JPS60126554A - Ejector suction pump - Google Patents

Ejector suction pump

Info

Publication number
JPS60126554A
JPS60126554A JP23126083A JP23126083A JPS60126554A JP S60126554 A JPS60126554 A JP S60126554A JP 23126083 A JP23126083 A JP 23126083A JP 23126083 A JP23126083 A JP 23126083A JP S60126554 A JPS60126554 A JP S60126554A
Authority
JP
Japan
Prior art keywords
refrigerant vapor
ejector
suction pump
driving steam
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23126083A
Other languages
Japanese (ja)
Inventor
日高 芳皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23126083A priority Critical patent/JPS60126554A/en
Publication of JPS60126554A publication Critical patent/JPS60126554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエゼクタ式冷房装置に用いるエゼクタ吸入ポン
プの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an ejector suction pump used in an ejector type cooling device.

(従来技術) エゼクタ式冷房装fNは蒸気噴射冷房装置とも呼ばね、
駆動蒸気発生器より発生した高温高圧の蒸気全エゼクタ
内のノズルより高速度で噴出し、こねにより蒸発器から
の低湿低圧の蒸気をけん引し、この後エゼクタ内のデイ
フエーザにおいて両者の、混合体全圧縮し凝縮器の方へ
送り出すものであり、蒸発器内の冷媒の気化熱により冷
房効果を得るようにしている。
(Prior art) Ejector type cooling system fN is also called steam injection cooling system.
All of the high-temperature, high-pressure steam generated by the drive steam generator is ejected at high speed from the nozzle in the ejector, and the low-humidity, low-pressure steam from the evaporator is pulled in by kneading, and then the entire mixture of both is released in the diffuser in the ejector. The refrigerant is compressed and sent to the condenser, and the heat of vaporization of the refrigerant in the evaporator produces a cooling effect.

このようなエゼクタ式冷房装置に用いるエゼクタ吸入ポ
ンプとしては例えば第1図に示すようなものがある。こ
のエゼクタ吸入ポンプJは図示してない駆動蒸気発生器
に連結する駆動蒸気導入口2と図示してない蒸発器に連
結する冷媒蒸気吸入口8と図示してない凝縮器に連結す
る吐出口4とを有する。冷媒蒸気吸入口8は入口部分内
部に設けたミックスチャンバ5に連通し、駆動蒸気導入
口2はラバールノズル6を介してミックスチャンバ5に
連通ずる。このミックスチャンバ5と吐出口4との間に
は中間部をしぼったディフユーザ7が形成しである。デ
ィフユーザ7は先紹1部7aと平行部7bと末広部7C
との3つの部分から成る。
An example of an ejector suction pump used in such an ejector-type cooling device is shown in FIG. This ejector suction pump J has a driving steam inlet 2 connected to a driving steam generator (not shown), a refrigerant steam inlet 8 connected to an evaporator (not shown), and a discharge port 4 connected to a condenser (not shown). and has. The refrigerant vapor inlet 8 communicates with a mix chamber 5 provided inside the inlet section, and the drive vapor inlet 2 communicates with the mix chamber 5 via a Laval nozzle 6. A diffuser 7 having a narrowed intermediate portion is formed between the mix chamber 5 and the discharge port 4. The diff user 7 includes a leading part 7a, a parallel part 7b, and a wide end part 7C.
It consists of three parts.

このエゼクタ吸入ポンプの作動を説明すると、図示して
ない駆動蒸気発生器より高温高目−の駆動蒸気が送られ
て来ると、この駆動蒸気はラバールノズル6で加速され
超音速となって噴出流8を形、成してミックスチャンバ
5内に噴出する。この時この噴出した駆!kIl蒸気は
ミックスチャンバ5内の気体をけん引するのでミックス
チャンバ5内の圧力が下がり、冷媒蒸気吸入口3を通し
て図示してない蒸発器より発生する低温低圧の冷媒蒸気
がミックスチャンバ5内に吸入される。この時蒸発器に
おりる冷媒の気化熱により冷房がなされる。ミックスチ
ャンバ5内において混合した駆動蒸気と冷媒蒸気との混
合蒸気はディフユーザ7において圧縮され、圧力が上昇
した後吐出口4より吐出され、図示してない凝縮器にて
冷却され液化した後、図示してない駆動蒸気発生器およ
び蒸発器に送られる。
To explain the operation of this ejector suction pump, when high-temperature and high-temperature driving steam is sent from a driving steam generator (not shown), this driving steam is accelerated by the Laval nozzle 6 and becomes supersonic, resulting in a jet stream 8. is formed and ejected into the mix chamber 5. At this moment, this eruption! Since the kIl vapor pulls the gas in the mix chamber 5, the pressure in the mix chamber 5 decreases, and low-temperature, low-pressure refrigerant vapor generated from an evaporator (not shown) is sucked into the mix chamber 5 through the refrigerant vapor inlet 3. Ru. At this time, air conditioning is achieved by the heat of vaporization of the refrigerant flowing into the evaporator. The mixed vapor of driving steam and refrigerant vapor mixed in the mix chamber 5 is compressed in the diffuser 7, and after the pressure increases, it is discharged from the discharge port 4, and after being cooled and liquefied in a condenser (not shown), It is sent to a drive steam generator and evaporator (not shown).

しかしながらこのような従来のエゼクタ吸入ポンプにあ
ってはエゼクタ吸入ポンプの軸心に駆動蒸気噴射ノズル
をV置し、この周囲に形成したミックスチャンバに駆動
蒸気の噴射方向に直交する一方向のみから冷媒蒸気を吸
入する構造となっていたため、冷媒蒸気吸入口a側の駆
動蒸気9に比較して冷媒蒸気吸入口3と反対側の駆動蒸
気]0、の冷媒蒸気をけん引する効率が悪くなり全体と
しての冷媒蒸気の吸入効率が低下する。また冷媒蒸気は
流m]]に示すように曲けられて吸入されるため管路抵
抗が増加し、吸入効率が低下するという問題点があった
However, in such conventional ejector suction pumps, a driving steam injection nozzle is placed in a V-position at the axis of the ejector suction pump, and refrigerant is injected into a mix chamber formed around the nozzle from only one direction perpendicular to the injection direction of the driving steam. Since the structure was such that the steam was sucked, the efficiency of towing the refrigerant vapor of the driving steam [0] on the side opposite to the refrigerant vapor suction port 3 was lower than that of the driving steam 9 on the side of the refrigerant vapor suction port a, and as a whole, The suction efficiency of refrigerant vapor decreases. Furthermore, since the refrigerant vapor is sucked in a curved manner as shown in the flow m], there is a problem in that the pipe resistance increases and the suction efficiency decreases.

(発明力目的) 本発明の目的はこのような従来のエゼクタ吸入ポンプに
おける問題点を解決し、m1単かつ安価な構成で冷媒蒸
気の吸入効率の良いエゼクタ吸入ポンプを得ることであ
る。
(Purpose of Inventive Power) An object of the present invention is to solve the problems in the conventional ejector suction pump, and to obtain an ejector suction pump that has a simple and inexpensive configuration and has good refrigerant vapor suction efficiency.

(発明の構成) この目的を達成するため本発明のエゼクタ吸入ポンプは
低温低圧の冷媒蒸気全吸入する吸入管をエゼクタ吸入ポ
ンプの軸心にほぼ一致するように設けるとともに駆動蒸
気、の貯気室および吐出ノズルを形成したボスをnir
記吸入管内に配設し、このボスに駆動蒸気を供給する駆
動蒸気導入管を前記吸入管便1部?挿通させて設けたこ
とを特徴とするものである。
(Structure of the Invention) In order to achieve this object, the ejector suction pump of the present invention is provided with a suction pipe for sucking all of the low-temperature, low-pressure refrigerant vapor so as to substantially coincide with the axis of the ejector suction pump, and an air storage chamber for driving steam. and the boss that formed the discharge nozzle.
The driving steam introduction pipe which is arranged in the suction pipe and supplies the driving steam to this boss is installed in the suction pipe part 1? It is characterized by being provided by being inserted through it.

(実施例) 以下に図面を参照して本発明のエゼクタ吸入ポンプを詳
述する。
(Example) The ejector suction pump of the present invention will be described in detail below with reference to the drawings.

第2図は本発明のエゼクタ吸入ポンプの一実施例を示す
図である。このエゼクタ吸入ポンプ2゜は一端Gこ冷媒
蒸気吸入口2】を設けた冷媒蒸気吸入管22をその軸心
がエゼクタ吸入ポンプ2oの軸心と一致するように設け
である。この冷媒蒸気吸入管22内のほぼ軸心位置にボ
ス23を配設し、このボス23に貯気室24とラバール
ノズル25を形成1し、一端に駆動蒸気導入口26を形
成したgJ<動蒸気導入管27を冷媒蒸気吸入管22の
側部を挿通してボス23の貯気室24に連通させる。
FIG. 2 is a diagram showing an embodiment of the ejector suction pump of the present invention. This ejector suction pump 2° is provided with a refrigerant vapor suction pipe 22 having a refrigerant vapor suction port 2 at one end so that its axis coincides with the axis of the ejector suction pump 2o. A boss 23 is disposed at approximately the axial center position within this refrigerant vapor suction pipe 22, an air storage chamber 24 and a Laval nozzle 25 are formed in this boss 23, and a driving steam inlet 26 is formed at one end. The introduction pipe 27 is inserted through the side of the refrigerant vapor suction pipe 22 to communicate with the air storage chamber 24 of the boss 23 .

冷媒蒸気吸入管22内のボス23の周囲にはミックスチ
ャンバ28が形成されるウディフェーザ29は先細部2
9aと平行部29bと末広部2ROとから成り、前述の
従来例とほぼ同様の構成のものである。3oは図示して
ない凝縮器に接続する吐出口である。
A mix chamber 28 is formed around the boss 23 in the refrigerant vapor suction pipe 22.
It consists of a parallel part 9a, a parallel part 29b, and a diverging part 2RO, and has almost the same structure as the above-mentioned conventional example. 3o is a discharge port connected to a condenser (not shown).

次にこのエゼクタ吸入ポンプ2oの作用を説明する。図
示してない駆動蒸気発生器より送らt]て来る高温高圧
の駆動蒸気は駆動蒸気導入口26より駆動蒸気導入管2
7を通って貯気室24に入った後ラバールノズル25よ
り噴出流3】を形成、して超音速で噴出する。これによ
りミックスチャンバ28内の気体がけん引されてミック
スチャンバ28内の圧力が低くなり、図示してない蒸発
器より低温低圧の冷媒蒸気が吸引され冷媒蒸気吸入口2
】より冷媒蒸気吸入管22内のミックスチャンバ28内
に吸入される。この時冷媒蒸気吸入管22はほぼ面:管
状に形成されており曲がり部分がないため冷媒蒸気の吸
入抵抗は少ない。また冷媒蒸気ハラバールノズル25を
形成したボス23のほぼ全周を包囲するように吸入され
るため駆動蒸気による冷媒蒸気の吸入効率はラバールノ
ズル25の全周にわたってばらつきがなく、こねにより
従来のエゼクタ吸入ポンプに比較して全体としての冷媒
蒸気の吸入効率が向上する。なお駆動蒸気導入管27と
貯気室24との接続部は直角に曲がっているが駆動蒸気
の流速がラバールノズル、25の絞り部′f通過する時
に上昇するため、この曲がり部分では圧力は高いが流速
は遅くまた貯気室24によりある程度の容積を確保した
ため、一旦圧力エネルギーとして貯気室24に貯えられ
るので、この曲がり部分はほとんど駆動蒸気の通流の抵
抗とならない。このようにしてミックスチャンバ28に
おいて混合した駆動蒸気と冷媒蒸気との混合蒸気はこの
後ディフューザ29内で圧縮さ才]圧力が上昇した後吐
出口30より図示してないM &laに送られ、凝縮器
内で冷却され液化した後駆動蒸気発生器および蒸発器に
送られる。
Next, the operation of this ejector suction pump 2o will be explained. The high-temperature, high-pressure driving steam sent from a driving steam generator (not shown) is supplied to the driving steam introduction pipe 2 from the driving steam inlet 26.
After entering the air storage chamber 24 through the Laval nozzle 25, a jet stream 3] is formed and ejected at supersonic speed. As a result, the gas in the mix chamber 28 is pulled and the pressure in the mix chamber 28 is lowered, and low-temperature, low-pressure refrigerant vapor is sucked into the refrigerant vapor inlet 2 from an evaporator (not shown).
] The refrigerant vapor is drawn into the mix chamber 28 in the refrigerant vapor suction pipe 22. At this time, the refrigerant vapor suction pipe 22 is formed into a substantially planar/tubular shape and has no bent portions, so that the refrigerant vapor suction resistance is small. In addition, since the refrigerant vapor is sucked in so as to surround almost the entire circumference of the boss 23 forming the Halaval nozzle 25, the suction efficiency of the refrigerant vapor by the driving steam is uniform over the entire circumference of the Laval nozzle 25, and the kneading process is similar to that of the conventional ejector suction pump. The overall refrigerant vapor suction efficiency is improved compared to the above. Although the connection between the drive steam introduction pipe 27 and the storage chamber 24 is bent at right angles, the flow velocity of the drive steam increases when it passes through the constriction part 'f of the Laval nozzle 25, so the pressure is high at this bend. Since the flow rate is slow and a certain amount of volume is secured by the storage chamber 24, the curved portion hardly acts as a resistance to the flow of driving steam because the pressure energy is temporarily stored in the storage chamber 24. The mixed vapor of driving vapor and refrigerant vapor thus mixed in the mix chamber 28 is then compressed in the diffuser 29. After the pressure increases, it is sent from the discharge port 30 to M & la, not shown, and is condensed. After being cooled and liquefied in the vessel, it is sent to a drive steam generator and an evaporator.

(発明の効果) 以上詳述したように本発明のエゼクタ吸入ポンプは冷媒
蒸気を吸入する吸入管をエゼクタ吸入ポンプの軸心に6
分に一致するように設けるとともに駆動蒸勿の貯気1室
および吐出ノズルを形成、したボスを冷媒蒸気吸入管内
に配設し、このボスに駆動蒸気を供給する駆動蒸気導入
管?冷媒蒸気吸入管領(1部牙押通させて設けた構成と
したため、冷媒蒸気導入管がほぼ旧管となるので吸入抵
抗が少なく・なり、また冷媒蒸気が駆動蒸気に対して全
方向にわたって均一に接触するので冷媒蒸気の吸入効率
が従来のエゼクタ吸入ポンプに比較して確段に向上スル
という利点を有する。
(Effects of the Invention) As described in detail above, the ejector suction pump of the present invention has a suction pipe for sucking refrigerant vapor located at the axis of the ejector suction pump.
A driving steam introduction pipe that supplies driving steam to the refrigerant vapor suction pipe by disposing a boss in the refrigerant vapor suction pipe, which is provided so as to correspond to the volume of the driving steam, and forms an air storage chamber and a discharge nozzle for the driving steamer. The refrigerant vapor suction pipe area (part of the refrigerant vapor inlet pipe is pushed through), so the refrigerant vapor introduction pipe is almost an old pipe, so the suction resistance is reduced, and the refrigerant vapor is distributed evenly in all directions relative to the driving steam. Because of the contact, the refrigerant vapor suction efficiency is definitely improved compared to conventional ejector suction pumps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエゼクタ吸入ポンプの構成を示す断面図
、 第2図は本発明のエゼクタ吸入ポンプの一実施例の構成
を示す断面図である。 〕・・・エゼクタ吸入ポンプ 2・・・駆動蒸気導入口 3・・・冷媒蒸気吸入口4・
・・吐出口 5・・・ミックスチャンバ6・・・ラバー
ルノズル 7・・・ディフユーザ7a・・・先細部 7
b・・・平行部 70・・・末広部 8・・・噴出流 9、〕0・・・駆動蒸気 月・・・流線20・・・エゼ
クタ吸入ポンプ 2】・・・冷媒蒸気吸入口 22・・・冷媒蒸気吸入管
28・・・ボス 24・・・貯気室 25・・・うt< −ルノズル 26・・・駆動蒸気導
入口・27・・・駆動蒸気導入管 28・・・ミックス
チヤンノ(29・・・ディフユーザ 29a・・・先細
部29b・・・平行部 290・・・末広部30・・・
吐出口 3]・・・噴出流。 特許出願人 日産自動車株式会社
FIG. 1 is a sectional view showing the structure of a conventional ejector suction pump, and FIG. 2 is a sectional view showing the structure of an embodiment of the ejector suction pump of the present invention. ]... Ejector suction pump 2... Drive steam inlet 3... Refrigerant vapor inlet 4.
...Discharge port 5...Mix chamber 6...Laval nozzle 7...Diff user 7a...Tapered part 7
b...Parallel part 70...Divergent part 8...Jouting flow 9,]0...Drive steam Moon...Streamline 20...Ejector suction pump 2]...Refrigerant vapor suction port 22 ...Refrigerant vapor suction pipe 28...Boss 24...Air storage chamber 25...Ut<-le nozzle 26...Driving steam inlet 27...Driving steam inlet pipe 28...Mix Chianno (29... Diff user 29a... Tapered part 29b... Parallel part 290... Wide end part 30...
Discharge port 3]... Jet flow. Patent applicant Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1 低湿低圧の冷媒蒸気を吸入する吸入管をエゼクタ吸
入ポンプの軸心にほぼ一致するように設けるとともに駆
動蒸気の貯気室および吐出ノズルを形成したボスを前記
吸入管内に配設し、このボスに駆動蒸気を供給する駆動
蒸気導入管を前記吸入管側部を挿通させて設けたことを
特徴とするエゼクタ吸入ポンプ。
1. A suction pipe for sucking low-humidity, low-pressure refrigerant vapor is provided so as to be substantially aligned with the axis of the ejector suction pump, and a boss forming a storage chamber for driving steam and a discharge nozzle is disposed within the suction pipe, and this boss An ejector suction pump characterized in that a driving steam introduction pipe for supplying driving steam to the ejector is inserted through a side portion of the suction pipe.
JP23126083A 1983-12-09 1983-12-09 Ejector suction pump Pending JPS60126554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23126083A JPS60126554A (en) 1983-12-09 1983-12-09 Ejector suction pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23126083A JPS60126554A (en) 1983-12-09 1983-12-09 Ejector suction pump

Publications (1)

Publication Number Publication Date
JPS60126554A true JPS60126554A (en) 1985-07-06

Family

ID=16920825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23126083A Pending JPS60126554A (en) 1983-12-09 1983-12-09 Ejector suction pump

Country Status (1)

Country Link
JP (1) JPS60126554A (en)

Similar Documents

Publication Publication Date Title
US5931643A (en) Fluid jet ejector with primary fluid recirculation means
US7056103B2 (en) Method and apparatus for cooling turbomachinery components
US3134338A (en) Jet pump
US4673335A (en) Gas compression with hydrokinetic amplifier
JP3158656B2 (en) Ejector
US2164263A (en) Jet air pump
US4358249A (en) Vacuum chamber with a supersonic flow aerodynamic window
US3775977A (en) Liquid air engine
US6334758B1 (en) Pump-ejector compression unit and variants
JPH11257299A (en) Ejector for air bleeding
JP2001200800A (en) Ejector
JPS60126554A (en) Ejector suction pump
JPH10197077A (en) Refrigerating apparatus
CN111456973A (en) Steam jet pump with nozzle heating function
US5499509A (en) Noise control in a centrifugal chiller
JPH11148733A (en) Ejector for refrigerating cycle
JPS60108600A (en) Ejector suction pump
US2826147A (en) Liquid transfer system
CN114151388A (en) Air pumping system based on miniature pulse jet vacuum pump
JPH0626718A (en) Freezing cycle
JPS62279300A (en) Ejector
JP2000120596A (en) Water spray for turbocompressor
CN113203215A (en) Heat recovery or work recovery system, ejector therefor and fluid mixing method
JPS60126555A (en) Ejector type air cooling device
JP2644039B2 (en) Self-cooling type sealed liquid supply device for vacuum pump