高温、高圧下において水蒸気と酸素、
あるいは空気でガス化し、可燃性のガスを得る噴流層ガ
ス化方法では、スラグすなわちガス化反応時に石炭中に
含まれている灰分が溶融した溶融灰を、ガス化反応器の
壁に付着させ流下させて、スラグタップと称される小孔
から水槽内に滴下冷却させ、水槽下部に滴下スラグを沈
降させて、底部に連結している抜き出し口より系外吟排
出する方法によりスラグをガス化系から分離して排出し
ている。第1図は従来用いられている噴流層ガス化装置
の要部の70−図で、lはガス化反応器、2はスラグタ
ップ、3はガス化反応器底部水槽、4はホッパ、5は給
水管、6は水噴出管、7は排水管、8.9はバルブ、1
0.11は仕切シバルブ、12は固液分離器、13は固
体輸送器を示している。すなわち、スラグ14はガス化
反応器底部水槽3で冷却固化し、ホッパ4内に沈降した
後排出される。
Finely pulverized coal is heated to steam and oxygen under high temperature and pressure.
Alternatively, in the spouted bed gasification method, in which flammable gas is obtained by gasification with air, slag, i.e., molten ash made by melting the ash contained in the coal during the gasification reaction, is deposited on the walls of the gasification reactor and flows down. The slag is then cooled by dripping into a water tank through a small hole called a slag tap, and the dripping slag is allowed to settle at the bottom of the tank, and then discharged from the system through an outlet connected to the bottom of the tank. It is separated and discharged. Figure 1 is a 70-diagram showing the main parts of a conventionally used spouted bed gasifier, where l is a gasification reactor, 2 is a slag tap, 3 is a water tank at the bottom of the gasification reactor, 4 is a hopper, and 5 is a Water supply pipe, 6 is water jet pipe, 7 is drain pipe, 8.9 is valve, 1
0.11 is a partition valve, 12 is a solid-liquid separator, and 13 is a solid transporter. That is, the slag 14 is cooled and solidified in the bottom water tank 3 of the gasification reactor, settles in the hopper 4, and is then discharged.

この場合のスラグの排出量はスラグタップから落下する
スラグ量にみあった量であればよいので、従来は石炭中
に含まれる灰分の量、処理する石炭の景、ガス化炉内で
のスラグ付着率から算出されるスラグ量を基準にして、
スラグの排出頻度を決定していた。しかし、この方法は
処理する石炭種が同じ場合にはタイマ等を用いて容易に
自動排出シーケンスを組むことができるが、石炭の種類
が変化し石炭中に含まれる灰分の量が変ったり、操業条
件の変更によりスラグの炉内での付着率が変化した場合
には、最適なスラグの自動排出が困難であった。
In this case, the amount of slag discharged is sufficient as long as it matches the amount of slag that falls from the slag tap. Based on the amount of slag calculated from the adhesion rate,
The frequency of slag discharge was determined. However, with this method, if the type of coal to be treated is the same, it is possible to easily set up an automatic discharge sequence using a timer, etc. However, if the type of coal changes, the amount of ash contained in the coal changes, or the When the rate of slag adhesion in the furnace changes due to changes in conditions, it is difficult to automatically discharge the slag in an optimal manner.

〔発明の目的〕[Purpose of the invention]

本発明は、石炭の種類、操業条件に左右されることなく
、最適にスラグを排出することのできる石炭の噴流層ガ
ス化装置を提供することを目的とするものである。
An object of the present invention is to provide a spouted bed gasification apparatus for coal that can optimally discharge slag regardless of the type of coal or operating conditions.

〔発明の概要〕 本発明は、石炭をガス化し可燃性ガスを発生させるガス
化反応器と、該ガス化反応器の下部にバルブを介して設
けられ該ガス化反応器より排除されたガス化の際発生す
るスラグを一時貯蔵するホッパとを有する噴流層ガス化
装置において、前記ガス化反応器と前記ホッパとの間に
前記スラグが落下堆積する流動水槽と、該流動水桶内の
底部を含め高さの異なる三個所の位置の間の差圧を・測
定する差圧測定装置と、該差圧測定装置の測定結果に基
づいて前記バルブを用いて前記流動水槽内のスラグを前
記ホッパに移動させる装置とを有することを特徴とする
ものである。
[Summary of the Invention] The present invention relates to a gasification reactor that gasifies coal to generate combustible gas, and a gasification reactor provided through a valve at the bottom of the gasification reactor to be removed from the gasification reactor. A spouted bed gasification apparatus having a hopper for temporarily storing slag generated during the process, including a fluidized water tank in which the slag falls and accumulates between the gasification reactor and the hopper, and a bottom part of the fluidized water tank. A differential pressure measuring device that measures the differential pressure between three positions at different heights; and based on the measurement results of the differential pressure measuring device, the slag in the flowing water tank is moved to the hopper using the valve. The present invention is characterized in that it has a device for causing

ガス化反応器内に供給された石炭と水蒸気、酸素は器内
で反応し、1600〜2600Cの高温となF)、C0
1Hz 、C(h等のガスと石炭灰分が溶融したスラグ
になる。その発生割合は石炭種によシ種々変化し大略の
スラグ副生量合は6〜50−程度と多く、この副生スラ
グを安定に系外に排出することができな込とガス化反応
器内にスラグがだまり、操業は不能になる。
The coal, steam, and oxygen supplied into the gasification reactor react within the reactor, resulting in a high temperature of 1600 to 2600C.F), C0
1 Hz, C (h, etc.) and coal ash melt to form slag.The generation rate varies depending on the type of coal, and the approximate amount of slag by-product is about 6 to 50. If slag cannot be stably discharged out of the system, slag will accumulate inside the gasification reactor, making operation impossible.

本発明は、炭種が変ってスラグ副生量が変化しても流動
水槽で常時受は入れ量を測定可能とするもので、従来の
噴流層ガス化装置のガス化反応器とホッパとの間に流動
水槽を設け、流動水槽底部から水を流入させ、流動水槽
内の上下の差圧を二個所において測定し、スラグ高さを
測定し、その測定結果に基づきスラグの自動排除を行う
もので、これによって所期の目的を達成可能とするもの
である。
The present invention makes it possible to constantly measure the amount of slag by-product in the fluidized water tank even if the amount of slag byproduct changes due to changes in the type of coal. A fluidized water tank is installed in between, water flows in from the bottom of the fluidized water tank, the differential pressure between the upper and lower sides of the fluidized water tank is measured at two locations, the slag height is measured, and the slag is automatically removed based on the measurement results. This makes it possible to achieve the intended purpose.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の噴流層ガス化装置の一実施例の要部の
フロー図で、第1図と同一部分には同一符号を付し、構
造はほぼ同一であるが幾分異なる使い方をしている部分
には′ (ダッシュ)を付しである。15はガス化反応
器底部水槽3′とホッパ4′上部のバルブ8′との間に
設けられている流動水槽、16は流動水槽15底部に開
口する水噴出管、17は水循環管、18は水循環管17
に接続する補給水供給管、19は後流に水中の固体除去
フィルタ(図示せず)を伴う液体サイクロン、20は水
管、21は後流に循環のだめのポンプ(図示せず)が設
置されるクーラ、22及び23は流動水槽15の側壁の
底部とともさの異なる二個所の位置に設けられている差
圧取出口24.25及び26の間に設けられている差圧
発信器、27は差圧発信器22及び23の測定結果に基
づきバルブS/、9/その他の制御を行うスラグ排出制
御装置(詳皿なフローに図示を省略してあΣ)を示し、
5′はホッパ4′に設けられている補助水給水管、6′
は同じく補助水噴出管を示している。
Figure 2 is a flow diagram of the main parts of an embodiment of the spouted bed gasifier of the present invention. The same parts as in Figure 1 are given the same reference numerals, and although the structure is almost the same, the usage is somewhat different. The parts that are marked are marked with a dash (′). Reference numeral 15 denotes a fluidizing tank provided between the bottom water tank 3' of the gasification reactor and the valve 8' at the top of the hopper 4', 16 a water jet pipe opening at the bottom of the fluidizing tank 15, 17 a water circulation pipe, and 18 a water circulating pipe. Water circulation pipe 17
19 is a hydrocyclone with an underwater solid removal filter (not shown) in the wake, 20 is a water pipe, and 21 is a circulation pump (not shown) installed in the wake. Coolers 22 and 23 are differential pressure transmitters provided between the bottom of the side wall of the fluidized water tank 15 and differential pressure outlets 24 and 25 and 26 provided at two different positions, and 27 is a differential pressure transmitter. A slag discharge control device (not shown in the detailed flowchart) that controls valves S/, 9/and others based on the measurement results of pressure transmitters 22 and 23 is shown,
5' is an auxiliary water supply pipe provided in hopper 4', and 6' is
Also shows the auxiliary water spout pipe.

以下、この実施例を用いたスラグの排出方法を原理とと
もに説明する。ガス化反応器1内で副生じたスラグ14
はスラグタップ2孔から滴下しガス化反応器底部水槽3
′で急冷される。急冷されたスラグ14は流動水内15
内を沈降しviL urIl水伯1水内15内られる。
The slag discharge method using this embodiment will be explained below along with its principle. Slag 14 produced as a by-product in the gasification reactor 1
is dripped from the slag tap 2 hole to the bottom water tank 3 of the gasification reactor.
’ is rapidly cooled. The rapidly cooled slag 14 is placed in flowing water 15
It settles inside the water and enters the water within 15 minutes.

流動水槽15には流す山水槽15の底部に水噴出管16
が設けられ、水循環管17を介して水が供給され、底部
から上部に向けてゆるやかな水流動を起こしており、水
噴出管16から噴出された水は流動水槽15内を上引、
シガス化反応器底部水槽3′、液体サイクロ、/19を
流通し、さらに水管20、クーラ21、水循環管17を
通る循環系を流れる。
The flowing water tank 15 has a water spout pipe 16 at the bottom of the flowing mountain water tank 15.
is provided, water is supplied through the water circulation pipe 17, causing a gentle flow of water from the bottom to the top, and the water jetted from the water spout pipe 16 is drawn up inside the flowing water tank 15.
It flows through the water tank 3' at the bottom of the sigasification reactor, the liquid cyclone/19, and further flows through the circulation system passing through the water pipe 20, the cooler 21, and the water circulation pipe 17.

この際、流動水槽15の底部より供給され流動水槽15
内に水の上昇流れを作る水の上昇流れ速度は、スラグ粒
子径に対し終端速度以下とし、スラグの水による同伴を
防止する範囲とする。この水の上昇流れは流動水槽15
内に差圧を生じるが、流動水槽重5の側部には下部に差
圧発振器22、上部に差圧発信器23が設置されており
、流動水槽15内の差圧を測定することができる。
At this time, the fluidized water tank 15 is supplied from the bottom of the fluidized water tank 15.
The upward flow velocity of the water that creates the upward flow of water within the slag should be below the terminal velocity relative to the slag particle diameter, and within a range that prevents entrainment of the slag by water. The upward flow of this water is in the fluidized water tank 15.
A differential pressure oscillator 22 is installed at the bottom and a differential pressure transmitter 23 is installed on the side of the fluidized water tank 5, and the differential pressure inside the fluidized water tank 15 can be measured. .

いま、流動水槽15内が水のみ循環している場合の差圧
発信器22による差圧がpH差圧発信器23による差圧
がP2であるのに対して、スラグが滴下され、スラグが
沈積している場合、すなわち充填層状態にある場合には
、差圧発信器22の麦圧はに−U、・Le−f(ε)と
なり、流動層状態であればに−L、 ・(ρ、−ρり・
f(ε)となる。
Now, when only water is circulating in the fluidized water tank 15, the differential pressure measured by the differential pressure transmitter 22 is P2, and the differential pressure determined by the pH differential pressure transmitter 23 is P2, but slag is dropped and the slag is deposited. In other words, in a packed bed state, the barley pressure of the differential pressure transmitter 22 is −U, ·Le−f(ε), and in a fluidized bed state, −L, ·(ρ , −ρri・
f(ε).

ここに、Kは定数、Ullけ水流速、Le/dスラグ充
填層高、f(ε)はスラグの充填率、ρ、はスラグ密度
、ρtは水密度である。従って、この差圧発信器22の
二個所の差圧取出口24と25との間の距離tが既知で
あれば、この差圧発信器22における差圧は、充填層、
流動層の状態をとわず、この差圧発信器22の上部差圧
取出口25以上にスラグかたまった場合には、ρBがこ
の流動水槽15内のスラグの密度を示すことになる。換
言すれば、差圧発信器22の上部差圧取出口25−以上
にスラグかたまった場合には、差圧発信器22の差圧信
号Pから単位高さ当りの粒子重量を知ることができ、こ
れは充填層、流動層側れの場合においても成立する。
Here, K is a constant, Ull water flow rate, Le/d slag packed bed height, f(ε) is slag filling rate, ρ is slag density, and ρt is water density. Therefore, if the distance t between the two differential pressure outlets 24 and 25 of this differential pressure transmitter 22 is known, the differential pressure at this differential pressure transmitter 22 will be
Irrespective of the state of the fluidized bed, if slag has accumulated above the upper differential pressure outlet 25 of the differential pressure transmitter 22, ρB indicates the density of the slag in the fluidized water tank 15. In other words, if slag has accumulated above the upper differential pressure outlet 25- of the differential pressure transmitter 22, the particle weight per unit height can be determined from the differential pressure signal P of the differential pressure transmitter 22, This holds true even in the case of a packed bed or a fluidized bed.

一方、差圧発信器23はこの差圧取出口25以上にスラ
グかたまるまでは差圧はP2であるが、それ以上にスラ
グかたまると差圧は上昇してP3と々る。この差圧発信
器23による差圧P3と差圧発信器22による差圧Pが
まると、流動水槽15内のスラグ高さhはh=t+(t
/P)XPsによってめられる。すなわち、流動水槽1
5内のスラグ沈積高さは差圧発信器22及び23により
常時検知可能であり、炭種や操業条件に無関係にスラグ
の滴下量を知ることが可能である。そしてこの差圧発信
器22及び23からの差圧信号をスラグ排出制御装置2
7に組込みパルプsl、ra/を用いてスラグの自動排
出が可能である。
On the other hand, the differential pressure of the differential pressure transmitter 23 is P2 until the slag has accumulated above the differential pressure outlet 25, but when the slag has accumulated further, the differential pressure increases and reaches P3. When the differential pressure P3 generated by the differential pressure transmitter 23 and the differential pressure P generated by the differential pressure transmitter 22 are equalized, the slag height h in the flowing water tank 15 is h=t+(t
/P) Found by XPs. That is, fluidized water tank 1
The height of the slag deposited in the slag 5 can be constantly detected by the differential pressure transmitters 22 and 23, and it is possible to know the amount of slag dripping regardless of the type of coal or operating conditions. Then, the differential pressure signals from the differential pressure transmitters 22 and 23 are transmitted to the slag discharge control device 2.
Automatic discharge of the slag is possible using the built-in pulp sl, ra/.

次に、この実施例を用いたスラグの自動排出方法を具体
的に説明する。
Next, a method for automatically discharging slag using this embodiment will be specifically explained.

まず噴流層ガス化装置によるガス化運転前にパルプ8′
及び9′を閉じ、補給水供給管18から流動水槽15内
に水を充満してガス化反応器底部水槽3′の上面1で充
満させ、水を液体サイクロン19、水管20、クーラ2
1を流通して循環させる。水が循環可能になった後ガス
化反応器底部水槽3′の水面計を補給水供給管18と連
動させ、一般に既知な方法によシ水面制御を行なう。一
方、ホッパ4′の仕切シバルブ10′及び11′を閉じ
、排水管7′を開放して補助水給水管5′より水をホッ
パ4′内に充満させ、充満後排水管7′は1■とじ流動
水槽15.!:等圧になれば補助水給水管5′を閉とす
る。
First, before the gasification operation using the spouted bed gasifier, the pulp 8'
and 9' are closed, water is filled into the fluidized water tank 15 from the make-up water supply pipe 18, and the upper surface 1 of the gasification reactor bottom water tank 3' is filled with water.
1 is distributed and circulated. After the water can be circulated, the water level gauge in the bottom water tank 3' of the gasification reactor is linked with the make-up water supply pipe 18, and the water level is controlled by a generally known method. On the other hand, the partition valves 10' and 11' of the hopper 4' are closed, the drain pipe 7' is opened, and the hopper 4' is filled with water from the auxiliary water supply pipe 5'. Binding fluid tank 15. ! : When the pressure becomes equal, the auxiliary water supply pipe 5' is closed.

この段階で、ガス化反応器1内でガス化反応が開始され
ると、スラグ14は次々と滴下し流動水槽15内にたま
υ、それに伴って差圧発信器22の差圧が上昇する。そ
の後差圧発信器22の差圧は一定レベルでおちつき、差
圧発信器23の差圧が増加し始める。この間の差圧発信
器22及び23の信号を示したのが第3図で、横軸、縦
軸にはそれぞれスラグ滴下量、信号がとってあり°、A
At this stage, when the gasification reaction is started in the gasification reactor 1, the slag 14 drops one after another into the flowing water tank 15, and the differential pressure of the differential pressure transmitter 22 increases accordingly. Thereafter, the differential pressure of the differential pressure transmitter 22 settles down at a constant level, and the differential pressure of the differential pressure transmitter 23 begins to increase. Figure 3 shows the signals from the differential pressure transmitters 22 and 23 during this time, with the horizontal and vertical axes showing the amount of slag dripping and the signal, respectively.
.

Bはそれぞれ差圧発信器22.2.3の信号を示しであ
る。これらの差圧発信器22及び23によって得られた
差圧信号はスラグ排出制御装置27においてコンピュー
タ処理して現在のスラグ層高さ。
B shows the signals of the differential pressure transmitters 22.2.3, respectively. The differential pressure signals obtained by these differential pressure transmitters 22 and 23 are computer-processed in the slag discharge control device 27 to determine the current slag layer height.

スラグ量を算出し、表示させるとともに、あらかじめ設
定されたスラグ層高さと比較して設定高さに達すると、
バルブ8′及び9′に開信号を送り、流動水槽15内の
スラグはホッパ4′に沈降させる。スラグがホッパ4′
に沈降すると差圧発信器22及び23の差圧は元の状B
壕で低下するので、その低下信号によシバルブ8′及び
9′は閉以この閉じ信号によシ排水管7′は開となりポ
ッバ4′内圧力を大気圧に落した後、仕切りバルブ10
′及び11’が開となってホッパ4′内の水とスラグと
を大気圧下の固液分離器12に落下させスラグと水とを
分離し、スラグは固体輸送器13によシ必要な場所まで
輸送され、分離水は必要に応じてホッパ4′あるいは貯
槽等へ再循環させる。ホッパ4′内の水、スラグの排出
後、補助水給水管5′よ)水を供給しホッパ4′内の洗
浄を行ない、その後仕切シバルブ10′及び11′を閉
じホッパ4′内に水を充満させ、充満後排水管7′は閉
とし流動水槽15と等圧になるまで昇圧後補助水給水管
5′を閉とする。
Calculate and display the slag amount, compare it with the preset slag layer height, and when the set height is reached,
An opening signal is sent to the valves 8' and 9', and the slag in the flowing water tank 15 is allowed to settle in the hopper 4'. The slag is in the hopper 4'
, the differential pressure between the differential pressure transmitters 22 and 23 returns to its original state B.
Since the pressure decreases in the trench, the valves 8' and 9' are closed in response to the decreasing signal, and the drain pipe 7' is opened in response to the closing signal.
' and 11' are opened and the water and slag in the hopper 4' fall into the solid-liquid separator 12 under atmospheric pressure to separate the slag and water, and the slag is transferred to the solid transporter 13 as required. The separated water is transported to a location, and the separated water is recycled to a hopper 4' or a storage tank, etc., as necessary. After discharging the water and slag in the hopper 4', water is supplied from the auxiliary water supply pipe 5' to clean the inside of the hopper 4', and then the partition valves 10' and 11' are closed to drain water into the hopper 4'. After filling, the drain pipe 7' is closed, and after increasing the pressure until the pressure becomes equal to that of the fluidized water tank 15, the auxiliary water supply pipe 5' is closed.

次に具体例について説明する。流動水槽15は内径20
01111%高さ1500鰭で流動水槽15の底部から
50■の位置にスパイラル形の水噴出管16が設置され
、水噴出管16には50ケの小孔が開いてお多缶時2ト
ンの水を循環させた。そして流動水槽15側壁には底部
から7(1mと370鰭の位置に開孔した差圧取出口2
4と25との間に第一の差圧発信器22を連結し、底部
から370鰭と1370+wの位置に開孔した差圧取出
口25と26との間に第二の差圧発信器23を連結した
Next, a specific example will be explained. The fluidized water tank 15 has an inner diameter of 20
01111% A spiral-shaped water spouting pipe 16 is installed at a position 50cm from the bottom of the fluidizing tank 15 with a height of 1500 fins, and 50 small holes are opened in the water spouting pipe 16. circulated water. Then, on the side wall of the fluidizing tank 15, a differential pressure outlet 2 is opened at a position of 7 (1 m and 370 fins) from the bottom.
A first differential pressure transmitter 22 is connected between 4 and 25, and a second differential pressure transmitter 23 is connected between differential pressure outlets 25 and 26 that are opened at positions 370 fin and 1370+w from the bottom. were connected.

この流動水Pi l 5の上部は内径100鰭のガス化
反応器1に連結し、下部は内径75■管及び2個のバル
ブ8′及び9′を直列に連結しさらにその下部にはホッ
パ4′及び2例の仕切りバルブ10′及び11’を直列
に連結した。このような噴流層ガス化装置において、ス
ラグを毎時20kg。
The upper part of this fluidized water Pil 5 is connected to the gasification reactor 1 with an inner diameter of 100 mm, and the lower part is connected in series with a 75 mm inner diameter pipe and two valves 8' and 9', and further below is a hopper 4. ' and two gate valves 10' and 11' were connected in series. In such a spouted bed gasifier, 20 kg of slag is produced per hour.

60kgで滴下した場合の各差圧発信器の信号は何れの
場合も第2図に示すようになった。第4図は差圧発信器
の信号をコンピュータに取シ入れ、設足値と比較してス
ラグを排出する場合の自動排出効果を調べだ結果を示す
もの陳、横軸、縦軸にはそれぞれ運転経過時間、信号が
とってあり、Cが差圧発信器22、Dが差圧発信器23
の信号を示している。第3図及び第4図から明らかなよ
うに、流動水槽内のスラグ量は明確に測定することがで
き、排出も良好に実施することができる。
The signals from each differential pressure transmitter when dropping at 60 kg were as shown in FIG. 2 in all cases. Figure 4 shows the results of inputting the differential pressure transmitter signal into a computer and comparing it with the set value to determine the automatic discharge effect when discharging slag. Elapsed operation time and signals are taken, C is the differential pressure transmitter 22, D is the differential pressure transmitter 23
This shows the signal. As is clear from FIGS. 3 and 4, the amount of slag in the fluidized water tank can be clearly measured and the discharge can be performed satisfactorily.

このように、実施例の噴流層ガス化装置は、流動水槽内
の差圧測定によシ流動水槽内のスラグ高さをめて制御が
行なわれるので、石炭の種類。
As described above, the spouted bed gasification apparatus of the embodiment is controlled by measuring the differential pressure in the fluidizing tank and by determining the slag height in the fluidizing tank, so that the type of coal can be controlled.

操作条件が変った場合にもその影響を受けず、スラグの
排出を良好ならしめることができる。
Even if the operating conditions change, the slag is not affected and the slag can be discharged smoothly.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明は石炭の種類、操業条件に左右され
ることなく、最適にスラグを排出することのできる石炭
の噴流層ガス化装置を提供可能とするもので、産業上の
効果の大なるものである。
As described above, the present invention makes it possible to provide a coal spouted bed gasifier that can optimally discharge slag regardless of the type of coal or operating conditions, and has great industrial effects. It is what it is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の噴流層ガス化装置の70−図、第2図は
本発明の噴流層ガス化装置の一実施例のフロー図、第3
図及び第4図は第2図の噴流層ガス化装置の動作状態を
説明する線図である。 工・・・ガス化反応器、2・・・ス2ゲタツブ、3′・
・・ガス化反応器底部水槽、4′・・・ホラ、<、5/
・・・補助水給水管、6′・・・補助水噴出管、7′・
・・排出管、s / 、 ca /・・・バルブ、10
’、11’・・・左切りノくルブ、14・・・スラグ、
15・・・流動水槽、16・・・水噴出管、エフ・・・
水循環管、18・・・補給水供給管、19・・・液体サ
イクロン、20・・・水管、21・・・クーt、22.
23・・・差圧発信器、27・・・スラグ排出制御装置
。 #10 寮Z胆 茅3 目 第 4 目 第1頁の続き ■発明者 国中 真二 日立車輌 所内 @発明者 戸室 仁−日立重輪 所内 @発明者 画材 真琴 日立車輌 所内 @発明者 高橋 貞夫 日立重輪 所内 0発 明 者 宮 寺 博 日立市幸町所内
FIG. 1 is a 70-diagram of a conventional spouted bed gasifier, FIG. 2 is a flow diagram of an embodiment of the spouted bed gasifier of the present invention, and FIG.
FIG. 4 is a diagram illustrating the operating state of the spouted bed gasifier shown in FIG. 2. Engineering...Gasification reactor, 2...S2 gettub, 3'.
...Gasification reactor bottom water tank, 4'... Hola, <, 5/
... Auxiliary water supply pipe, 6'... Auxiliary water jet pipe, 7'
...Discharge pipe, s/, ca/...valve, 10
', 11'...Left-cut nokurube, 14...Slag,
15... Fluid water tank, 16... Water spout pipe, F...
Water circulation pipe, 18...Makeup water supply pipe, 19...Liquid cyclone, 20...Water pipe, 21...Coot, 22.
23... Differential pressure transmitter, 27... Slag discharge control device. #10 Dormitory Z Imo 3rd page 4th page 1st continuation ■Inventor Shinji Kuninaka Inside Hitachi Vehicle Works @ Inventor Hitoshi Tomuro - Inside Hitachi Jyuwa Works @ Inventor Art supplies Mako Inside Hitachi Vehicle Works @ Inventor Sadao Takahashi Hitachi Inventor Hiroshi Miyadera Hitachi City Saiwaichosho

Claims (1)

【特許請求の範囲】[Claims] 1、石炭をガス化し可燃性ガスを発生させるガス化反応
器と、該ガス化反応器の下部にバルブを介して設けられ
該ガス化反応器より排除されたガス化の際発生するスラ
グを一時貯蔵するホッパとを有する噴流層ガス化装置に
おいて、前記ガス化反応器と前記ホッパとの間に前記ス
ラグが落下堆積する流動水槽と、該流動水槽内に水の上
昇流れを形成させる流路と、前記流動水槽内の底部を含
め高さの異なる三個所の位置の間の差圧を測定する差圧
測定装置と、該差圧測定装置の測定結果に基づいて前記
バルブを開いて前記流動水槽内のスラグを前記ホッパに
移動させる装置とを有することを特徴とする噴流層ガス
化装置。
1. A gasification reactor that gasifies coal to generate combustible gas, and a gasification reactor that is installed at the bottom of the gasification reactor via a valve to temporarily store the slag generated during gasification that is removed from the gasification reactor. A spouted bed gasification apparatus having a hopper for storing the slag, a fluidized water tank in which the slag falls and accumulates between the gasification reactor and the hopper, and a flow path that forms an upward flow of water in the fluidized water tank. , a differential pressure measuring device for measuring the differential pressure between three positions at different heights including the bottom in the fluidizing tank; and a differential pressure measuring device for measuring the differential pressure between three positions at different heights, including the bottom, and opening the valve based on the measurement result of the differential pressure measuring device to open the fluidizing tank. A spouted bed gasification apparatus comprising: a device for moving slag therein to the hopper.
JP23687183A 1983-12-15 1983-12-15 Gasifier of jet flow layer Pending JPS60127391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23687183A JPS60127391A (en) 1983-12-15 1983-12-15 Gasifier of jet flow layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23687183A JPS60127391A (en) 1983-12-15 1983-12-15 Gasifier of jet flow layer

Publications (1)

Publication Number Publication Date
JPS60127391A true JPS60127391A (en) 1985-07-08

Family

ID=17007023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23687183A Pending JPS60127391A (en) 1983-12-15 1983-12-15 Gasifier of jet flow layer

Country Status (1)

Country Link
JP (1) JPS60127391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198803A (en) * 2013-03-29 2014-10-23 バブコック日立株式会社 Apparatus and method for monitoring slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198803A (en) * 2013-03-29 2014-10-23 バブコック日立株式会社 Apparatus and method for monitoring slag

Similar Documents

Publication Publication Date Title
CN101605595B (en) The method and apparatus controlling stream of solids
US2503788A (en) Reactor furnace
US3454383A (en) Gasification method and apparatus
SU1313354A3 (en) Method for reducing disperse iron ore to iron sponge with subsequent remelting to cast iron and device for effecting same
AU2004259868B2 (en) Method and apparatus for cooling a material to be removed from the grate of a fluidized bed furnace
NO301131B1 (en) Process for cooling hot process gases
JPS5880383A (en) Gas cooler for synthetic gas generator
SU1301318A3 (en) Method for removing residue from gas generator and device for effecting same
JPS60127391A (en) Gasifier of jet flow layer
US4852994A (en) Process for the production of gas containing hydrogen and carbon monoxide from solid fuel
JP2008246333A (en) Measuring method for gas hydrate concentration and measuring device used for the same, and control method for gas hydrate generation device using measuring method and control device using the same
EP3250662B1 (en) Standpipe-fluid bed hybrid system for char collection, transport, and flow control
NO753985L (en)
JP4550690B2 (en) Char transporter with coarse grain separation function
US3990820A (en) Apparatus for discharging hot liquid material from a pressure vessel
JP3939605B2 (en) Slag discharge device in waste plastic gasification furnace and slag discharge method using the same
JP2021088694A (en) Method and apparatus for adjusting filling level in floating bed reactor
JPH09208050A (en) Powder and granular material blowing-control device
JPS61111395A (en) Method and apparatus for producing low sulfur gas from fine carbonaceous solid
JPS6157685A (en) Method and apparatus for producing gas from carbon-containing fuel
JP2012088000A (en) Slag discharge system and method for operating the same
US4919687A (en) Apparatus for the production of gas containing hydrogen and carbon monoxide from solid fuel
JP5725791B2 (en) Slag discharge system and method of operating slag discharge system
US3037848A (en) Fluidized-bed reactor
JP2007238826A (en) Method and apparatus for producing gas hydrate