JPH067644A - Film distillation apparatus - Google Patents

Film distillation apparatus

Info

Publication number
JPH067644A
JPH067644A JP16716992A JP16716992A JPH067644A JP H067644 A JPH067644 A JP H067644A JP 16716992 A JP16716992 A JP 16716992A JP 16716992 A JP16716992 A JP 16716992A JP H067644 A JPH067644 A JP H067644A
Authority
JP
Japan
Prior art keywords
region
membrane
fluid flowing
cooling water
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16716992A
Other languages
Japanese (ja)
Inventor
Hideaki Kurokawa
秀昭 黒川
Takayuki Matsumoto
隆行 松本
Toshio Sawa
俊雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16716992A priority Critical patent/JPH067644A/en
Publication of JPH067644A publication Critical patent/JPH067644A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the permeation performance of a film distillation method using a hydrophobic porous film and to decrease heat loss. CONSTITUTION:This apparatus is constituted of a film distillation cell 100 consisting of a raw liquid chamber 103 in which raw liquid 102 flows and a cooling water chamber 107 in which cooling water 104 flows and a hydrophobic porous film 101 interposed between both (103 and 105), a heat exchanger 108 for performing heat exchange between an outlet cooling water 106 of higher temp. and an inlet raw liquid 107 of lower temp., a heater 109 for further heating the raw liquid at the outlet of the heat exchanger 108, a cooler 110 for cooling the cooling water of higher temp. at the outlet of the heat exchanger, pumps 111, 112, raw liquid and cooling tanks 115, 116 and a pressure reducing device 117.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は疎水性多孔質膜を用いた
膜蒸留法に係り、特に、透過速度を向上させることによ
り顕熱移動による熱損失を大幅に低減できるシステムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane distillation method using a hydrophobic porous membrane, and more particularly to a system capable of significantly reducing heat loss due to sensible heat transfer by improving a permeation rate.

【0002】[0002]

【従来の技術】疎水性多孔質膜を用いての膜蒸留法に
は、液体は通さないが気体は通すという膜の性質から、
膜に流体を接触させて流し、この流体から発生し、膜を
通過した蒸気を膜の反対側に位置する冷却面上で冷却凝
縮する間接接触法と、膜を通過した蒸気を膜の反対側に
流れる別の流体に直接吸収させる直接接触法がある。前
者の方法では、原液の流れる領域,凝縮水の流れる領域
と水蒸気の移動する領域及び膜と冷却面とから構成され
るため、装置の構造が複雑であり、装置化が困難なばか
りでなく、発生した蒸気は膜ばかりでなく蒸気の移動層
(拡散層)も移動するため、その移動抵抗が蒸気の発生
量を低下させ、単位膜面積当りの蒸気発生量が小さくな
るが、生成水が、直接、取り出せるというメリットがあ
る。また、後者の方式では、膜を介して原液と冷却水と
が流れる簡単な装置であり、蒸気の移動距離が膜だけで
あるため、極めて短く,移動抵抗も小さいため有効に膜
を利用することができるが、生成水は冷却水の中から取
り出さねばならない。ここで、直接接触型の膜蒸留法の
系統図を図2に示す。本システムは疎水性多孔質膜201
を介して原液202が流れる原液室203と冷却水20
4が流れる冷却水室205とからなる膜蒸留セル200,
温度の高い冷却水出口206と温度の低い原液入口20
7との間の熱交換器208,熱交換器208出口の原液
をさらに加熱する加熱器209,熱交換器出口の温度の
高い冷却水の冷却器210,原液,冷却水のポンプ21
1,212とから構成される。原液213は、原液ポン
プ211によって、熱交換器208に送られ温度の高い
冷却水206と熱交換される。さらに、この原液は加熱
器209において所定の温度にまで加熱され、膜蒸留セ
ル200の原液室203に送られる。ここで、原液20
2より疎水性多孔質膜201を介して発生する蒸気は、疎
水性多孔質膜201内を通過して冷却水室205側に入
り、低温でながれる冷却水204に凝縮(吸収)され
る。原液202より蒸気を受け取り、同時に蒸気の潜熱
によって温度の高くなった冷却水は、熱交換器208に
おいて原液に熱を取られたあと、冷却水は、冷却水ポン
プ212によって、冷却器210を通り、その一部を生
成水214として系外に取りだした後、再度、膜蒸留セ
ル200に送られる。
2. Description of the Related Art In a membrane distillation method using a hydrophobic porous membrane, due to the nature of the membrane that gas is permeable but liquid is impermeable,
An indirect contact method in which a fluid is brought into contact with a membrane to flow, vapor generated from this fluid and condensed through the membrane is cooled and condensed on a cooling surface located on the opposite side of the membrane, and vapor passing through the membrane is opposite to the membrane. There is a direct contact method in which another fluid is directly absorbed into the fluid. In the former method, since it is composed of the region where the undiluted solution flows, the region where the condensed water flows, the region where the water vapor moves, the film and the cooling surface, the structure of the device is complicated, and not only is it difficult to realize the device, Since the generated steam moves not only in the film but also in the moving layer (diffusion layer) of the steam, its movement resistance lowers the amount of generated steam, and the amount of generated steam per unit membrane area becomes smaller. It has the advantage that it can be taken out directly. The latter method is a simple device in which the undiluted solution and the cooling water flow through the membrane, and the vapor travels only through the membrane, so it is extremely short and the resistance to movement is small, so the membrane should be used effectively. However, the produced water must be taken out of the cooling water. A system diagram of the direct contact membrane distillation method is shown in FIG. This system uses a hydrophobic porous membrane 201
The stock solution chamber 203 and the cooling water 20 through which the stock solution 202 flows
4, a membrane distillation cell 200 including a cooling water chamber 205
Cooling water outlet 206 with high temperature and undiluted solution inlet 20 with low temperature
7, a heat exchanger 208 for further heating the stock solution at the outlet of the heat exchanger 208, a cooler 210 for cooling water having a high temperature at the exit of the heat exchanger, a stock solution, and a pump 21 for the cooling water.
1 and 212. The stock solution 213 is sent to the heat exchanger 208 by the stock solution pump 211 and exchanges heat with the cooling water 206 having a high temperature. Further, this stock solution is heated to a predetermined temperature in the heater 209 and sent to the stock solution chamber 203 of the membrane distillation cell 200. Here, undiluted solution 20
The steam generated through the hydrophobic porous film 201 from No. 2 passes through the hydrophobic porous film 201, enters the cooling water chamber 205 side, and is condensed (absorbed) into the cooling water 204 flowing at a low temperature. The cooling water, which has received steam from the stock solution 202 and has a high temperature due to the latent heat of the steam at the same time, is subjected to heat by the stock solution in the heat exchanger 208, and then the cooling water passes through the cooler 210 by the cooling water pump 212. A part of the water is taken out of the system as produced water 214 and then sent to the membrane distillation cell 200 again.

【0003】なお、この種の装置として関連するものに
はたとえば、特開昭50−3753号公報,特開昭60−118205
号公報およびプロシーディングス オブ ザ フィフテ
ィスアイエスティーエス(Proceedings of the 15th I
STS (1986) p.1355−1359)が挙げられ
る。
Devices related to this type of device are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 50-3753 and 60-118205.
Publication and Proceedings of the 15th I
STS (1986) p.1355-1359).

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、熱回
収とくに膜を介しての顕熱の移動に対して考慮がされて
おらず、膨大な熱エネルギが必要となるという問題点が
あった。すなわち、本技術では膜もしくは薄い空気層を
介して高温の原液と低温の冷却水とが接触して流れてい
るため、一種の熱交換器となり温度差により熱伝達が起
こる。ここで、水蒸気の移動は、原液の持つ蒸気圧と冷
却水の持つ蒸気圧の差を駆動力として起こるため、原液
側はなるべく蒸気圧が高い、すなわち、温度が高い方
が、また、冷却水側は蒸気圧が低い、温度が低い方が、
単位膜面積当りの蒸気透過量が大きくなる。しかし、前
述した様に、膜を伝熱面とした熱交換器の構造をしてい
るため、原液と冷却水との間の温度差が大きいと顕熱の
移動量も増大し、原液の持つ温度が、蒸気発生のために
有効に利用できないばかりでなく、余分な熱量が移動し
てしまうので、生成水の量に対してかなり多くの熱が必
要となる。図2におけるシステムでは、原水入口と冷却
水出口の間に熱回収を目的とした熱交換器が設置されて
いるが、それでも熱損失量は大きい。さらに、加熱器と
冷却器の両方が必要となり、必要なエネルギは大きくな
る。
The above-mentioned prior art has a problem in that a huge amount of heat energy is required because heat recovery, especially transfer of sensible heat through the membrane, is not taken into consideration. . That is, in the present technology, the high-temperature stock solution and the low-temperature cooling water are in contact with each other through the membrane or the thin air layer, so that the flow forms a kind of heat exchanger and heat transfer occurs due to the temperature difference. Here, the movement of water vapor occurs as a driving force due to the difference between the vapor pressure of the stock solution and the vapor pressure of the cooling water. Therefore, on the stock solution side, the vapor pressure is as high as possible. Side has low vapor pressure, lower temperature,
The amount of vapor permeation per unit membrane area becomes large. However, as described above, since the structure of the heat exchanger uses the membrane as the heat transfer surface, if the temperature difference between the stock solution and the cooling water is large, the amount of transfer of sensible heat also increases and the stock solution has Not only is the temperature not available effectively due to steam generation, but also an excessive amount of heat is transferred, so a considerable amount of heat is required for the amount of water produced. In the system shown in FIG. 2, a heat exchanger for heat recovery is installed between the raw water inlet and the cooling water outlet, but the heat loss is still large. Furthermore, both a heater and a cooler are required, and the required energy is large.

【0005】また、特に宇宙空間におけるステーション
や宇宙船では、放熱することが困難であるため、廃熱の
少ないシステムが望まれている。
Further, since it is difficult to dissipate heat especially in a station or spacecraft in outer space, a system with less waste heat is desired.

【0006】本発明の目的は、係る顕熱の移動による熱
ロスを低減するための新しいシステムを提供することに
ある。
An object of the present invention is to provide a new system for reducing heat loss due to the transfer of sensible heat.

【0007】[0007]

【課題を解決するための手段】このような問題点を解決
するには、直接接触の場合は膜内,間接接触の場合は拡
散層の空気濃度を低減、すなわち減圧状態に保つ手段を
設置することで解決できる。
In order to solve such a problem, a means for reducing the air concentration in the membrane in the case of direct contact and for the indirect contact, that is, maintaining a reduced pressure state is installed. You can solve it.

【0008】[0008]

【作用】すなわち、膜蒸留法では、常に原液側と冷却水
側とには蒸気圧差をつけるために温度差を設ける必要が
ある。したがって、原液側は加熱,冷却水側は加熱した
分だけ冷却しなければならない。そのため、蒸留操作を
行うには相変化に必要な熱エネルギに加えて、顕熱移動
に伴う熱損失分だけ熱エネルギが必要になり、潜熱分の
約2倍の熱エネルギが必要になることが知られている。
しかし、膜内もしくは空気層、すなわち、透過する水蒸
気が拡散移動する領域を真空に保持すると、膜内の水蒸
気の拡散速度は大幅に増大し、同じ顕熱移動量に対し
て、潜熱による移動量を増大することができる。したが
って、潜熱の移動量に対して顕熱の移動量が無視できる
くらいに増大でき、熱損失は大幅に低減する。
That is, in the membrane distillation method, it is always necessary to provide a temperature difference between the raw liquid side and the cooling water side in order to make a vapor pressure difference. Therefore, the stock solution side must be heated and the cooling water side must be cooled by the amount of heat. Therefore, in order to perform the distillation operation, in addition to the heat energy required for the phase change, the heat energy corresponding to the heat loss due to the sensible heat transfer is required, and the heat energy about twice the latent heat is required. Are known.
However, if a vacuum is maintained in the film or in the air layer, that is, the region where the permeating water vapor diffuses and moves, the diffusion speed of the water vapor in the film increases significantly, and the amount of transfer by latent heat is the same as the amount of sensible heat transfer. Can be increased. Therefore, the transfer amount of sensible heat can be increased to a negligible amount with respect to the transfer amount of latent heat, and the heat loss is significantly reduced.

【0009】[0009]

【実施例】以下、図面を用いて本発明の実施例を詳細に
述べる。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0010】図1に直接接触型の膜蒸留法における実施
例を示す。本システムは疎水性多孔質膜101を介して
原液102が流れる原液室103と冷却水104が流れ
る冷却水室105とからなる膜蒸留セル100,温度の
高い冷却水出口106と温度の低い原液入口107との
間の熱交換器108,熱交換器108出口の原液をさら
に加熱する加熱器109,熱交換器出口の温度の高い冷
却水の冷却器110,原液,冷却水のポンプ111,1
12,原液,冷却水タンク115,116および減圧装
置117とから構成される。原液タンク115内入った
原液113は、原液ポンプ111によって、熱交換器1
08に送られ温度の高い冷却水106と熱交換される。
さらに、この原液は加熱器109において所定の温度に
まで加熱され、膜蒸留セル100の原液室103に送ら
れる。ここで、原液102より疎水性多孔質膜101を
介して発生する蒸気は、疎水性多孔質膜101内を通過
して冷却水室105側に入り、低温で流れる冷却水10
4に凝縮(吸収)される。原液102より蒸気を受け取
り、同時に蒸気の潜熱によって温度の高くなった冷却水
は、熱交換器108において原液に熱をとられたあと、
冷却水タンク116に一度貯められた後、冷却水ポンプ
112によって、冷却器110を通り、その一部を生成
水114として系外に取りだした後、再度、膜蒸留セル
100に送られる。ここで、本システムの系内は全て密
閉系であり、かつ減圧装置117によって真空状態もし
くは大気圧よりも低い圧力になるように調整されてい
る。そのため、膜内の空気が除去され、膜内の水蒸気の
移動が拡散から対流に近づく。通常膜内の拡散速度F
は、数1で示される一方拡散の式に従うことが知られて
いる。
FIG. 1 shows an example of the direct contact membrane distillation method. This system comprises a membrane distillation cell 100 including a stock solution chamber 103 in which a stock solution 102 flows through a hydrophobic porous membrane 101 and a cooling water chamber 105 in which a cooling water 104 flows, a high temperature cooling water outlet 106 and a low temperature stock solution inlet. Heat exchanger 108 between the heat exchanger 107 and the heater 107, a heater 109 for further heating the stock solution at the outlet of the heat exchanger 108, a cooler 110 for cooling water having a high temperature at the exit of the heat exchanger, pumps 111, 1 for the stock solution and the cooling water.
12, a stock solution, cooling water tanks 115 and 116, and a pressure reducing device 117. The stock solution 113 contained in the stock solution tank 115 is transferred to the heat exchanger 1 by the stock solution pump 111.
It is sent to 08 and is heat-exchanged with the cooling water 106 with high temperature.
Further, this stock solution is heated to a predetermined temperature in the heater 109 and sent to the stock solution chamber 103 of the membrane distillation cell 100. Here, the steam generated from the undiluted solution 102 through the hydrophobic porous film 101 passes through the hydrophobic porous film 101, enters the cooling water chamber 105 side, and flows at a low temperature.
4 is condensed (absorbed). The cooling water, which has received steam from the undiluted solution 102 and has a high temperature due to the latent heat of the steam, is heated by the undiluted solution in the heat exchanger 108,
After the water is once stored in the cooling water tank 116, it is passed through the cooler 110 by the cooling water pump 112, a part of the water is taken out of the system as the produced water 114, and then sent to the membrane distillation cell 100 again. Here, the inside of the system of the present system is a closed system, and is adjusted by a decompression device 117 to be in a vacuum state or a pressure lower than atmospheric pressure. Therefore, the air in the film is removed, and the movement of water vapor in the film approaches from convection to diffusion. Diffusion rate F in normal film
Is known to follow the one-sided diffusion equation shown in Eq.

【0011】[0011]

【数1】 [Equation 1]

【0012】ここで、DM は膜内の水蒸気の拡散係数、
πは全圧、mは水の分子量、Rはガス定数、Paは空気
の分圧そしてδは膜厚である。この式において、空気分
圧が小さくなればFの値は大きくなり、完全真空になる
とFは無限大になって、膜蒸留法での蒸発速度は熱供給
量に支配されるようになる。数1によって計算した結果
を図3に示す。本結果における計算条件は、原水温度6
0℃、冷却水温度25℃であるが、透過係数(F/ΔP
で定義される)の値は全圧の低下によって上昇し、18
0mmHgまで下がると透過係数は約1.5倍になる。(な
お、138mmHgが60℃の水の飽和蒸気圧である。)
また図3の上に、膜を通しての全移動熱量と潜熱による
移動熱量の比を示すが、これも全圧の低下に伴って、潜
熱の割合が大きくなっている。したがって、系内の圧力
を下げることで透過速度の増大と顕熱移動による熱損失
の低減を図ることができる。
Where D M is the diffusion coefficient of water vapor in the film,
π is the total pressure, m is the molecular weight of water, R is the gas constant, Pa is the partial pressure of air, and δ is the film thickness. In this equation, the value of F becomes large as the air partial pressure becomes small, and becomes infinite as the vacuum becomes perfect, and the evaporation rate in the membrane distillation method is governed by the heat supply amount. The result calculated by Equation 1 is shown in FIG. The calculation condition in this result is that the raw water temperature is 6
Although the temperature is 0 ° C and the cooling water temperature is 25 ° C, the permeability coefficient (F / ΔP
The value of () is defined by
When it goes down to 0 mmHg, the transmission coefficient becomes about 1.5 times. (Note that 138 mmHg is the saturated vapor pressure of water at 60 ° C.)
Further, the ratio of the total amount of heat transferred through the film to the amount of heat transferred by latent heat is shown in the upper part of FIG. 3, and the ratio of latent heat also increases as the total pressure decreases. Therefore, by lowering the pressure in the system, it is possible to increase the permeation rate and reduce heat loss due to sensible heat transfer.

【0013】図4は間接接触型の膜蒸留法における一実
施例を示す。本システムは疎水性多孔質膜401と冷却
板414を介して原液402が流れる原液室403と冷
却水404が流れる冷却水室405と原液から発生した
水蒸気が拡散し冷却板414上で凝縮する空気室406
からなる膜蒸留セル400,原液,冷却水のポンプ40
7,408,加熱器を含む原液タンク409,冷却水タ
ンク410,原液のタンク411,原液供給ポンプ41
2および減圧装置413とから構成される。原液タンク
409内入った原液402は、原液ポンプ407によっ
て、膜蒸留セル400の原液室403に送られる。ここ
で、原液402より疎水性多孔質膜401を介して発生
する蒸気は、疎水性多孔質膜401内を通過して空気室
406側に入り、低温で流れる冷却水404で冷却された
冷却板414上で凝縮する。冷却水は冷却水ポンプ40
8によって、膜蒸留セル400に送られ循環系を作る。
ここで、本システムの系内は全て密閉系であり、かつ減
圧装置413によって真空状態もしくは大気圧よりも低
い圧力になるように調整されている。そのため、膜内と
空気層の空気が除去され、膜内の水蒸気の移動が拡散か
ら対流に近づくことから、透過速度が大幅に上昇する。
したがって、実用に際しては、膜面積を低減できるの
で、装置の小型化につながる。
FIG. 4 shows an embodiment of the indirect contact type membrane distillation method. In this system, a stock solution chamber 403 in which a stock solution 402 flows through a hydrophobic porous membrane 401 and a cooling plate 414, a cooling water chamber 405 in which a cooling water 404 flows, and water vapor generated from the stock solution are diffused and condensed on the cooling plate 414. Chamber 406
Membrane distillation cell 400 consisting of, stock solution, cooling water pump 40
7, 408, stock solution tank 409 including a heater, cooling water tank 410, stock solution tank 411, stock solution supply pump 41
2 and a pressure reducing device 413. The stock solution 402 contained in the stock solution tank 409 is sent to the stock solution chamber 403 of the membrane distillation cell 400 by a stock solution pump 407. Here, the vapor generated from the undiluted solution 402 through the hydrophobic porous film 401 passes through the hydrophobic porous film 401, and passes through the air chamber.
It enters the 406 side and condenses on the cooling plate 414 cooled by the cooling water 404 flowing at a low temperature. The cooling water is the cooling water pump 40.
8 is sent to the membrane distillation cell 400 to form a circulation system.
Here, the inside of the system of the present system is a closed system, and is adjusted by the decompression device 413 to be in a vacuum state or a pressure lower than atmospheric pressure. Therefore, the air in the membrane and the air in the air layer are removed, and the movement of the water vapor in the membrane approaches from convection to the convection, resulting in a significant increase in the permeation rate.
Therefore, in practical use, the film area can be reduced, which leads to downsizing of the device.

【0014】図5は直接接触型の膜蒸留法に使用する減
圧可能な膜モジュール構造の一例を示す。本モジュール
500は管状膜もしくは中空糸膜を対象としている。モ
ジュールには原液の入口501と出口502,冷却水入
口503と出口504、さらに、減圧にするための真空
排気系505の五つの出入口が設置されており、冷却水
の流れる領域と真空排気系とは完全に区別されている。
ここで、各々の出入口から原液と冷却水を流すと、通常
の膜蒸留を行うことができる。しかし、真空排気系50
5を作動させると、減圧部508の圧力が下がり、同時
に管状もしくは中空糸膜内を通して膜内の空気が除去で
き、減圧条件下での膜蒸留を行うことが可能になる。
FIG. 5 shows an example of a depressurizable membrane module structure used in the direct contact membrane distillation method. This module 500 is intended for tubular membranes or hollow fiber membranes. The module is provided with an inlet 501 and an outlet 502 of the undiluted solution, a cooling water inlet 503 and an outlet 504, and five inlets and outlets of a vacuum exhaust system 505 for reducing the pressure, and a cooling water flowing region and a vacuum exhaust system. Are completely distinguished.
Here, when the stock solution and the cooling water are caused to flow from the respective inlets and outlets, ordinary membrane distillation can be performed. However, the vacuum exhaust system 50
When 5 is activated, the pressure in the decompression unit 508 is reduced, and at the same time, the air inside the membrane can be removed through the tubular or hollow fiber membrane, and membrane distillation under reduced pressure conditions can be performed.

【0015】[0015]

【発明の効果】本発明によれば、膜蒸留システムにおけ
る顕熱の移動による熱ロスの問題を解決でき、単位膜面
積当たりの透過速度が増大するためシステムにおける膜
面積を低減でき、装置の小型化が図れる。本システムで
は、放熱の量を大幅に低減でき、閉鎖系での使用にも十
分対応できる。
According to the present invention, the problem of heat loss due to the transfer of sensible heat in a membrane distillation system can be solved, and the permeation rate per unit membrane area is increased, so that the membrane area in the system can be reduced, and the apparatus size can be reduced. Can be realized. With this system, the amount of heat radiation can be greatly reduced, and it can be used sufficiently in a closed system.

【図面の簡単な説明】[Brief description of drawings]

【図1】直接接触型膜蒸留法での実施例の系統図。FIG. 1 is a system diagram of an example of a direct contact membrane distillation method.

【図2】従来の膜蒸留システムの系統図。FIG. 2 is a system diagram of a conventional membrane distillation system.

【図3】減圧の効果の試算例の特性図。FIG. 3 is a characteristic diagram of a trial calculation example of the effect of decompression.

【図4】間接接触型膜蒸留法での実施例の系統図。FIG. 4 is a system diagram of an example of an indirect contact membrane distillation method.

【図5】膜モジュール構造の一例の説明図。FIG. 5 is an explanatory diagram of an example of a membrane module structure.

【符号の説明】[Explanation of symbols]

100…膜蒸留セル、101…疎水性多孔質膜、108
…熱交換器、109…原液加熱器、110…冷却水冷却
器、117…減圧装置。
100 ... Membrane distillation cell, 101 ... Hydrophobic porous membrane, 108
... Heat exchanger, 109 ... Undiluted solution heater, 110 ... Cooling water cooler, 117 ... Decompression device.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】高温の液体が流れる第1の領域と、前記第
1の領域の前記流体よりも低温の液体が流れる第2の領
域と、前記の二つの領域を隔てる疎水性多孔質膜およ
び、前記第1の領域を流れる前記流体を加熱する加熱器
と、前記第2の領域を流れる流体を冷却する冷却器とか
ら構成され、前記第1の領域を流れる流体から発生する
蒸気が、疎水性多孔質膜を通過し、前記第2の領域を流
れる流体に凝縮吸収されることで、前記第1の領域を流
れる前記流体が蒸留され、濃縮される膜蒸留法におい
て、前記疎水性膜内の圧力を低下させる手段を少なくと
も一つ有していることを特徴とする膜蒸留装置
1. A first region in which a high temperature liquid flows, a second region in which a liquid of a temperature lower than the fluid flows in the first region, and a hydrophobic porous membrane separating the two regions. A heater for heating the fluid flowing through the first region and a cooler for cooling the fluid flowing through the second region, wherein vapor generated from the fluid flowing through the first region is hydrophobic. In the hydrophobic membrane in a membrane distillation method in which the fluid flowing in the first region is distilled and concentrated by being condensed and absorbed by the fluid flowing in the second region after passing through the porous membrane. Membrane distillation apparatus having at least one means for lowering the pressure of
【請求項2】高温の液体が流れる第1の領域と、前記第
1の領域の前記流体よりも低温の液体が流れる第2の領
域と、前記第1と第2の領域の間でその前記第1の領域
側との間を隔てる疎水性多孔質膜とおよび、前記第1と
第2の領域の間で前記第2の領域側との間を隔てる冷却
板とで挟まれた第3の領域、および、前記第1の領域を
流れる前記流体を加熱する加熱器と、前記第2の領域を
流れる流体を冷却する冷却器とから構成され、前記第1
の領域を流れる前記流体から発生する蒸気が、前記疎水
性多孔質膜を通過し、前記第2の領域を流れる前記流体
に冷却された冷却板上で凝縮されることで、前記第1の
領域を流れる前記流体が蒸留され、前記第3の領域より
回収される膜蒸留法において、前記第3の領域の圧力を
低下させる手段を少なくとも一つ有していることを特徴
とする膜蒸留装置。
2. A first region in which a liquid having a high temperature flows, a second region in which a liquid having a temperature lower than that of the fluid in the first region flows, and the region between the first and second regions. A third structure sandwiched between a hydrophobic porous membrane separating the first region side and a cooling plate separating the second region side between the first and second regions. An area and a heater for heating the fluid flowing through the first area, and a cooler for cooling the fluid flowing through the second area.
Vapor generated from the fluid flowing in the first region passes through the hydrophobic porous membrane and is condensed on the cooling plate cooled by the fluid flowing in the second region, whereby the first region In the membrane distillation method in which the fluid flowing through the column is distilled and recovered from the third region, at least one means for lowering the pressure in the third region is provided.
【請求項3】請求項1または2において、前記高温の流
体が水溶液であり、前記疎水性多孔質膜を透過する前記
蒸気が水蒸気である膜蒸留装置。
3. The membrane distillation apparatus according to claim 1, wherein the high temperature fluid is an aqueous solution, and the vapor passing through the hydrophobic porous membrane is water vapor.
【請求項4】請求項1または2において、前記高温の流
体が潜水艦や宇宙船などの、閉鎖系空間における人間,
動物および植物等からの排水である膜蒸留装置。
4. A human being in a closed system space such as a submarine or a spacecraft according to claim 1 or 2,
Membrane distillation equipment that is wastewater from animals and plants.
【請求項5】請求項1または2において、前記膜がポリ
テトラフルオロエチレン,ポリプロピレン,ポリエチレ
ン製のいずれかの膜である膜蒸留装置。
5. The membrane distillation apparatus according to claim 1, wherein the membrane is a membrane made of polytetrafluoroethylene, polypropylene or polyethylene.
【請求項6】液体が流れる第1の領域と、別の液体が流
れる第2の領域と、前記の二つの領域を隔てる疎水性多
孔質膜とから構成される膜モジュールにおいて、前記疎
水性多孔質膜の内部の圧力を低下させる手段を少なくと
も一つ有していることを特徴とする膜モジュール。
6. A membrane module comprising a first region in which a liquid flows, a second region in which another liquid flows, and a hydrophobic porous membrane separating the two regions, wherein A membrane module comprising at least one means for reducing the pressure inside the membrane.
【請求項7】請求項6において、前記膜がポリテトラフ
ルオロエチレン,ポリプロピレン,ポリエチレン製のい
ずれかの膜である膜モジュール。
7. The membrane module according to claim 6, wherein the membrane is a membrane made of polytetrafluoroethylene, polypropylene or polyethylene.
JP16716992A 1992-06-25 1992-06-25 Film distillation apparatus Pending JPH067644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16716992A JPH067644A (en) 1992-06-25 1992-06-25 Film distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16716992A JPH067644A (en) 1992-06-25 1992-06-25 Film distillation apparatus

Publications (1)

Publication Number Publication Date
JPH067644A true JPH067644A (en) 1994-01-18

Family

ID=15844702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16716992A Pending JPH067644A (en) 1992-06-25 1992-06-25 Film distillation apparatus

Country Status (1)

Country Link
JP (1) JPH067644A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406037B1 (en) * 2011-12-23 2014-06-11 한국건설기술연구원 Method for Desalination using De-wetting
KR101459702B1 (en) * 2014-05-21 2014-11-20 한국산업기술시험원 Membrane distillation apparatus by Using waste heat recovery
WO2015080125A1 (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Membrane distillation module and waste water treatment device
WO2015080123A1 (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Waste water treatment method, membrane distillation module, and waste water treatment device
WO2015080124A1 (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Wastewater treatment method, membrane distillation module and wastewater treatment apparatus
CN110404411A (en) * 2019-07-22 2019-11-05 珠海格力电器股份有限公司 A kind of membrane distillation system and method recycling coupling MVR with waste heat
KR20200107316A (en) 2019-03-07 2020-09-16 한국조선해양 주식회사 Water treatment apparatus
US10898858B2 (en) 2014-07-10 2021-01-26 Asahi Kasei Kabushiki Kaisha Membrane distillation apparatus and hydrophobic porous membrane
KR20210034222A (en) * 2019-09-20 2021-03-30 주식회사 알이디 THE MEMBRANE DISTILLATION APPARATUS in which the DEAD-ZONE is controlled
CN110404411B (en) * 2019-07-22 2024-04-19 珠海格力电器股份有限公司 Membrane distillation system and method with waste heat recovery coupling MVR

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406037B1 (en) * 2011-12-23 2014-06-11 한국건설기술연구원 Method for Desalination using De-wetting
WO2015080125A1 (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Membrane distillation module and waste water treatment device
JP2015100777A (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Membrane distillation module and waste water processing apparatus
WO2015080123A1 (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Waste water treatment method, membrane distillation module, and waste water treatment device
WO2015080124A1 (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Wastewater treatment method, membrane distillation module and wastewater treatment apparatus
KR101459702B1 (en) * 2014-05-21 2014-11-20 한국산업기술시험원 Membrane distillation apparatus by Using waste heat recovery
WO2015178594A1 (en) * 2014-05-21 2015-11-26 한국산업기술시험원 Membrane distillation-type water treatment apparatus using waste heat of marine vessel
US10898858B2 (en) 2014-07-10 2021-01-26 Asahi Kasei Kabushiki Kaisha Membrane distillation apparatus and hydrophobic porous membrane
KR20200107316A (en) 2019-03-07 2020-09-16 한국조선해양 주식회사 Water treatment apparatus
CN110404411A (en) * 2019-07-22 2019-11-05 珠海格力电器股份有限公司 A kind of membrane distillation system and method recycling coupling MVR with waste heat
CN110404411B (en) * 2019-07-22 2024-04-19 珠海格力电器股份有限公司 Membrane distillation system and method with waste heat recovery coupling MVR
KR20210034222A (en) * 2019-09-20 2021-03-30 주식회사 알이디 THE MEMBRANE DISTILLATION APPARATUS in which the DEAD-ZONE is controlled

Similar Documents

Publication Publication Date Title
CN1180874C (en) Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
JP4870165B2 (en) Membrane distillation process and membrane distillation apparatus
US3563860A (en) Evaporation-condensation recovery of a solution component using vapor-per-meable wall spaced from a cold wall
Khayet et al. Possibility of nuclear desalination through various membrane distillation configurations: a comparative study
US20130001164A1 (en) Solar membrane distillation system and method of use
JPH067644A (en) Film distillation apparatus
JPH0924249A (en) Membrane evaporator and membrane distillation method
US3477917A (en) Multiple effect distillation with microporous membranes and distillate recirculation
CN106925124A (en) A kind of membrane module with heat recovery function
Van Gassel et al. An energy-efficient membrane distillation process
JPH0352627A (en) Membrane distillation apparatus
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
JPH04346823A (en) Membrane method and device for evaporating and concentrating waste liquid
JPS60501746A (en) Thermal thin film distillation system
EP0217874A1 (en) Rapid vapour transport through unwetted porous barriers.
CN207076350U (en) A kind of membrane module with heat recovery function
JPS6351044B2 (en)
JPH05264069A (en) Perforated film which is fluoride on surface and tube
US3410758A (en) Water purifying apparatus
JP2733661B2 (en) Permeation evaporator
JPS60203173A (en) Concentration of fruit juice
JPS61291093A (en) Apparatus for desalting sea water
JPH0571882A (en) Porous body type heat exchanger and facilities where they are employed
JPH0655162A (en) Method for degassing circulating cooling water
Si et al. Characteristics analysis of a combined system of vacuum membrane distillation and mechanical vapor recompression