JPS60125640A - Corrosion proof processing - Google Patents

Corrosion proof processing

Info

Publication number
JPS60125640A
JPS60125640A JP23143283A JP23143283A JPS60125640A JP S60125640 A JPS60125640 A JP S60125640A JP 23143283 A JP23143283 A JP 23143283A JP 23143283 A JP23143283 A JP 23143283A JP S60125640 A JPS60125640 A JP S60125640A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
sheet
corrosion
coated
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23143283A
Other languages
Japanese (ja)
Inventor
Kazuo Chikami
千頭 一生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOL RISOOSHIZU INKOOPOREETETSUDO KK
Original Assignee
TECHNOL RISOOSHIZU INKOOPOREETETSUDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOL RISOOSHIZU INKOOPOREETETSUDO KK filed Critical TECHNOL RISOOSHIZU INKOOPOREETETSUDO KK
Priority to JP23143283A priority Critical patent/JPS60125640A/en
Publication of JPS60125640A publication Critical patent/JPS60125640A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2709/00Use of inorganic materials not provided for in groups B29K2703/00 - B29K2707/00, for preformed parts, e.g. for inserts
    • B29K2709/06Concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/12Paper, e.g. cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/14Wood, e.g. woodboard or fibreboard

Abstract

PURPOSE:To prevent the corrosion of metal and concrete by a method wherein thermoplastic resin is stuck, in the form of a film, on a flexible base material to form a sheet and, after a substance to be coated is heated, the sheet is wound thereon with pressure. CONSTITUTION:Thermoplastic resin is stuck, in the form of a film, on a flexible base material such as a metal plate, an aluminum sheet or a metal net to form a sheet. Next, a substance to be coated is heated to a temperature exceeding the melting point of the thermoplastic resin, and then said sheet is wound with pressure on said coated substance for corrosion proof. Polyethylene, vinyl chloride resin, polystyrene, polypropylene or the like can be used as the thermoplastic resin. In addition to metal and concrete, this corrosion proof method of plastic coating can be applied also to timber, paper, etc. to which corrosion proof processing can not be applied heretofore, by devising a method of heating, e.g. by using far-infrared irradiation or the like.

Description

【発明の詳細な説明】 本発明は防蝕加工方法、更に詳しくは金属製品あるいは
コンクリート製品等に対して施す防蝕加工方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a corrosion-proofing method, and more particularly to a corrosion-proofing method applied to metal products, concrete products, and the like.

従来より基礎材あるいは構造材としては、金属の中で最
も多量に使用されているものとして、安価でかつ機械的
強度の大きい鉄骨材があり、又一方法、壁等に最も多く
使用されているものとして、やはり安価でかつ機械的強
度の大きいコンクリート類があることは、周知の通りで
ある。
Conventionally, steel frames have been used as foundation materials or structural materials in the largest quantities among metals, as they are inexpensive and have high mechanical strength, and are also the most commonly used for walls, etc. As is well known, there are concrete types that are inexpensive and have high mechanical strength.

しかしながらこのような鉄骨材あるいはコンクリート類
は、化学的に不安定なものであり、かつ腐蝕され易いと
いう性質を有している。しかしながら従来より用いられ
ている鉄骨材やコンクリート材は、このような化学的な
不安定性あるいは腐蝕されやすい点等を考慮せず、ただ
弔に量的に多く産し、かつ安価であり加工し易いという
点のみに主眼をおいて用いられているために、不慮の損
失あるいは不測の災害等を招くことが多々あった。
However, such steel frames or concrete are chemically unstable and susceptible to corrosion. However, conventionally used steel materials and concrete materials do not take into account such chemical instability or susceptibility to corrosion, and are simply produced in large quantities for funeral purposes, are cheap, and are easy to process. Because it was used with only this point in mind, it often led to unexpected losses or unexpected disasters.

このような鉄骨材やコンクリート類の腐蝕を防11ニす
るために、従来より種々の手段が講じられていた。その
一つとしては、鉄骨材あるいはコンクリ−1・類等の腐
蝕表面を耐蝕性に優れた熱可塑性樹脂被膜で被覆し、腐
蝕環境から被腐蝕材を遮弊する防蝕方法があった。ここ
において表面に熱可塑性樹脂被膜を形成する手段として
、ライニング、粉末塗料による焼付は塗装あるいは塗料
やゴムの塗装等が行なわれていた。
In order to prevent such corrosion of steel frames and concrete, various measures have been taken in the past. One of these is a corrosion prevention method in which the corroded surface of a steel frame material, concrete, etc. is coated with a thermoplastic resin coating having excellent corrosion resistance, and the material to be corroded is shielded from the corrosive environment. Here, as means for forming a thermoplastic resin film on the surface, lining, baking with powder paint, painting, coating with paint or rubber, etc. have been performed.

しかしながら、ゴムや熱可塑性樹脂によるライニングは
耐蝕性、耐化学薬品性等には優れている反面、被膜が薄
く、ピンホールが残存してしまったり、あるいは張付け
に際して接着材や施工技術に左右され、吸着力や機械的
強度に劣るか、もしくは逆に硬度がありすぎて割れの原
因となったりする欠点があった。
However, while linings made of rubber or thermoplastic resin have excellent corrosion resistance and chemical resistance, they are thin and can leave pinholes, or are dependent on adhesive materials and construction techniques when pasting. They have the disadvantage of being inferior in adsorption power and mechanical strength, or conversely, being too hard, which can cause cracks.

また、塗料による防錆は、ライニングはど厳しい条件が
必要とされず、安価でかつ簡単であることから広く行な
われているが、これもライニングと同様長所と短所が併
存するために、塗料の性質、塗装方法、塗装条件、被塗
物の環境等多くの要因をよく検討して選択しなけれなす
、誠に面倒なものであった。
In addition, rust prevention using paint is widely used because lining does not require the same harsh conditions and is inexpensive and easy to use. It was a truly troublesome process, requiring careful consideration of many factors such as properties, coating method, coating conditions, and environment of the object to be coated.

特に被塗物の設置環境によって、例えば地中への埋設管
等のライニングや塗装では、施工した後に埋設するため
に、その際に生ずる外乱によってライニング層や塗膜に
亀裂や傷、ピンホール等がノ1−じ、それがたとえ微細
なものであったとじても、そこが鉄骨材面あるいはコン
クリート面等の腐蝕の進行原因となるたけでなく、コン
クリート床面等においてはその亀裂部分からウキや剥離
が進行することにもなっていた。
In particular, depending on the installation environment of the object to be coated, for example, when lining or painting pipes buried underground, the lining layer or paint film may be cracked, scratched, pinholes, etc. due to disturbances that occur during lining and painting. However, even if the cracks are minute, they not only cause corrosion of the steel frame or concrete surface, but also cause the cracks in the concrete floor surface to cause floats and other problems. It was also expected that peeling would progress.

いずれの方法を用いるにしても、従来のライニングや塗
装では、鉄骨材表面あるいはコンクリート床面上等に発
生した微細な傷を発見したにしても、全面的な補修が必
要となり、しかもその補修が極めて困難なだけでなく、
仮にその一カ所の傷を成否しておくだけでも、その破損
部分が順次拡大していくという危険が多かった。
Regardless of which method is used, with conventional lining and painting, even if minute scratches are discovered on the steel frame surface or concrete floor surface, complete repair is required; Not only is it extremely difficult;
Even if only one damage was repaired, there was a high risk that the damaged area would gradually expand.

本発明は、このような従来の防蝕法の欠陥を是正するた
めに、鉄骨材が何故錆るか、更にはコンクリ−1・類が
何故侵食により剥離していくかという原点に戻って種々
検討した結果、本発明を完成するに至ったものである。
In order to correct the deficiencies of such conventional corrosion prevention methods, the present invention returns to the basics of why steel frames rust and why concrete flakes due to erosion. As a result, the present invention was completed.

即ち、鉄骨材について考えると、酸素の供給を完全に遮
断し、かつ外部との間に電気絶縁性がある場合には侵食
されないという事実と、コンクリート類については、外
部に露出されて酸、塩の影響を受けると劣化が始まって
凝結力を失い、このようにして一度凝結力を失ったとき
には剥離が促進されるという事実に基づき、鉄骨材に対
しては人為的に酸素の供給を遮断し、またコンクリート
類に対しては劣化の影響を減少させると共に凝結力を失
ったコンクリート同士を連結する状態にするならば、金
属やコンクリート類の腐蝕を防げることができるとの考
えから、本発明が完成されるに至ったものである。
In other words, when considering steel frames, there is the fact that they will not erode if the supply of oxygen is completely cut off and there is electrical insulation between them and the outside, while concrete is exposed to the outside and is susceptible to acids and salts. Based on the fact that steel frames begin to deteriorate and lose their cohesive power when exposed to the influence of Furthermore, the present invention is based on the idea that corrosion of metals and concrete can be prevented by reducing the effects of deterioration on concrete and connecting concrete that has lost its cohesive strength. It has now been completed.

一般に天然に産出される鉄は、酸素、硫黄、水、ケイ酸
等と化合して安定な鉱物の形をとっている。また、我々
は液体の中に酸素が溶けていなければ水素分極により、
また液体中に水酸化第一鉄が飽和していることにより、
いずれも鉄の腐蝕が進まなくなることを熟知している。
Generally, naturally occurring iron takes the form of a stable mineral when combined with oxygen, sulfur, water, silicic acid, etc. Also, if oxygen is not dissolved in the liquid, due to hydrogen polarization,
In addition, due to the saturated ferrous hydroxide in the liquid,
All of them are well aware that corrosion of iron stops progressing.

またさらに、コンクリート類も圧縮強度は極めて大きい
が、曲げ応力あるいは引張応力等に弱く、特に一度亀裂
が入ったコンクリート類は強度があるために、かえって
その亀裂部分に応力の集中が生じ、その亀裂が進行して
剥離、脱落現象を提起することも理解されている。
Furthermore, although concrete has an extremely high compressive strength, it is weak against bending stress or tensile stress, and concrete that once cracks is particularly strong, so stress concentrates in the cracked area, causing the crack. It is also understood that this progresses and causes peeling and falling off phenomena.

なお、ここでこれらの腐蝕の形がイオン化傾向とか電極
電位から決定されないのは、表面に生しる化合物の性質
が腐蝕において決定的だからである。また、一般に埋設
管等においては土中の迷走電流等による電気腐蝕が発生
するため、ポリエチレン等の電気絶縁性のよい高分子被
膜によって優れた防蝕効果を発揮できることが確認され
ているが、これら高分子プラスチック被膜は、その殆ど
が工場で加工されたものであり現場の加工は不可能とさ
れていた。
The reason why these forms of corrosion are not determined from the ionization tendency or electrode potential is because the nature of the compounds that form on the surface is decisive for corrosion. In addition, since electrical corrosion generally occurs in buried pipes due to stray currents in the soil, it has been confirmed that polymer coatings with good electrical insulation properties, such as polyethylene, can provide excellent corrosion protection. Most molecular plastic coatings were processed in factories, and it was considered impossible to process them on-site.

そこで、本発明は、可撓性ある基材に熱可塑性樹脂を被
膜状に付着させてシートを形成すると共に、被塗物を熱
可塑性樹脂の溶融点を越える温度まで加熱し、その後こ
の被塗物に前記シートを巻圧着することにより、被塗物
表面に熱可塑性樹脂被膜を形成することを特徴とするも
のであり、従来のように、高分子プラスチックを工場で
加工するものと異なり、前記シートのみを工場で形成す
れば、あとは現場にて施工できるようになっている。
Therefore, the present invention involves forming a sheet by attaching a thermoplastic resin to a flexible base material, heating the object to be coated to a temperature exceeding the melting point of the thermoplastic resin, and then heating the object to be coated to a temperature exceeding the melting point of the thermoplastic resin. This method is characterized by forming a thermoplastic resin film on the surface of the object by wrapping and pressing the sheet onto the object. Only the sheet needs to be formed at the factory, and the rest can be installed on site.

要するに、本発明は熱可塑性樹脂が加熱あるいは被塗物
に対する予熱によって簡単に再溶融することに着眼し、
現場において被塗物を加熱して、溶融温度以上の熱エネ
ルギーを予熱として蓄熱した被塗物の」−に、直接熱可
塑性樹脂を付着させたシートを巻圧着することにより、
被塗物表面の予熱で前記熱可塑性樹脂を溶融させ、冷却
と共に被塗物表面にシーi・を接着することができるの
で、その作業時間も著しく短縮でき経済性も大きなもの
がある。
In short, the present invention focuses on the fact that thermoplastic resins can be easily remelted by heating or preheating the object to be coated.
By heating the object on site and storing heat energy above the melting temperature as preheating material, a sheet to which thermoplastic resin is attached is directly wrapped and crimped onto the object.
Since the thermoplastic resin can be melted by preheating the surface of the object to be coated, and C.I. can be adhered to the surface of the object to be coated while cooling, the working time can be significantly shortened and the cost efficiency is also great.

ここで、可撓性ある基材としては、例えば、金属板、ア
ルミシートあるいは金属のネット、すなわち金網等を用
いることができる。また、熱可塑性樹脂としては、以下
のようなものを用いることができる。例えばポリエチレ
ン、塩化ビニール樹0旨、ポリスチレン、ポリプロピレ
ン、メタクリル樹脂、硬質塩化ビニール樹脂、ABS樹
脂、ポリアセタール、ナイロン樹脂、ポリカーボネート
、ポリエチレンテレフタレート、ポリブチレンテレフタ
レート、ポリフェニレンオキシド、ポリフェニレンサル
ファイド、ポリスルフォン、ふっ化樹脂、オレフィン・
ビニルアルコール共重合体、ポリオキシベンジン、ポリ
アミドイミド、ポリアミドビスマレイド、ボリアリレー
ト、ポリエーテルスルフォン、ポリメチルペンテン、ポ
リエーテルケトン、ポリエーテルイミド、エチレン−メ
タクリル酎共重合体によるアイオノマー樹脂、更にはポ
リスルフォン樹脂等である。
Here, as the flexible base material, for example, a metal plate, an aluminum sheet, a metal net, that is, a wire mesh, etc. can be used. Further, as the thermoplastic resin, the following can be used. For example, polyethylene, vinyl chloride resin, polystyrene, polypropylene, methacrylic resin, hard vinyl chloride resin, ABS resin, polyacetal, nylon resin, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, polyphenylene sulfide, polysulfone, fluorinated resin. , olefin
Vinyl alcohol copolymer, polyoxybenzine, polyamideimide, polyamide bismaleide, polyarylate, polyethersulfone, polymethylpentene, polyetherketone, polyetherimide, ionomer resin based on ethylene-methacrylic copolymer, and even polyester resins. Sulfone resin, etc.

このような熱化塑性樹脂に対する添加剤としてハ、ロジ
ン類として、WWロジン、ロジンクリセリンエステル、
水添ロジン、水添ロジングリセリンエステル、集合ロジ
ン等があり、ポリテルペン系樹脂としてはαピネン重合
体、βピネン重合体、ジベルテン重合体があり、脂肪族
系炭化水素としてはオレフィン系及ジオレフィン重合体
、シクロペンタジェン樹脂等があり、この外にも脂環族
系炭化水素樹脂、芳香族系炭化水素樹脂、フェノール系
樹脂、スチレン系樹脂、クマロンインデン樹脂、ポリア
ミド樹脂等があると共に、フックス類として、パラフィ
ンワックス、マイクロクリスタリンワックス、カスター
ワックス、塩素化パラフィン等がある。
As additives for such thermoplastic resins, as rosins, WW rosin, rosin chrycerin ester,
There are hydrogenated rosin, hydrogenated rosin glycerin ester, aggregate rosin, etc. Polyterpene resins include α-pinene polymer, β-pinene polymer, divertene polymer, and aliphatic hydrocarbons include olefin and diolefin polymers. In addition to these, there are alicyclic hydrocarbon resins, aromatic hydrocarbon resins, phenolic resins, styrene resins, coumaron indene resins, polyamide resins, etc. Examples include paraffin wax, microcrystalline wax, castor wax, and chlorinated paraffin.

被塗物としては、金属、コクリート類は勿論のこと、加
熱方法の工夫によって、例えば、遠赤外線照射等を利用
すると、従来加工することのできなかった、木材や紙類
等にもプラスチック被膜加工をできる防蝕加工方法であ
る。
The objects to be coated include not only metals and cocrete, but also by devising heating methods such as far-infrared irradiation, it is possible to process plastic coatings on materials that could not be processed conventionally, such as wood and paper. This is a corrosion-resistant processing method that allows for

なお、前記した可撓性ある基材は、その原さ、あるいは
基材として金属性ネットを用いた場合はそのメツシュ等
を、被塗物にあわせて自由に変化させ、かつ熱可塑性樹
脂の溶融を均一に行うことができるだけの熱伝導率を有
するものを、適宜逆折して用いるものである。
The above-mentioned flexible base material can be used by freely changing its original shape or, if a metallic net is used as the base material, its mesh, etc., depending on the object to be coated, and by melting the thermoplastic resin. A material having a thermal conductivity sufficient to uniformly perform the above is used by appropriately inverting the heat conductivity.

以下本発明を更に詳しく説明するために実施例を示すと
下記の通りである。
Examples are given below to explain the present invention in more detail.

実施例1 酢酸ビニルモノマー分が30重量%であるエチレンと酢
酸ビニルとを共重合させた歌合体をモル90%ケン化し
たものにアクリル酸成分を共重合させたグラフトa合体
(メルトインデックス75・密度0.95g/ cm’
 *融点85°C)の粉末と、ボンブテン(メルトイン
デックス20−密度0.91g/ crn’ a融点1
25°C)の粉末とを導液づつ混合した40〜200メ
ツシユの粉末を、フレームスプレー法で金網(0,5ミ
リ厚・網目 1ミリ)に付着溶融着させた熱可塑性樹脂
シートを作成する。なお、フレームスプレー法以外の既
知の手段、例えばフロックスプレー法、流動浸漬法、静
電粉体法、フリカケ法、押出し形成法等を用いてもよい
が、この実施例ではフレームスプレー法によった。
Example 1 Graft a polymer (melt index 75. Density 0.95g/cm'
*Powder with melting point 85°C) and bombbutene (melt index 20 - density 0.91g/crn' a melting point 1)
A thermoplastic resin sheet is created by adhering and melting 40 to 200 meshes of powder mixed with powder at a temperature of 25°C (25°C) to a wire mesh (0.5 mm thick, mesh size 1 mm) using the flame spray method. . Note that known means other than the flame spray method, such as the flock spray method, fluidized dipping method, electrostatic powder method, flickering method, extrusion forming method, etc., may be used, but in this example, the flame spray method was used. .

次に鉄板(5X 30X 120cm)を200°Cの
オーブンの中に入れて約10分間加熱した後に取出し、
この鉄板を上記の熱可塑性樹脂シートの片面に約5秒間
圧着した。
Next, put the iron plate (5 x 30 x 120 cm) into a 200°C oven and heat it for about 10 minutes, then take it out.
This iron plate was pressed onto one side of the above thermoplastic resin sheet for about 5 seconds.

この圧着面は、完全に溶融付着しており、気泡やピンホ
ールなども認められなかった。なお常温中で約5時間放
冷したのち、引張強さを測定(ASTM 07−49−
 JIS K−13301−58)した結果では8 K
 g / c m’以上の接着強度を得た。
The bonded surface was completely melted and adhered, and no air bubbles or pinholes were observed. After cooling for about 5 hours at room temperature, the tensile strength was measured (ASTM 07-49-
JIS K-13301-58) result is 8K
An adhesive strength of more than g/cm' was obtained.

実施例2 モルタル板(モルタルの配合はJIS R52Ql養生
期間は4週間とした IX IOX IOcm)に、遠
赤外線ガスバーナーを10分間照射して加熱し、その後
このモルタル板に実施例1と同じ熱可塑性樹脂付着溶融
着シートを5秒間圧着した。
Example 2 A mortar board (Mortar composition was JIS R52Ql, curing period was 4 weeks, IX IOX IOcm) was heated by irradiating it with a far-infrared gas burner for 10 minutes, and then the same thermoplastic as in Example 1 was applied to the mortar board. The resin-adhered melt-bonded sheet was pressed for 5 seconds.

圧着面は完全に接着しており、常温中に約5時間放置し
たのち、理研式接着力試験機で測定した結果10kg/
crrf以上の接着強度を得た。
The crimped surface was completely adhered, and after being left at room temperature for about 5 hours, it was measured with a Riken adhesive force tester and the result was 10 kg/
Adhesive strength exceeding crrf was obtained.

実施例3 市販されているエチレンビニールアルコール粉末塗料[
略称E、V、A、粉末塗料 商品名レパジント(西独バ
イエル社製)及びメルセン900(東洋留達■製)1を
使用して熱可塑性樹脂伺着溶融着シートを作成し、実施
例1と同じ鉄板に実施例1と同一の方法によって加熱し
予熱した面に熱可塑性樹脂付着溶融着シートを圧着した
Example 3 Commercially available ethylene vinyl alcohol powder coating [
Abbreviations: E, V, A, powder coatings, product names: Repazint (manufactured by Bayer AG, West Germany) and Mersen 900 (manufactured by Toyo Todatsu) 1 were used to create a thermoplastic resin adhesion melt-bonded sheet, and the same as in Example 1 was used. An iron plate was heated in the same manner as in Example 1, and a thermoplastic resin-adhered melt-bonded sheet was pressure-bonded to the preheated surface.

その結果は、実施例1と同一の試験方法で接着力試験し
た結果とほぼ近似した8 k g / c m’以上の
接着力を得た。
The result was an adhesive force of 8 kg/cm' or more, which was almost similar to the result of an adhesive force test using the same test method as in Example 1.

1 実施例4 実施例3と同一の、市販されている熱可塑性樹脂付着溶
融着シートを作成し、埋設用鉄管表面をガスバーナーで
表面温度200 ’Cになるまで加熱した後、前記シー
トを圧着しながら巻きイ・Iけて12時間方文置した。
1 Example 4 A commercially available thermoplastic resin-adhered melt-bonded sheet, identical to that of Example 3, was created, and after heating the surface of the buried iron pipe with a gas burner until the surface temperature reached 200'C, the sheet was crimped. While doing so, I rolled it up and left it in place for 12 hours.

金網の厚みを含み塗布厚みは1ミリとして、高電圧 1
0000ボルト、低電圧220ボルトのピンポールテス
ターによって被覆層の通電例を測定したところ均一な絶
縁抵抗値が得られ、局部電池の発生を防11−できる効
果が認められ、地下埋設管に対する防蝕加工に特に優れ
た実用価値を有することが実証ネれた。
The coating thickness, including the thickness of the wire mesh, is 1 mm, and the high voltage is 1.
When the coating layer was energized using a pin-pole tester with a low voltage of 0,000 volts and a low voltage of 220 volts, a uniform insulation resistance value was obtained, and the effect of preventing the occurrence of local batteries was recognized. It has been demonstrated that it has particularly excellent practical value.

2

Claims (1)

【特許請求の範囲】[Claims] 1、可撓性ある基材に、熱可塑性樹脂を被膜状に付着さ
せてシートを形成すると共に、被塗物を熱可塑性樹脂の
溶融点を越える温度迄加熱し、その後この被塗物に前記
シートを巻圧着することにより、被塗物表面に熱可塑性
樹脂被膜を形成することを特徴とした防蝕加工方法。
1. A sheet is formed by attaching a thermoplastic resin to a flexible base material in the form of a film, and the object to be coated is heated to a temperature exceeding the melting point of the thermoplastic resin. A corrosion-resistant processing method characterized by forming a thermoplastic resin film on the surface of the object to be coated by rolling and pressing a sheet.
JP23143283A 1983-12-09 1983-12-09 Corrosion proof processing Pending JPS60125640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23143283A JPS60125640A (en) 1983-12-09 1983-12-09 Corrosion proof processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23143283A JPS60125640A (en) 1983-12-09 1983-12-09 Corrosion proof processing

Publications (1)

Publication Number Publication Date
JPS60125640A true JPS60125640A (en) 1985-07-04

Family

ID=16923465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23143283A Pending JPS60125640A (en) 1983-12-09 1983-12-09 Corrosion proof processing

Country Status (1)

Country Link
JP (1) JPS60125640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028905A1 (en) * 1996-02-12 1997-08-14 Akzo Nobel N.V. Heat treatment of polyphenylene oxide-coated metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028905A1 (en) * 1996-02-12 1997-08-14 Akzo Nobel N.V. Heat treatment of polyphenylene oxide-coated metal

Similar Documents

Publication Publication Date Title
US3260661A (en) Sacrificial metal pipe coverings
Bistac et al. Durability of steel/polymer adhesion in an aqueous environment
US5792518A (en) On-site pipe coating process
MX2007009753A (en) Bonding of air-plasma treated thermoplastics.
TW200404917A (en) Resin-lined steel pipe and method for manufacturing same
JPH0136428B2 (en)
JPS622870B2 (en)
JPS60125640A (en) Corrosion proof processing
JP2019119805A (en) Anti-rust self-adhesive film, rust prevention method, laminate film, and film winding
Smith Field joint coating of pipelines–effect of soluble salt contamination on 2-layer heat shrink sleeve performance
US4933235A (en) Protective pipewrap system containing a rubber-based coating composition
DE69509284D1 (en) Curable compositions with improved adhesion and their use for coating substrates
CA2253225C (en) On-site pipe coating process
JPS6372377A (en) Preparation of steel material coated with polyolefin resin powder by fusion bonding
JP2004211292A (en) Corrosion-protected steel pipe pole
JPS59224718A (en) Corrosion-resistant covered steel sheet pile
JP2007205012A (en) Repair method for corrosion-proof coating of steel structure, and underwater repair sheet
JPH0137978B2 (en)
JPS59224717A (en) Manufacture of corrosion-resistant covered steel sheet pile
JPH0344487A (en) Method for repairing damaged part of anticorrosive coating layer of steel material
JPS6327174B2 (en)
JPH0239975B2 (en)
JP2023152869A (en) Method for manufacturing polyethylene-coated steel pipe
JPS62263893A (en) Corrosion preventive method for weld line
JPS6023039A (en) Manufacture of laminate of polyolefin having excellent salt water resistance and metal