JPH0571882A - Porous body type heat exchanger and facilities where they are employed - Google Patents

Porous body type heat exchanger and facilities where they are employed

Info

Publication number
JPH0571882A
JPH0571882A JP22916991A JP22916991A JPH0571882A JP H0571882 A JPH0571882 A JP H0571882A JP 22916991 A JP22916991 A JP 22916991A JP 22916991 A JP22916991 A JP 22916991A JP H0571882 A JPH0571882 A JP H0571882A
Authority
JP
Japan
Prior art keywords
temperature fluid
heat exchanger
porous
liquid
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22916991A
Other languages
Japanese (ja)
Inventor
Kiyomi Funabashi
船橋清美
Hideaki Kurokawa
黒川秀昭
Tetsuo Yamaguchi
山口哲男
Yoshitaka Nishino
西野由高
Tsutomu Baba
務 馬場
Toshio Sawa
俊雄 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22916991A priority Critical patent/JPH0571882A/en
Publication of JPH0571882A publication Critical patent/JPH0571882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a high efficiency heat exchanger which uses a hydrophobic porous film. CONSTITUTION:A large number of heat exchanger tubes made of a hydrophobic porous material 2, which allows the penetration of steam into the material but allows no penetration of liquid, are bundled. A low temperature fluid 1, which is liquid, is passed inside the heat exchanger tubes while a high temperature fluid 2, which is liquid or steam, is passed outside the heat exchanger tubes. It is acceptable even if this internal and external relation is opposite. When the high temperature fluid 2 is liquid, the liquid is vaporized and turned into steam, which penetrates the porous material and enters the low temperature fluid side where it is condensed and turned into liquid. The liquid itself which is a high temperature fluid is unable to penetrate the porous material. When the high temperature fluid is steam, the steam is partially condensed on the high temperature fluid side and turned into liquid drops. The liquid drops thus produced are unable to penetrate the porous material as well. In this manner, heat is transferred from the high temperature fluid 2 to the lower temperature fluid 1. The heat transfer based on thermal conduction of the porous body 2 is added to this heat transfer mechanism as well. It is, therefore, possible to inhibit the penetration with the porous material and prevent the mixture into the low temperature fluid even when there exist impurities in the fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は疎水性多孔質膜を用いた
高効率の多孔体熱交換器に係わり、特に、火力、原子力
発電所など蒸気ボイラーを持つ施設における高効率を必
要とする熱交換器に好適に用いられる多孔体熱交換器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly efficient porous heat exchanger using a hydrophobic porous membrane, and particularly to heat requiring high efficiency in a facility having a steam boiler such as a thermal power plant or a nuclear power plant. The present invention relates to a porous heat exchanger preferably used for an exchanger.

【0002】[0002]

【従来の技術】従来、火力、原子力発電所などの熱交換
器は、70kg/cm2 以上の高圧の流体を扱うため、熱伝
導率の高い金属を伝熱管に用いており、フィンを設ける
などの手段で伝熱特性の改善が進められてきたが、飛躍
的な改善は難しい。
2. Description of the Related Art Conventionally, heat exchangers for thermal power plants, nuclear power plants, etc. handle high-pressure fluids of 70 kg / cm 2 or more, so metals with high thermal conductivity are used for heat transfer tubes, and fins are provided. Although the heat transfer characteristics have been improved by this method, it is difficult to make a dramatic improvement.

【0003】一方、最近、蒸気は通すが液体は通さない
という特徴を持つ疎水性多孔質膜を用いた液体の処理技
術が開発されている。この技術は、蒸留法の一種で、膜
蒸留法と言われるものである。この技術を特公昭49−
45461号を例にとって説明する。この例は、海水の
淡水化などを目的とするもので、疎水性多孔質膜の一方
の側に温度を高めた海水を接触させ、他方の側で冷却す
る。この結果、高温側の海水で蒸発が起こり、発生した
蒸気が膜面を拡散透過して、低温側で凝縮する。これに
よって蒸留水が得られ、海水の淡水化が達成される。こ
の方法は、中空糸膜など表面積の大きな膜を用いること
によって、他の蒸留方法に比べて蒸発面積が大きくとれ
るので、装置がコンパクト化できる。
On the other hand, recently, there has been developed a liquid treatment technique using a hydrophobic porous membrane having a characteristic that vapor is permeable but liquid is not permeable. This technique is a kind of distillation method and is called a membrane distillation method. This technology is Japanese Patent Publication Sho 49-
Description will be made taking No. 45461 as an example. This example is intended for desalination of seawater and the like, and seawater of elevated temperature is brought into contact with one side of the hydrophobic porous membrane and cooled on the other side. As a result, the seawater on the high temperature side evaporates, the generated vapor diffuses and permeates the membrane surface, and condenses on the low temperature side. As a result, distilled water is obtained and desalination of seawater is achieved. In this method, by using a membrane having a large surface area such as a hollow fiber membrane, the evaporation area can be made larger than that of other distillation methods, so that the apparatus can be made compact.

【0004】他方、特願昭62−147870号に記載
されているように、疎水性多孔質膜が、蒸発面積が大き
く且つ蒸発による熱の移動が大きいことに注目し、冷凍
機等に用いる冷却水を外気に放熱させて冷却する冷却塔
に使うことが考えられている。
On the other hand, as described in Japanese Patent Application No. 62-147870, it has been noted that the hydrophobic porous membrane has a large evaporation area and a large amount of heat transfer due to evaporation, and it is used for a refrigerator or the like. It is considered to be used for a cooling tower that radiates water to the outside air to cool it.

【0005】[0005]

【発明が解決しようとする課題】火力、原子力発電所な
どにおける金属製伝熱管を用いた従来の熱交換器では伝
熱特性の飛躍的な改善は難しく、一方、疎水性多孔質膜
を用いた上記特願の冷却塔は、火力、原子力発電所用の
熱交換器としては不適当・不充分である。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention It is difficult to drastically improve heat transfer characteristics with a conventional heat exchanger using a metal heat transfer tube in a thermal power plant, a nuclear power plant, etc. On the other hand, a hydrophobic porous membrane is used. The cooling tower of the above-mentioned Japanese Patent Application is inappropriate or insufficient as a heat exchanger for thermal power and nuclear power plants.

【0006】本発明の目的は疎水性多孔質膜を介して高
温流体と低温流体との間に高効率の伝熱を行わせること
ができ、火力、原子力発電所の熱交換器として好適に用
い得る多孔体熱交換器を提供することにある。本発明の
他の目的は、上記多孔体熱交換器を用いた火力、原子力
発電所の給水加熱設備、又は原子力発電所の炉水浄化設
備を提供するにある。
The object of the present invention is to enable highly efficient heat transfer between a high-temperature fluid and a low-temperature fluid through a hydrophobic porous membrane, and is preferably used as a heat exchanger for thermal power and nuclear power plants. It is to provide a porous heat exchanger to be obtained. Another object of the present invention is to provide a thermal power plant, a feed water heating facility for a nuclear power plant, or a reactor water purification facility for a nuclear power plant, which uses the porous heat exchanger.

【0007】[0007]

【課題を解決するための手段】本発明の多孔体熱交換器
は特許請求の範囲の請求項1,2,3又は4に記載の構
成を有し、また、該多孔体熱交換器を用いた本発明の火
力または原子力発電所の給水加熱設備は請求項5又は6
に記載の構成を有し、また該多孔体熱交換器を用いた本
発明の原子力発電所の原子炉水浄化設備は請求項7に記
載の構成を有する。
A porous heat exchanger according to the present invention has the structure described in claim 1, claim 2, claim 3 or claim 4, and the porous heat exchanger is used. According to the present invention, there is provided the thermal power supply or the feed water heating equipment for a nuclear power plant according to claim 5 or 6.
The nuclear reactor water purification facility of a nuclear power plant of the present invention using the porous heat exchanger has the configuration according to claim 7.

【0008】[0008]

【作用】多孔体熱交換器において多孔体の膜を介して接
する高温流体と低温流体の組み合わせは、図5の
の3通りある。熱交換器としては、高温流体の温度を効
率的に下げると共に、低温流体の温度を効率的に高める
必要がある。この観点から、3つの組み合わせを比較す
る。
In the porous body heat exchanger, there are three combinations of the high temperature fluid and the low temperature fluid which are in contact with each other through the porous membrane as shown in FIG. As a heat exchanger, it is necessary to efficiently lower the temperature of the high temperature fluid and efficiently raise the temperature of the low temperature fluid. From this point of view, the three combinations are compared.

【0009】図5中、の高温流体及び低温流体がとも
に液体の場合には、熱伝導による熱の移動だけでなく、
高温流体は蒸発により気化熱が奪われて温度が低下し、
他方、この蒸発した蒸気は膜を透過して低温流体の中に
入り、低温流体では該蒸気の凝縮により温度が上昇す
る。このため、効率的に高温流体と低温流体の温度を変
化させることができる。高温流体たる液自体は、膜が液
を透過させない性質のものであるため、膜内に侵入せ
ず、従って蒸気の透過を妨害しない。
When both the high temperature fluid and the low temperature fluid in FIG. 5 are liquids, not only the heat transfer by heat conduction but
The high temperature fluid loses its heat of vaporization due to evaporation and its temperature drops,
On the other hand, the vaporized vapor permeates the membrane and enters the cryogenic fluid, where the vapor rises in temperature due to condensation of the vapor. Therefore, it is possible to efficiently change the temperatures of the high temperature fluid and the low temperature fluid. The liquid itself, which is a hot fluid, does not penetrate into the membrane and therefore does not impede the permeation of vapor, since the liquid itself has the property of being impermeable to liquid.

【0010】の高温流体が蒸気で低温流体が液体の場
合には、熱伝導による熱の移動だけでなく、高温流体た
る蒸気が膜を透過して低温流体中に入り、低温流体は該
蒸気の凝縮により温度が上昇する。一方、高温流体側で
は、熱伝導により、高温流体の一部が凝縮する。これに
より生じた水滴は疎水性の膜を透過することができず、
重力落下等により除去されるため、伝熱面が蒸気と直接
接触できるようになり、通常の熱伝達に比べて効率が高
い。このため、高温流体の温度も効率的に低下させるこ
とができる。
When the high temperature fluid is steam and the low temperature fluid is liquid, not only the heat is transferred by heat conduction but also the high temperature fluid vapor permeates the membrane and enters the low temperature fluid. The temperature rises due to condensation. On the other hand, on the high temperature fluid side, a part of the high temperature fluid is condensed by heat conduction. The resulting water droplets cannot penetrate the hydrophobic membrane,
Since it is removed by gravitational drop, the heat transfer surface can come into direct contact with steam, which is more efficient than ordinary heat transfer. Therefore, the temperature of the high temperature fluid can also be efficiently reduced.

【0011】の高温流体が液体で低温流体が蒸気の場
合には、蒸発により高温流体の熱が奪われるが、低温側
の流体中で凝縮しないため、低温流体の温度を高める効
果は少ない。したがって、低温流体中の熱を回収するた
めには、他の装置が必要となる。
When the high temperature fluid is a liquid and the low temperature fluid is a vapor, the heat of the high temperature fluid is removed by evaporation, but since it does not condense in the low temperature side fluid, the effect of increasing the temperature of the low temperature fluid is small. Therefore, another device is required to recover the heat in the cryogenic fluid.

【0012】したがって、の方式が温度の変化の観
点から熱交換器として優れている。本発明の多孔体熱交
換器は又はの方式を採っているのである。
Therefore, the method (1) is excellent as a heat exchanger from the viewpoint of temperature change. The porous heat exchanger of the present invention adopts the method of or.

【0013】[0013]

【実施例】本発明をBWR原子力発電所の給水加熱器に
適用した実施例を図2に示す。図2において、1は本発
明による多孔体熱交換器よりなる給水加熱器、10は原
子炉、21はタービン、22は復水器、23,24はポ
ンプ、25は従来型の給水加熱器である。原子炉10の
水蒸気出口と給水加熱器25の高温流体(水蒸気)入口
は配管41で結ばれ、給水加熱器25の高温流体(水蒸
気)出口は多孔体熱交換器1の高温流体(水蒸気)入口
と配管42で結ばれている。復水器22は配管3及びポ
ンプ23を介して多孔体熱交換器1の低温流体(液状の
水)入口と結ばれ、多孔体熱交換器1の低温流体(液状
の水)出口はポンプ24を介して給水加熱器25の低温
流体(液状の水)入口に結ばれ、給水加熱器25の低温
流体(液状の水)出口は原子炉10に結ばれている。
EXAMPLE An example in which the present invention is applied to a feed water heater of a BWR nuclear power plant is shown in FIG. In FIG. 2, 1 is a feed water heater comprising a porous heat exchanger according to the present invention, 10 is a reactor, 21 is a turbine, 22 is a condenser, 23 and 24 are pumps, and 25 is a conventional feed water heater. is there. The steam outlet of the nuclear reactor 10 and the high temperature fluid (steam) inlet of the feed water heater 25 are connected by a pipe 41, and the high temperature fluid (steam) outlet of the feed water heater 25 is a high temperature fluid (steam) inlet of the porous heat exchanger 1. Is connected by a pipe 42. The condenser 22 is connected to the low temperature fluid (liquid water) inlet of the porous body heat exchanger 1 via the pipe 3 and the pump 23, and the low temperature fluid (liquid water) outlet of the porous body heat exchanger 1 is a pump 24. Is connected to the low temperature fluid (liquid water) inlet of the feed water heater 25, and the low temperature fluid (liquid water) outlet of the feed water heater 25 is connected to the reactor 10.

【0014】原子炉10内から出た高温流体である水蒸
気は、温度270℃、圧力70kg/cm2 である。この水
蒸気の一部は配管41を通って給水加熱器25に入り、
その中で低温流体(ポンプ24から来る液状の水)と熱
交換して、温度150℃程度、圧力5kg/cm2 程度に低
下した水蒸気となり、この水蒸気は、その後、配管42
を経て多孔体熱交換器に入り、その中でポンプ23から
来る低温流体(液状の水)と熱交換する。一方、復水器
22から来る低温流体である復水は温度30℃程度の液
状の水であり、この水は配管3からポンプ23を経て多
孔体熱交換器1に入り、そこで前記の水蒸気との熱交換
によって昇温し、次いでポンプ24を介して給水加熱器
25に入り、ここで更に前記水蒸気との熱交換により最
終的に180℃程度に加熱された後、原子炉10へ給水
される。
Steam, which is a high-temperature fluid discharged from the reactor 10, has a temperature of 270 ° C. and a pressure of 70 kg / cm 2 . A part of this steam enters the feed water heater 25 through the pipe 41,
In it, heat is exchanged with the low temperature fluid (liquid water coming from the pump 24) to become steam reduced to a temperature of about 150 ° C. and a pressure of about 5 kg / cm 2 , and this steam is then fed to the pipe 42.
Through the heat exchanger into the porous heat exchanger, where it exchanges heat with the low temperature fluid (liquid water) coming from the pump 23. On the other hand, condensate, which is a low-temperature fluid coming from the condenser 22, is liquid water having a temperature of about 30 ° C., and this water enters the porous heat exchanger 1 from the pipe 3 via the pump 23, where it is mixed with the steam. The temperature is raised by the heat exchange of the water, then enters the feed water heater 25 via the pump 24, where it is finally heated to about 180 ° C. by the heat exchange with the steam, and then fed to the reactor 10. ..

【0015】次に、図1により、前記多孔体熱交換器1
の構造と作用を説明する。この多孔体熱交換器内には図
1(a)に示す疎水性の中空糸膜たる管状の多孔体2よ
りなる伝熱管が図1(b)の如く多数束ねられて設置さ
れている。ポンプ23から来た低温流体(液状の水)F
1は各伝熱管2の中を流れ、他方、配管42から来た高
温流体(水蒸気)F2は各伝熱管2の外側を流れる。こ
こで高温流体F2側の水蒸気は多孔体2内を低温流体F
1側へ拡散透過し、低温流体F1側で凝縮し、その凝縮
水はポンプ23から来た低温流体(水)F1と共にポン
プ24へ行く。同時に多孔体2自体による熱伝導も生じ
る。また、高温流体F2側においても、熱伝導により、
水蒸気の1部が凝縮して水滴となるが、この水滴は疎水
性多孔質膜たる多孔体2を低温流体F1側へ透過するこ
とが出来ず、下方に落下して別途回収される。
Next, referring to FIG. 1, the porous heat exchanger 1 will be described.
The structure and action of is explained. In this porous body heat exchanger, a large number of heat transfer tubes made of a tubular porous body 2 which is a hydrophobic hollow fiber membrane shown in FIG. 1 (a) are bundled and installed as shown in FIG. 1 (b). Low temperature fluid (liquid water) F from the pump 23
1 flows in each heat transfer tube 2, while the high temperature fluid (steam) F2 coming from the pipe 42 flows outside each heat transfer tube 2. Here, the steam on the side of the high temperature fluid F2 flows through the porous body 2 into the low temperature fluid F2.
It diffuses and permeates to the first side, condenses on the low temperature fluid F1 side, and the condensed water goes to the pump 24 together with the low temperature fluid (water) F1 coming from the pump 23. At the same time, heat conduction occurs due to the porous body 2 itself. Further, also on the high temperature fluid F2 side, due to heat conduction,
Part of the water vapor condenses into water droplets, but these water droplets cannot pass through the porous body 2 that is the hydrophobic porous film to the low temperature fluid F1 side, and fall down to be collected separately.

【0016】このときの伝熱係数H(kcal/m2 h℃)
は、実験の結果、次式で与えられることがわかった。
Heat transfer coefficient H at this time (kcal / m 2 h ° C.)
As a result of the experiment, it was found that is given by

【0017】H=(K/δ)・ΔPS /ΔT ここで、Kは定数(=21(kcal/m2 h℃)・(m/
atm ))、δは多孔体2の厚さ(m)、ΔPS は高温流
体F2と低温流体F1の蒸気圧差(atm )、ΔTは高温
流体F2と低温流体F1の温度差(℃)である。この実
施例の場合について試算してみる。高温流体の入口温度
および出口温度を夫々150℃および50℃、低温流体
の入口温度および出口温度を夫々30℃および100℃
とし、低温流体側の蒸気圧が無視できるとして、 ΔPS =(高温流体の入口温度150℃での蒸気圧+高
温流体の出口温度50℃での蒸気圧)/2=(4.7+
0.1)/2=2.4atm また、 ΔT=(高温流体温度−低温流体温度)/2=((15
0℃+50℃)/2+(100℃+30℃)/2))/
2=83℃ δが0.001mとすると、伝熱係数Hは600kcal/
2 h℃となる。一方、伝熱管が上記の如き多孔体でな
くて従来の如き金属管である場合の熱伝導のみによる伝
熱係数は、他の条件を同じとすると、13kcal/m2
℃であり、本発明実施例の多孔体伝熱管の方が伝熱係数
が約50倍大きいことがわかる。
H = (K / δ) · ΔP S / ΔT Here, K is a constant (= 21 (kcal / m 2 h ° C.) · (m /
atm)), δ is the thickness (m) of the porous body 2, ΔP S is the vapor pressure difference (atm) between the high temperature fluid F2 and the low temperature fluid F1, and ΔT is the temperature difference (° C) between the high temperature fluid F2 and the low temperature fluid F1. .. A trial calculation will be made for the case of this embodiment. The inlet temperature and outlet temperature of the high temperature fluid are 150 ° C and 50 ° C, respectively, and the inlet temperature and the outlet temperature of the low temperature fluid are 30 ° C and 100 ° C, respectively.
Assuming that the vapor pressure on the low temperature fluid side can be ignored, ΔP S = (vapor pressure at inlet temperature of high temperature fluid of 150 ° C. + vapor pressure at outlet temperature of high temperature fluid of 50 ° C.) / 2 = (4.7+
0.1) /2=2.4 atm Also, ΔT = (high temperature fluid temperature−low temperature fluid temperature) / 2 = ((15
0 ° C + 50 ° C) / 2 + (100 ° C + 30 ° C) / 2)) /
2 = 83 ° C When δ is 0.001m, the heat transfer coefficient H is 600kcal /
m 2 h ° C. On the other hand, when the heat transfer tube is not a porous body as described above but a conventional metal tube, the heat transfer coefficient due to only heat conduction is 13 kcal / m 2 h when other conditions are the same.
It is found that the heat transfer coefficient is about 50 times higher in the porous heat transfer tube of the embodiment of the present invention.

【0018】次に多孔体2の耐熱性について述べる。発
明者らの高温での素材の検討により、有機高分子の多孔
体を使用する場合には、物性が変化し始めるガラス転移
温度以上では長時間の使用が難しいことがわかった。こ
こでは、この観点から、多孔体2としてPTFE(ガラ
ス転移温度150℃)を使用した。PTFEのガラス転
移点は一般文献値では130℃とされているが、工業製
品では、文献に比べて分子量が大きくなっており、ガラ
ス転移点は高くなる傾向にある。
Next, the heat resistance of the porous body 2 will be described. The inventors' study of the material at high temperature revealed that when an organic polymer porous material is used, it is difficult to use it for a long time at a temperature higher than the glass transition temperature at which the physical properties start to change. Here, from this viewpoint, PTFE (glass transition temperature 150 ° C.) was used as the porous body 2. Although the glass transition point of PTFE is 130 ° C. in the general literature value, the molecular weight of industrial products is higher than that in the literature, and the glass transition point tends to be high.

【0019】次に多孔体2の耐圧性について述べる。多
孔体の耐圧性は、機械的な強度だけでなく、耐水性によ
っても決まる。疎水性の多孔体は、蒸気は通すが水を通
さないという特性を持つが、水の圧力が高くなると水が
透過する。多孔体を水が透過しない圧力の上限値(これ
を多孔体の耐水圧という)Pと多孔体の細孔径dに関し
て次の関係が成立する。
Next, the pressure resistance of the porous body 2 will be described. The pressure resistance of the porous body is determined not only by mechanical strength but also by water resistance. The hydrophobic porous body has a property of allowing water vapor to pass therethrough, but it permeates water when the pressure of water increases. The following relationship holds for the upper limit value of the pressure at which water does not permeate the porous body (this is called the water pressure resistance of the porous body) P and the pore diameter d of the porous body.

【0020】P=−4σcos θ/d ここで、σは液体(この場合、水)の表面張力、θは液
体と多孔体素材と成す角度(接触角)である。ここでは
実用的な範囲として0.1μm の細孔径を持つPTFE
膜を使用した。この膜の耐水圧Pは上記式により計算で
き、12kg/cm2 となる。原子炉10の運転条件が70
kg/cm2 であるのに比べて上記の耐水圧の値は小さい。
そこで、運転上での対応策が必要である。この対応策と
して、本実施例では、ポンプ23を設け、ポンプ23の
吐出圧力を5kg/cm2 以上(高温高圧流体の沸騰を抑え
るため)で12kg/cm2 以下に調整するようにした。他
方、ポンプ24の昇圧圧力は70−(5〜12)=65
〜58kg/cm2 に調整し、これにより、原子炉10の運
転条件たる70kg/cm2 の圧力を得る様にした。これに
より多孔体熱交換器1での圧力は多孔体2の上記耐水圧
12kg/cm2 以下にできる。
P = -4σ cos θ / d where σ is the surface tension of the liquid (water in this case), and θ is the angle (contact angle) between the liquid and the porous material. Here, PTFE with a pore size of 0.1 μm is used as a practical range.
A membrane was used. The water pressure resistance P of this membrane can be calculated by the above formula and is 12 kg / cm 2 . The operating condition of the reactor 10 is 70
Compared with kg / cm 2 , the above water pressure resistance value is small.
Therefore, it is necessary to take measures for driving. As a countermeasure against this, in this embodiment, the pump 23 is provided and the discharge pressure of the pump 23 is adjusted to 5 kg / cm 2 or more (to suppress boiling of the high-temperature high-pressure fluid) to 12 kg / cm 2 or less. On the other hand, the boost pressure of the pump 24 is 70- (5-12) = 65.
It was adjusted to ~58kg / cm 2, thereby, was set to obtain a pressure operating conditions serving 70 kg / cm 2 of the reactor 10. As a result, the pressure in the porous body heat exchanger 1 can be set to the water pressure resistance of the porous body 2 of 12 kg / cm 2 or less.

【0021】本実施例によれば、高い伝熱係数を持つこ
とができるため、給水加熱器の大きさを従来の1/50
と小さくすることができる。また、給水加熱器の大きさ
を変えない場合には熱効率の大幅な向上が可能となる。
According to this embodiment, since the high heat transfer coefficient can be obtained, the size of the feed water heater can be reduced to 1/50 of that of the conventional one.
And can be made smaller. Further, when the size of the feed water heater is not changed, the thermal efficiency can be greatly improved.

【0022】次に本発明を原子力発電所の原子炉水の浄
化系に適用した場合の実施例を図3に示す。図3におい
て、1は本発明による多孔体熱交換器(その構造は図2
と同様である)、10は原子炉、11は再生熱交換器、
12は非再生熱交換器、13は炉水浄化装置、14はポ
ンプである。原子炉10と再生熱交換器11の高温流体
入口が配管43によって結ばれ、再生交換器11の高温
流体出口は多孔体熱交換器1の高温流体入口と配管44
で結ばれ、多孔体熱交換器1の高温流体出口は配管45
で非再生熱交換器12の高温流体入口に結ばれ、非再生
熱交換器12の高温流体出口は炉水浄化装置13入口に
結ばれている。炉水浄化装置13の出口はポンプ14を
介して配管31により多孔体熱交換器1の低温流体入口
に結ばれ、多孔体熱交換器1の低温流体出口は配管32
により再生熱交換器11の低温流体入口に結ばれ、再生
熱交換器11の低温流体出口は配管33で原子炉10と
結ばれている。また、非再生熱交換器12の低温流体側
は、発電所の冷却系統(図示せず)に接続されている。
Next, FIG. 3 shows an embodiment in which the present invention is applied to a reactor water purification system of a nuclear power plant. In FIG. 3, reference numeral 1 is a porous heat exchanger according to the present invention (the structure of which is shown in FIG.
10 is a reactor, 11 is a regenerative heat exchanger,
Reference numeral 12 is a non-regeneration heat exchanger, 13 is a reactor water purification device, and 14 is a pump. The high temperature fluid inlet of the reactor 10 and the regenerative heat exchanger 11 are connected by a pipe 43, and the high temperature fluid outlet of the regenerator 11 is connected to the high temperature fluid inlet of the porous heat exchanger 1 and the pipe 44.
The high temperature fluid outlet of the porous heat exchanger 1 is connected to the pipe 45.
Is connected to the high temperature fluid inlet of the non-regenerative heat exchanger 12, and the high temperature fluid outlet of the non-regenerative heat exchanger 12 is connected to the inlet of the reactor water purifying device 13. The outlet of the reactor water purifying device 13 is connected to the low temperature fluid inlet of the porous body heat exchanger 1 by the pipe 31 via the pump 14, and the low temperature fluid outlet of the porous body heat exchanger 1 is the pipe 32.
Is connected to the low temperature fluid inlet of the regenerative heat exchanger 11, and the low temperature fluid outlet of the regenerative heat exchanger 11 is connected to the nuclear reactor 10 by the pipe 33. Further, the low temperature fluid side of the non-regenerative heat exchanger 12 is connected to the cooling system (not shown) of the power plant.

【0023】原子炉10から出た高温流体(炉水)4は
温度270℃、圧力70kg/cm2 の液状の水である。こ
れが再生熱交換器11で冷却され、温度120〜150
℃となり、約50%の熱量を回収できる。この時の圧力
は70kg/cm2 で殆ど変化しない。再生熱交換器11を
出た高温流体(炉水)4は、本発明による多孔体熱交換
器1に入り、ここで更に冷却される。その後、非再生熱
交換器12を通り、30℃まで温度が低下する。この炉
水は、次いで浄化装置13で浄化された後、低温流体
(液状の水)としてポンプ14及び配管31を介して、
多孔体熱交換器1に入り、配管32、再生熱交換器11
を通り、180℃程度に加熱されて最終的に配管33を
経て原子炉10に戻る。
The high temperature fluid (reactor water) 4 discharged from the nuclear reactor 10 is liquid water having a temperature of 270 ° C. and a pressure of 70 kg / cm 2 . This is cooled by the regenerative heat exchanger 11, and the temperature is 120 to 150.
The temperature reaches ℃, and about 50% of the heat can be recovered. The pressure at this time is 70 kg / cm 2 and hardly changes. The hot fluid (reactor water) 4 exiting the regenerative heat exchanger 11 enters the porous heat exchanger 1 according to the present invention, where it is further cooled. After that, the temperature passes through the non-regenerative heat exchanger 12, and the temperature drops to 30 ° C. This reactor water is then purified by the purifying device 13, and then as a low temperature fluid (liquid water) via the pump 14 and the pipe 31.
Entering the porous heat exchanger 1, the pipe 32, the regenerative heat exchanger 11
And is heated to about 180 ° C., and finally returns to the reactor 10 through the pipe 33.

【0024】ここで、多孔体熱交換器1では疎水性中空
糸膜たる多孔体2の外側を高温流体が、また内側を低温
流体が流れる(但し、この関係は逆であってもよい)。
その伝熱を詳しく述べる。本実施例では、高温流体およ
び低温流体はいずれも液状の水である。多孔体2による
熱伝導が生じると共に、高温流体では蒸発が起り、蒸発
した水蒸気は多孔体2を低温流体側へ拡散透過し、低温
流体側で凝縮する。多孔体2は疎水性であり、高温流体
側から低温流体側へ液体の形で水が透過することはな
い。多孔体を透過する流体の移動は水蒸気のみであるか
ら、高温流体側の不純物が低温流体側に移動することは
ない。
Here, in the porous body heat exchanger 1, a high-temperature fluid flows outside the porous body 2, which is a hydrophobic hollow fiber membrane, and a low-temperature fluid flows inside the porous body 2 (however, the relationship may be reversed).
The heat transfer will be described in detail. In this embodiment, both the high temperature fluid and the low temperature fluid are liquid water. The heat conduction by the porous body 2 occurs, evaporation occurs in the high temperature fluid, and the evaporated water vapor diffuses and permeates the porous body 2 to the low temperature fluid side and condenses on the low temperature fluid side. The porous body 2 is hydrophobic, and water does not permeate in the form of liquid from the high temperature fluid side to the low temperature fluid side. Since only the water vapor moves through the porous body, the impurities on the high temperature fluid side do not move to the low temperature fluid side.

【0025】多孔体の耐熱性については前記第1の実施
例と同じである。また、耐圧性についても、前記第1の
実施例と同じであるが、高温流体側と低温流体側の圧力
はいずれも原子炉内の圧力とほぼ同じであって圧力差が
ない(ポンプ14は送液用であり加圧の役は殆んどな
い)から、圧力調整の手段を特に施さなくても、膜の耐
水圧を超えることはない。
The heat resistance of the porous body is the same as that of the first embodiment. Further, the pressure resistance is the same as that of the first embodiment, but the pressures on the high temperature fluid side and the low temperature fluid side are almost the same as the pressure inside the reactor and there is no pressure difference (the pump 14 is Since it is for liquid transfer and has almost no role of pressurization), the water pressure resistance of the membrane will not be exceeded even if no means for adjusting the pressure is provided.

【0026】本実施例によれば、高い伝熱係数を持つこ
とができるため、炉水浄化系の熱交換器の大きさを小さ
くできることができ、また、熱交換器の大きさを変えな
い場合には熱効率の大幅な向上が可能となる。また、浄
化装置13の大きさも小さくし得る。
According to this embodiment, since a high heat transfer coefficient can be obtained, the size of the heat exchanger of the reactor water purification system can be reduced, and the size of the heat exchanger is not changed. The thermal efficiency can be greatly improved. Further, the size of the purification device 13 can be reduced.

【0027】上記各実施例では、有機高分子であるPT
FEの膜よりなる多孔体を用いたが、多層構造の膜より
なる伝熱管を用いても良い。図4に多層構造の伝熱管の
構造の一例を示す。本実施例では、機械的強度の大きい
金属などの多孔体の管6の内側と外側に疎水性有機高分
子の多孔体2を設けたものである。本実施例によれば、
伝熱管の機械的な強度の増大が図れる。また、内外両側
に疎水性多孔体2を設けたので、金属多孔体6の中に
は、蒸気の透過を妨げる液体としての水が侵入すること
がない。
In each of the above embodiments, PT which is an organic polymer is used.
Although the porous body made of the FE film is used, a heat transfer tube made of a multi-layered film may be used. FIG. 4 shows an example of the structure of a heat transfer tube having a multilayer structure. In this embodiment, a porous body 2 of a hydrophobic organic polymer is provided inside and outside a tube 6 of a porous body such as a metal having high mechanical strength. According to this embodiment,
The mechanical strength of the heat transfer tube can be increased. Further, since the hydrophobic porous bodies 2 are provided on both the inner and outer sides, water as a liquid that prevents vapor permeation does not enter the porous metal body 6.

【0028】以上の実施例では、有機高分子の多孔体を
用いたが、炭素は疎水性を持つので、炭素、炭化ホウ
素、炭化窒素などの炭素無機化合物の多孔質焼結体を多
孔体に用いることができる。本実施例によれば、耐熱
性、耐圧性ともに高くできる。この場合も、図4と同
様、多層構造の伝熱管としてもよい。
In the above examples, the organic polymer porous body was used. However, since carbon has hydrophobicity, a porous sintered body of a carbon inorganic compound such as carbon, boron carbide or nitrogen carbide is used as the porous body. Can be used. According to this embodiment, both heat resistance and pressure resistance can be increased. In this case as well, as in FIG. 4, a heat transfer tube having a multilayer structure may be used.

【0029】[0029]

【発明の効果】本発明によれば、高い伝熱係数を持つ多
孔体熱交換器を得ることができるため、これを用いるこ
とにより給水加熱器や原子炉水浄化系熱交換器などの熱
交換器の大きさを著しく小さくすることができる。ま
た、熱交換器の大きさを従来と同じにする場合には熱効
率の大幅な向上が可能となる。
According to the present invention, a porous heat exchanger having a high heat transfer coefficient can be obtained. Therefore, by using this, a heat exchanger such as a feed water heater or a reactor water purification system heat exchanger can be obtained. The size of the vessel can be significantly reduced. Further, when the size of the heat exchanger is the same as the conventional one, the thermal efficiency can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多孔体熱交換器の一実施例を示した
図。
FIG. 1 is a view showing an embodiment of a porous heat exchanger of the present invention.

【図2】本発明による多孔体熱交換器を原子力発電所の
給水系に適用した実施例を示した図。
FIG. 2 is a diagram showing an embodiment in which a porous heat exchanger according to the present invention is applied to a water supply system of a nuclear power plant.

【図3】本発明による多孔体熱交換器を原子力発電所の
原子炉水浄化系に適用した実施例を示した図。
FIG. 3 is a diagram showing an embodiment in which the porous heat exchanger according to the present invention is applied to a reactor water purification system of a nuclear power plant.

【図4】本発明による多孔体熱交換器の他の一実施例を
示した図。
FIG. 4 is a view showing another embodiment of the porous heat exchanger according to the present invention.

【図5】多孔体熱交換器の高温、低温両流体の組合せと
作用の説明図。
FIG. 5 is an explanatory view of the combination and action of both the high temperature fluid and the low temperature fluid of the porous body heat exchanger.

【符号の説明】[Explanation of symbols]

1…多孔体熱交換器 2…多孔体 6…多孔金属管 10…原子炉 11…再生熱交換器 12…非再生熱交換
器 13…炉水浄化装置 21…タービン 22…復水器 23,24…ポンプ 25…給水加熱器
DESCRIPTION OF SYMBOLS 1 ... Porous body heat exchanger 2 ... Porous body 6 ... Porous metal tube 10 ... Reactor 11 ... Regeneration heat exchanger 12 ... Non-regeneration heat exchanger 13 ... Reactor water purification device 21 ... Turbine 22 ... Condenser 23, 24 … Pump 25… Water heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西野由高 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 馬場 務 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 澤 俊雄 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshitaka Nishino 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Hiritsu Manufacturing Co., Ltd.Energy Research Institute (72) Makoto Baba 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Hiritsu Co., Ltd. (72) Inventor Toshio Sawa 1168 Moriyama-cho, Hitachi City, Ibaraki Pref.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 蒸気を透過させるが液は透過させない多
孔体よりなる伝熱管を介して、液または蒸気の状態の高
温流体と液の状態の低温流体とを接せしめる様に構成し
たことを特徴とする多孔体熱交換器。
1. A high-temperature fluid in a liquid or vapor state and a low-temperature fluid in a liquid state are brought into contact with each other through a heat transfer tube made of a porous material that allows vapor to pass through but does not allow liquid to pass through. And a porous heat exchanger.
【請求項2】 前記多孔体が、高温流体の温度以上のガ
ラス転移温度を持つ有機高分子材からなることを特徴と
する請求項1の多孔体熱交換器。
2. The porous heat exchanger according to claim 1, wherein the porous body is made of an organic polymer material having a glass transition temperature equal to or higher than the temperature of the high temperature fluid.
【請求項3】 前記多孔体が炭素または炭素無機化合物
からなる請求項1の多孔体熱交換器。
3. The porous heat exchanger according to claim 1, wherein the porous body is made of carbon or a carbon inorganic compound.
【請求項4】 蒸気を透過させるが液は透過させない多
孔体で機械的強度の大きい多孔管の内側および外側を覆
ってなる伝熱管を介して、液または蒸気の状態の高温流
体と液の状態の低温流体とを接せしめる様に構成したこ
とを特徴とする多孔体熱交換器。
4. A high-temperature fluid in a liquid or vapor state and a liquid state via a heat transfer tube covering the inside and the outside of a porous tube having a high mechanical strength, which is a porous body permeable to vapor but impermeable to liquid. A heat exchanger for porous bodies, characterized in that it is configured so as to be brought into contact with the low temperature fluid.
【請求項5】 火力または原子力発電所の給水加熱設備
において、給水加熱器として請求項1,2,3又は4の
多孔体熱交換器を用い、その高温流体を当該発電所で発
生した水蒸気とし、低温流体を給水としたことを特徴と
する火力または原子力発電所の給水加熱設備。
5. In a feed water heating facility of a thermal power or nuclear power plant, the porous heat exchanger according to claim 1, 2, 3 or 4 is used as a feed water heater, and the high temperature fluid is steam generated in the power plant. , A feed water heating facility for a thermal power or nuclear power plant, characterized in that a low temperature fluid is used as the feed water.
【請求項6】 高温流体と低温流体の圧力差を多孔体の
耐水圧以下とする様に給水ポンプ圧を調整した請求項5
の火力または原子力発電所の給水加熱設備。
6. The water supply pump pressure is adjusted so that the pressure difference between the high temperature fluid and the low temperature fluid is not more than the water pressure resistance of the porous body.
Water heating equipment for thermal power or nuclear power plants.
【請求項7】 原子力発電所の原子炉水浄化設備におい
て、請求項1の多孔体熱交換器を該設備中の熱交換器と
して用い、その高温流体を原子炉から炉水浄化装置に行
く炉水とし、低温流体を炉水浄化装置から出て原子炉に
戻る炉水としたことを特徴とする原子力発電所の原子炉
水浄化設備。
7. A reactor water purification facility for a nuclear power plant, wherein the porous heat exchanger according to claim 1 is used as a heat exchanger in the facility, and the high-temperature fluid from the reactor goes to the reactor water purification device. A reactor water purification facility for a nuclear power plant, characterized in that it is water, and low-temperature fluid is used as reactor water that exits the reactor water purification device and returns to the reactor.
JP22916991A 1991-09-09 1991-09-09 Porous body type heat exchanger and facilities where they are employed Pending JPH0571882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22916991A JPH0571882A (en) 1991-09-09 1991-09-09 Porous body type heat exchanger and facilities where they are employed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22916991A JPH0571882A (en) 1991-09-09 1991-09-09 Porous body type heat exchanger and facilities where they are employed

Publications (1)

Publication Number Publication Date
JPH0571882A true JPH0571882A (en) 1993-03-23

Family

ID=16887873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22916991A Pending JPH0571882A (en) 1991-09-09 1991-09-09 Porous body type heat exchanger and facilities where they are employed

Country Status (1)

Country Link
JP (1) JPH0571882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980301B2 (en) 2002-07-25 2005-12-27 Cubic Co., Ltd Method and apparatus for three-dimensional surface morphometry
CN107149865A (en) * 2017-05-24 2017-09-12 华中农业大学 CO based on vapor mass transfer enhancement waste heat recovery2Chemical absorbing System and method for
CN110170235A (en) * 2019-06-14 2019-08-27 华中农业大学 The double film heat exchangers of hydrophobe strengthen the CO of waste heat recycling2Chemical absorbing System and method for

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980301B2 (en) 2002-07-25 2005-12-27 Cubic Co., Ltd Method and apparatus for three-dimensional surface morphometry
CN107149865A (en) * 2017-05-24 2017-09-12 华中农业大学 CO based on vapor mass transfer enhancement waste heat recovery2Chemical absorbing System and method for
CN110170235A (en) * 2019-06-14 2019-08-27 华中农业大学 The double film heat exchangers of hydrophobe strengthen the CO of waste heat recycling2Chemical absorbing System and method for

Similar Documents

Publication Publication Date Title
JP4491153B2 (en) A method for purifying a liquid by membrane distillation, in particular for the purpose of producing demineralized water from seawater, blackish water or process water
JP4156236B2 (en) Potable water distillation system
US6254734B1 (en) Barometric evaporation process and evaporator
Ding et al. Analysis of a solar-powered membrane distillation system
US4595459A (en) Desalinization apparatus
US20210262736A1 (en) High-efficiency desalination
US20090218210A1 (en) Energy-efficient distillation system
US20170361277A1 (en) Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes
JPS58202089A (en) Method and device for continuously distillating hydrothermal aqueous solution containing low volatile solute
WO2010026953A1 (en) Energy-efficient method and device for manufacturing distilled water and/or concentrated water
Song et al. Heat transfer study of PVDF hollow fiber heat exchanger for desalination process
TW201605739A (en) Vacuum membrane distillation desalination device for ship
KR102215050B1 (en) Apparatus for membrane distillation using solar absorber and heat pump
Ji et al. Improving heat transfer and water recovery performance in high‐moisture flue gas condensation using silicon carbide membranes
CN106925124B (en) Membrane module with heat recovery function
JPH0571882A (en) Porous body type heat exchanger and facilities where they are employed
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
Van Gassel et al. An energy-efficient membrane distillation process
Karhe et al. A solar desalination system using humidification-dehumidification process-A review of recent research
JPH067644A (en) Film distillation apparatus
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
CN113203310A (en) Stack type heat permeator and heat energy-hydraulic energy conversion system
Aboabboud et al. An energy saving atmospheric evaporator utilizing low grade thermal or waste energy
JPS60110388A (en) Seawater desalting apparatus
US20240075429A1 (en) Thermoelectric water gap membrane distillation system and process