JPS60126505A - Decompression type steam generator - Google Patents

Decompression type steam generator

Info

Publication number
JPS60126505A
JPS60126505A JP23568083A JP23568083A JPS60126505A JP S60126505 A JPS60126505 A JP S60126505A JP 23568083 A JP23568083 A JP 23568083A JP 23568083 A JP23568083 A JP 23568083A JP S60126505 A JPS60126505 A JP S60126505A
Authority
JP
Japan
Prior art keywords
heat transfer
gas
closed container
steam generator
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23568083A
Other languages
Japanese (ja)
Inventor
石川 敦弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP23568083A priority Critical patent/JPS60126505A/en
Publication of JPS60126505A publication Critical patent/JPS60126505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分i この発明は大気圧未満の圧力に保持した状態で蒸気を発
生させる密閉容器の内部に生じる不凝縮性ガスを除去す
るようにした減圧式蒸気発生器に関する。
Detailed Description of the Invention (a) Industrial Applications i This invention is a depressurizer that removes noncondensable gas generated inside a closed container that generates steam while maintaining a pressure below atmospheric pressure. Regarding steam generators.

(ロ) 従来技術 減圧式蒸気発生器は密閉容器内に水又はその他の熱媒液
を封入して、ガス、油などの熱源で加熱し、その容器内
に熱媒蒸気で間接加熱させる伝熱管を岐けて、これに給
湯用カラン若しくは暖房装置などを連結して、その温水
を暖房、給湯などに利用するものであり、密閉容器内圧
力を大気圧未満に保持した状態で稼動させるため、その
取扱いが安全であり、かつ熱伝導性が優れているなどの
利点がある反面、電気化学的作用によって不凝縮性ガス
(主として水素ガス)が発生し、伝熱面への熱伝導を阻
害するなどの欠点がある。
(b) A conventional technology vacuum steam generator is a heat exchanger tube in which water or other heat medium liquid is sealed in a closed container, heated by a heat source such as gas or oil, and indirectly heated by heat medium vapor inside the container. A hot water supply system or a heating device is connected to this, and the hot water is used for space heating, hot water supply, etc. In order to operate while maintaining the internal pressure of the closed container below atmospheric pressure, Although it has advantages such as safe handling and excellent thermal conductivity, it generates non-condensable gas (mainly hydrogen gas) due to electrochemical action, which inhibits heat conduction to the heat transfer surface. There are drawbacks such as.

密閉容器内に発生した不凝縮性ガスを排出するには真空
ポンプを用いるのが一般的である。真空ボンダによる場
合は不凝縮性ガスが相当量滞積した頃をみ・はからって
真空ポンプを運転して排出するのであるから、その取扱
いが不便である。
A vacuum pump is generally used to exhaust noncondensable gas generated within a closed container. In the case of using a vacuum bonder, handling is inconvenient because the vacuum pump is operated to discharge the non-condensable gas when a considerable amount of it has accumulated.

この不便さを解消するために高分子膜を使用するものが
特公昭57−27366号公報に開示されている。これ
を同公報中図面に基づいて要約説明すると(第1図参照
)、大気圧未満に保持され、内部に熱媒液(atを封入
した密閉容器(blの蒸気室(C1頂部に、上面に大気
に通ずる連通孔(d)を穿設して高分子膜(e)で被覆
せしめた不凝縮性ガス透過流出口を有するガス溜室(f
)を付設し、高分子膜(e)の分圧による気体の透過性
を利用して、密閉容器fbl内で発生する水素ガスを大
気中に、透過流出させるものであり、高分子膜(e)が
耐熱性に難があるため、高分子膜(e)を冷却して高分
子膜温度を設定温度に保持しなければな1うず、また高
分子膜(e)のガス透過の選択性が弱いため、密閉容器
(b)内外の分圧差によっては大気中の窒素ガスや酸素
ガスなどを密閉容器(bl内部へ透過させる問題があっ
た。また、高分子膜(e)は再生が不n」能で、適宜、
新しいものと交換しなければならなかった。
In order to solve this inconvenience, a method using a polymer membrane is disclosed in Japanese Patent Publication No. 57-27366. This can be summarized based on the drawings in the same publication (see Figure 1). A gas storage chamber (f) having a non-condensable gas permeation outlet, which has a communication hole (d) communicating with the atmosphere and is covered with a polymer membrane (e).
) is attached to the polymer membrane (e), and the hydrogen gas generated in the closed container fbl permeates and flows out into the atmosphere by utilizing the gas permeability due to the partial pressure of the polymer membrane (e). ) has poor heat resistance, so the polymer membrane (e) must be cooled to maintain the polymer membrane temperature at the set temperature, and the gas permeation selectivity of the polymer membrane (e) is Because of its weakness, there was a problem that nitrogen gas, oxygen gas, etc. in the atmosphere could permeate into the inside of the sealed container (bl) depending on the partial pressure difference between the inside and outside of the sealed container (b).Also, the polymer membrane (e) cannot be regenerated. ” and as appropriate.
Had to replace it with a new one.

(ハ)発明の目的 この発明は上辺・した事実に鑑みてなされたものであり
、真空ポンプや高分子膜を用いた場合のような欠点を解
消しつつ、密閉容器内部で発生した不凝縮性の水素ガス
を除去し、伝熱性能を高効率に維持することを目的とす
る。
(c) Purpose of the Invention This invention was made in view of the above facts, and while eliminating the drawbacks of using a vacuum pump or polymer membrane, it also solves the problem of non-condensation occurring inside a closed container The purpose is to remove hydrogen gas and maintain highly efficient heat transfer performance.

に)発明の構成 上記の目的を達するため、この発明の減圧式蒸気発生器
は大気圧未満の圧力に保持され、内部に熱媒液を封入し
た密閉容器の蒸気室頂部に、不凝縮性ガス溜部を設け、
この不凝縮性ガス溜部に一部が大気に通じるパラジウム
管を装設し、このパラジウム管の近傍にヒータを配設し
た構成であり、パラジウムが高温下(300〜350℃
)で水素ガスだけを選択的に、その分圧差により透過さ
せる性質を利用し、ヒータでパラジウム管を加熱して不
凝縮性ガス溜部かも大気へ水素ガスを連続的に放出させ
る。
B) Structure of the Invention In order to achieve the above object, the reduced pressure steam generator of the present invention is maintained at a pressure below atmospheric pressure, and a non-condensable gas is placed at the top of the steam chamber of a closed container in which a heat transfer liquid is sealed. A reservoir is provided,
This non-condensable gas reservoir is equipped with a palladium tube that partially communicates with the atmosphere, and a heater is installed near this palladium tube.
), the palladium tube is heated by a heater, and hydrogen gas is continuously released from the non-condensable gas reservoir to the atmosphere by utilizing the property of selectively permeating only hydrogen gas due to its partial pressure difference.

(ホ)実施例 以下、この発明を図面に示す実施例について説明する。(e) Examples Hereinafter, embodiments of the present invention shown in the drawings will be described.

第2図におい’C(1)は密閉容器であって、その内部
に水又はその他の熱媒液(2)を封入しである。(3)
は密閉容器(1)の下方から熱媒液(2)を加熱する加
熱装置、(4)は密閉容器(1)の蒸気室、(5)およ
び(6)はそれぞれ蒸気室(4)に配設した給湯用伝熱
管および暖房用伝熱管、(7)は密閉容器(11内部の
真空引さと熱媒液(2)の充填とを行なう空気抜き管、
(8)は蒸気室(4)の頂部に導管(9)を介して接続
した不凝縮性ガス溜部、α0)は導管(9)の外周を囲
繞し、暖房用伝熱・n(6)に供給する液の一部を側路
して流す冷却ジャケットである。
In FIG. 2, 'C (1) is a closed container in which water or other heat transfer liquid (2) is sealed. (3)
is a heating device that heats the heat transfer liquid (2) from below the closed container (1), (4) is the steam chamber of the closed container (1), and (5) and (6) are each installed in the steam chamber (4). (7) is an air vent pipe for evacuation of the inside of the closed container (11 and filling of the heat transfer liquid (2));
(8) is a non-condensable gas reservoir connected to the top of the steam chamber (4) via a conduit (9), α0) surrounds the outer periphery of the conduit (9), and is used for heating heat transfer/n(6) This is a cooling jacket that bypasses a portion of the liquid supplied to the tank.

不凝縮性ガス溜部(8)には第3図に示すよ5に、パラ
ジウム管Ql)を管内壁を大気に開放させた状態で貫設
してあり、パラジウム管0]Jの近傍にはヒータ(12
1を配設しである。
As shown in Fig. 3, a palladium tube Ql) is installed through the non-condensable gas reservoir (8) with the inner wall of the tube open to the atmosphere, and a palladium tube Ql) is installed near the palladium tube 0]J. Heater (12
1 is arranged.

上述した減圧式蒸気発生器は熱媒液(2)を加熱装置(
3)で加熱すると、減圧蒸気αJが発生する。減圧蒸気
α3)は両伝熱管(5)、(6)を流れる液に凝縮潜熱
を供給して加熱装置(3)から得た熱を伝達し、自らは
液化して熱媒液(2)に戻る。このように、蒸気の凝縮
熱伝達により熱交換が行なわれるので、通常の温水ボイ
ラの液・液熱交換よりも伝熱面積当りの熱交換量が多く
、熱効率が高い。また、蒸気室(4)の圧力は常に大気
圧未満に保たれ、安全性に富んでいる。
The above-mentioned reduced pressure steam generator uses a heating device (
When heated in step 3), reduced pressure steam αJ is generated. The reduced pressure steam α3) supplies latent heat of condensation to the liquid flowing through both heat transfer tubes (5) and (6), transfers the heat obtained from the heating device (3), and liquefies itself into the heat transfer liquid (2). return. In this way, heat exchange is performed by condensing heat transfer of steam, so the amount of heat exchange per heat transfer area is larger than in liquid-liquid heat exchange in a normal hot water boiler, and the thermal efficiency is high. In addition, the pressure in the steam chamber (4) is always kept below atmospheric pressure, making it highly safe.

密閉容器(1)内に電気化学作用によって不凝縮性ガス
(王に水素ガス)が発生すると、この不凝縮性ガスは伝
熱の際、伝熱管(5)、(6)のまわりに集ま9、熱伝
達を阻害するとともに、蒸気室(4)の圧力を高める。
When non-condensable gas (mostly hydrogen gas) is generated in the closed container (1) by electrochemical action, this non-condensable gas collects around the heat transfer tubes (5) and (6) during heat transfer. 9. Obstruct heat transfer and increase the pressure in the steam chamber (4).

そこで、本実施例では不凝縮性ガスが主として水素ガス
であることに着目し、比重の小さな水素ガスを蒸気室(
4)頂部のガス溜部(8)に溜める。ガス溜部(8)に
溜った水素ガスはヒータ02)で高温(300〜350
℃)に加熱されたパラジウム管旧)を透過してその管内
壁から大気へ連続的に放出される。
Therefore, in this example, we focused on the fact that the non-condensable gas is mainly hydrogen gas, and transferred hydrogen gas with a small specific gravity to the steam chamber (
4) Store in the gas reservoir (8) at the top. The hydrogen gas accumulated in the gas reservoir (8) is heated to a high temperature (300 to 350℃) by the heater 02).
It passes through a palladium tube (formerly) heated to 100°F (°C) and is continuously released into the atmosphere from the inner wall of the tube.

このため、密閉容器(1)内部は水素ガスが殆どない状
態に保持され、熱伝達が支障な(行なわれるととも罠、
圧力上昇が抑制される。
For this reason, the inside of the closed container (1) is maintained in a state where there is almost no hydrogen gas, and heat transfer is hindered (or trapped).
Pressure rise is suppressed.

パラジウムは水素ガスを選択的に透過さセる性質か強(
、高分子膜のような他ガスの透過性がなく、もちろん耐
熱性も十分ある。また、水素ガスの透過量は次式で表わ
される。
Palladium has a strong property of selectively permeating hydrogen gas (
Unlike polymer membranes, it is not permeable to other gases, and of course has sufficient heat resistance. Further, the amount of permeation of hydrogen gas is expressed by the following equation.

Q−に−/″′”’seR’r さらに1本実施例では導管(9)の周囲に冷却ジャケッ
ト0切を設け、このジャケットaorに暖房用伝熱管(
6)を側路して流れる液を供給するようにしたので、伝
熱時にも水素ガスを不凝縮性ガス溜部(8)に集め、パ
ラジウム管旧)から大気へ効率良く放出させることがで
きる。
Furthermore, in this embodiment, a cooling jacket (0 cut) is provided around the conduit (9), and this jacket aor is provided with a heating heat exchanger tube (
6) is bypassed to supply the flowing liquid, hydrogen gas can be collected in the non-condensable gas reservoir (8) during heat transfer and efficiently released into the atmosphere from the palladium tube (old). .

なお、パラジウム管01)は長さ50龍、内径3朋ダ、
管厚0.5 mm を程度の極(小さなもので良(、こ
れを加熱するヒータ02)は数十Wの小容量のもので良
い。
In addition, the palladium tube 01) has a length of 50mm, an inner diameter of 3mm,
The pole with a tube thickness of about 0.5 mm (a small one is fine (and the heater 02 that heats this) may have a small capacity of several tens of W.

(へ)発明の効果 、この発明は以上のように構成されており、密閉容器内
部に発生した水素ガスをヒータで加熱したパラジウム管
で連続的に透過させ、大気へ放出させることかでさ、不
凝縮性ガスによる熱伝導の阻害や圧力上昇をなくして伝
熱性能を高効率に維持し、ランニングコストの増大を防
止するとともに、安全性の向上を図ることができ、しか
も真空ポンプを用いる場合のような取扱いの不便さがな
く、高分子膜を用いる場合のような耐熱性や劣化にょる
交換などの問題がなく、さらには水素ガスのみを効率よ
く良く排出させ、他ガスが密閉容器内に流入しないよう
にできるなど、使い勝手に優れ、信頼性の高いものであ
る。
(f) Effects of the invention: This invention is constructed as described above, and hydrogen gas generated inside a closed container is continuously transmitted through a palladium tube heated with a heater and released into the atmosphere. By eliminating the obstruction of heat conduction and pressure rise caused by non-condensable gases, it is possible to maintain high heat transfer performance, prevent increases in running costs, and improve safety.Moreover, when using a vacuum pump There is no inconvenience in handling, and there are no problems with heat resistance or replacement due to deterioration that occur when using polymer membranes. Furthermore, only hydrogen gas can be efficiently discharged, while other gases can be removed from the airtight container. It is easy to use and highly reliable, as it can prevent water from flowing into the air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の減圧式蒸気発生器の1例を示す概略構造
図、第2図はこの発明の一実施例の概略構造図、第3図
は第2図の要部拡大斜視図である。 (1)・・・密閉容器、 (2)・・・熱媒液、 (4
)・・・蒸気室、(8)・・・不凝縮性ガス溜部、 ■
・・・パラジウム管、(121・・・ヒータ。
Fig. 1 is a schematic structural diagram showing an example of a conventional reduced pressure steam generator, Fig. 2 is a schematic structural diagram of an embodiment of the present invention, and Fig. 3 is an enlarged perspective view of the main part of Fig. 2. . (1)...Airtight container, (2)...Heating medium liquid, (4
)...Steam chamber, (8)...Noncondensable gas reservoir, ■
...Palladium tube, (121...Heater.

Claims (1)

【特許請求の範囲】[Claims] (1)大気圧未満の圧力に保持され、内部に熱媒液を封
入した密閉容器の蒸気室頂部に、不凝縮性ガス溜部を設
け、この不凝縮性ガス溜部に一部が大気に通じるパラジ
ウム管を装設し、このパラジウム管の近傍にヒータを配
設したことを特徴とする減圧式蒸気発生器。
(1) A non-condensable gas reservoir is provided at the top of the steam chamber of a closed container that is maintained at a pressure below atmospheric pressure and has a heat transfer liquid sealed inside, and a portion of this non-condensable gas reservoir is exposed to the atmosphere. A reduced pressure steam generator characterized in that it is equipped with a palladium tube that communicates with the palladium tube, and a heater is installed near the palladium tube.
JP23568083A 1983-12-13 1983-12-13 Decompression type steam generator Pending JPS60126505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23568083A JPS60126505A (en) 1983-12-13 1983-12-13 Decompression type steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23568083A JPS60126505A (en) 1983-12-13 1983-12-13 Decompression type steam generator

Publications (1)

Publication Number Publication Date
JPS60126505A true JPS60126505A (en) 1985-07-06

Family

ID=16989611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23568083A Pending JPS60126505A (en) 1983-12-13 1983-12-13 Decompression type steam generator

Country Status (1)

Country Link
JP (1) JPS60126505A (en)

Similar Documents

Publication Publication Date Title
US4595459A (en) Desalinization apparatus
US3948316A (en) Process of and device for using the energy given off by a heat source
US5165237A (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
WO2001057453A1 (en) Solar heat harnessing system
US8399139B2 (en) Corrosion resistant membrane condenser for recovery of fuel cell electrolyte
JPH02247598A (en) Cooler for heat generating member
JPS60126505A (en) Decompression type steam generator
JP2000171179A (en) Thermal storage device and fuel battery generator facility having thermal storage device
JPS62288422A (en) Circulation device for heating steam in steam heater
US4745963A (en) Heat exchanger and systems and methods for using the same
JPH0522828B2 (en)
JPS599193Y2 (en) Decompression steam generator
JPS5854323B2 (en) Extraction method and device for vacuum steam generator
JPS60126506A (en) Decompression type steam generator
JPS5864486A (en) Heat exchanger
JP2537729B2 (en) Distillation apparatus and distillation method
JPS6351044B2 (en)
JPS5835353Y2 (en) water generator
JPH0571882A (en) Porous body type heat exchanger and facilities where they are employed
JPS60120186A (en) Heat exchanger
JPH0144952Y2 (en)
JPS6311574Y2 (en)
JPH0345089Y2 (en)
JPH0271055A (en) Compressed air energy storage system
JPH0113963Y2 (en)