JPS60125231A - Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas - Google Patents

Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas

Info

Publication number
JPS60125231A
JPS60125231A JP58234584A JP23458483A JPS60125231A JP S60125231 A JPS60125231 A JP S60125231A JP 58234584 A JP58234584 A JP 58234584A JP 23458483 A JP23458483 A JP 23458483A JP S60125231 A JPS60125231 A JP S60125231A
Authority
JP
Japan
Prior art keywords
magnesium
exhaust gas
liquid
gas
sulfite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58234584A
Other languages
Japanese (ja)
Other versions
JPS6322165B2 (en
Inventor
Hitoshi Nishizawa
均 西沢
Kensuke Yano
謙介 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIMURA KAKOKI KK
Kimura Chemical Plants Co Ltd
Original Assignee
KIMURA KAKOKI KK
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIMURA KAKOKI KK, Kimura Chemical Plants Co Ltd filed Critical KIMURA KAKOKI KK
Priority to JP58234584A priority Critical patent/JPS60125231A/en
Publication of JPS60125231A publication Critical patent/JPS60125231A/en
Publication of JPS6322165B2 publication Critical patent/JPS6322165B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To bring the titled desulfurization system to a closed system not discharging a MgSO4 solution, by adding a chelate agent to the recirculation solution containing Mg(OH)2 as absorbent of an absorbing tower and keeping the pH thereof low while depositing, separating and recovering MgSO4 from a waste absorbing solution. CONSTITUTION:Exhaust gas is guided to an absorbing tower 1 and brought into contact with a recirculation solution, of which the pH is adjusted to 4.0-6.5 by an Mg(OH)2 slurry and to which a chelate agent such as EDTA is added from a pipe 9, to absorb and remove SO2. A part of the recirculation solution is guided to a neutralization/crystallization tank 2 while Mg(OH)2 is added thereto from a pipe 14 to convert Mg(HSO3)2 in the solution to Mg(SO3)2. The deposited MgSO3 crystal is guided to a solid-liquid separator 3 and separated and recovered. The filtrate is refluxed into the absorbing tower 1 through a filtrate tank 16 and a pipe 18.

Description

【発明の詳細な説明】 本発明は、亜硫酸ガスを含む排ガスと水酸化マグネシウ
ム懸濁水とを気液接触させて、排ガス中の亜硫酸ガスを
吸収除去する湿式脱硫方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet desulfurization method for absorbing and removing sulfur dioxide from exhaust gas by bringing exhaust gas containing sulfur dioxide into gas-liquid contact with magnesium hydroxide suspension.

ボイラー等、あるいは、その他の化学工場より排出され
る排ガス中に含まれる曲硫酸ガスの除去手段として、排
ガスを吸収塔に導びき、アルカリ物質を含む水溶液を吸
収液として排ガスと気液接触させることにより排ガス中
の亜硫酸ガスを吸収除去する多(の湿式脱硫方法が一案
、実施されている。
As a means of removing bent sulfuric acid gas contained in flue gas discharged from boilers, etc. or other chemical factories, the flue gas is led to an absorption tower and brought into gas-liquid contact with the flue gas using an aqueous solution containing an alkaline substance as an absorption liquid. A wet desulfurization method that absorbs and removes sulfur dioxide gas from exhaust gas has been implemented.

これ等の方法の一つとして、水に水酸化マグネシウムを
懸濁させて吸収剤として使用する方法がある。すなわち
、排カスと水酸化マグネシウム懸濁水とを吸収塔内で気
液接触させることにより排ガス中の亜硫酸ガスをマグネ
シウム化合物として吸収除去する湿式脱硫方法であって
、この方法を実施する従来の方法は、吸収塔に水酸化マ
グネシウム懸濁水を連続注入することにより吸収塔循環
液(吸収液)のPHを6.0〜7.0に保持しつつ排ガ
スと吸収液とを気液接触せしめ、排ガス中に含まれる亜
硫酸ガスを吸収除去し、清浄化された排ガスを系外に排
出すると共に、吸収反応により生成した亜硫酸マグネシ
ウム、および重亜硫酸マグネシウムと、同時に生成した
°亜硫酸マグネシウムが排ガス中に含まれる酸素により
一酸化されて生成した硫酸マグネシウムとを含む吸収液
(循環液)の一部を抜出し、酸化装置に導びき水酸化マ
グネシウムを添加して含まれる重亜硫酸マグネシウムを
亜硫酸マグネシウムに変換した後、空気を通じて酸化し
、無害な硫酸マグネシウム水溶液として系外に排出、放
流するものである。
One of these methods is to suspend magnesium hydroxide in water and use it as an absorbent. That is, it is a wet desulfurization method in which sulfur dioxide gas in the exhaust gas is absorbed and removed as a magnesium compound by bringing the exhaust gas and magnesium hydroxide suspension into gas-liquid contact in an absorption tower, and the conventional method for implementing this method is By continuously injecting magnesium hydroxide suspension water into the absorption tower, the pH of the absorption tower circulation liquid (absorption liquid) is maintained at 6.0 to 7.0, and the exhaust gas and absorption liquid are brought into gas-liquid contact. The sulfur dioxide contained in the sulfur dioxide is absorbed and removed, and the purified exhaust gas is discharged outside the system. At the same time, the magnesium sulfite and bisulfite produced by the absorption reaction, as well as the simultaneously produced magnesium sulfite, are used to remove the oxygen contained in the exhaust gas. A part of the absorption liquid (circulating liquid) containing magnesium sulfate produced by monoxidation is extracted and led to an oxidizer, where magnesium hydroxide is added to convert the contained magnesium bisulfite into magnesium sulfite. It oxidizes through the process and is discharged and discharged from the system as a harmless aqueous magnesium sulfate solution.

しかし乍ら、硫酸マグネシウム自体は無害であるが、排
カス中の亜硫酸ガス除去処理にあたり排出される硫酸マ
グネシウムの意は美大なものplこれら多量の硫酸マグ
ネシウム水溶液が湖、沼等に放流されると水の富栄養化
の原因となるため、近時地域によっては排出量を漸次規
制する傾向にある。
However, although magnesium sulfate itself is harmless, the magnesium sulfate discharged during the process of removing sulfur dioxide gas from waste gas is of great significance.Large amounts of these aqueous magnesium sulfate solutions are discharged into lakes, ponds, etc. As this causes water eutrophication, there is a recent trend in some regions to gradually regulate their emissions.

本発明は、このような現状に鑑みなされたものであって
、本発明によれば従来法とことなり硫酸マグネシウム溶
液を放流することなく、いわゆるクローズドシステムで
排ガス中の亜硫酸カスを吸収除去できる。
The present invention has been made in view of the current situation, and according to the present invention, unlike conventional methods, sulfite scum in exhaust gas can be absorbed and removed in a so-called closed system without discharging a magnesium sulfate solution.

本発明を説明するにあたり、先ず水酸化マグネシウム懸
濁水を吸収液として使用する湿式脱硫法の反応機構につ
いて説明すると、その吸収塔内における吸収反応生成物
は、前記したごとく亜硫酸マグネシウムと重亜硫酸マグ
ネシウムであって、その吸収反応機構は次式により示さ
れる。
In explaining the present invention, first the reaction mechanism of the wet desulfurization method using magnesium hydroxide suspension water as the absorption liquid will be explained. As mentioned above, the absorption reaction product in the absorption tower is composed of magnesium sulfite and magnesium bisulfite. The absorption reaction mechanism is shown by the following equation.

My (OH)g−1−8Ox→Mg 50s 十Hz
OMg Son −(−8ow 十HzO→Mg (H
8Os )iMg (H8Os)g−1−Mg(OH)
2−> 2Mg5Os+2HzO同時に、副反応として
排ガス中に含まれる酸素により循環液中の亜硫酸マグネ
シウムの一部は酸化され、硫酸マグネシウムが生成する
。その酸化反応機構は次式により示される。
My (OH)g-1-8Ox→Mg 50s 10Hz
OMg Son -(-8ow 1HzO→Mg (H
8Os)iMg (H8Os)g-1-Mg(OH)
2->2Mg5Os+2HzO At the same time, part of the magnesium sulfite in the circulating fluid is oxidized by oxygen contained in the exhaust gas as a side reaction, producing magnesium sulfate. The oxidation reaction mechanism is shown by the following equation.

My SOa +10t →Mg SO4本発明者等は
種々検討した結果、上記吸収反応における亜硫酸マグネ
シウムと重亜硫酸マグネシウムの生成比率が循環液のP
Hによりことなること、すなわち、PHが高い重亜硫酸
マグネシウムの生成比率が大で、PHが低下するにした
がって重亜硫酸マグネシウムの生成比率が大きくなるこ
と、ならびに、亜硫酸→グネシウムが水に難溶性である
に対し、重亜硫酸マグネシウムは比較的易溶性であるこ
とに着目、更に上記酸化反応は、ボイラー排ガス等に含
まれるバナジウム、ニッケル、コバルト等、あるいは水
酸化マグネシウム中に不純物として含まれるカルシウム
、鉄等の重金属が酸化触媒として作用するもので、キレ
ート剤を添加することにより酸化反応を著しく抑制でき
ることを知見し、吸収塔の循環液にキレート剤を添加す
ると共に液のPHを4.0〜6,5に保持して排ガスと
気液接触させ、排ガス中の亜硫酸ガスを吸収除去すると
共に、吸収塔から排出される循環液に水酸化マグネシウ
ムを添加して含まれる重亜硫酸マグネシウムを亜硫酸マ
グネシウムに変換し、析出した亜硫酸マグネシウムの結
晶を炉別したのち、そのp液を吸収塔に還流、再使用す
ることに成功し、本発明を完成した。
My SOa +10t → Mg SO4 As a result of various studies, the inventors found that the production ratio of magnesium sulfite and magnesium bisulfite in the above absorption reaction was determined by the P of the circulating fluid.
The difference is that the production ratio of magnesium bisulfite with high pH is large, and as the pH decreases, the production ratio of magnesium bisulfite increases, and that sulfite→gnesium is poorly soluble in water. In contrast, we focused on the fact that magnesium bisulfite is relatively easily soluble, and furthermore, the above oxidation reaction is effective against vanadium, nickel, cobalt, etc. contained in boiler exhaust gas, etc., or calcium, iron, etc. contained as impurities in magnesium hydroxide. It was discovered that heavy metals act as oxidation catalysts, and that the oxidation reaction can be significantly suppressed by adding a chelating agent.The chelating agent was added to the circulating liquid of the absorption tower, and the pH of the liquid was adjusted to 4.0 to 6. 5 and brought into gas-liquid contact with the exhaust gas to absorb and remove sulfur dioxide gas in the exhaust gas, and add magnesium hydroxide to the circulating liquid discharged from the absorption tower to convert the contained magnesium bisulfite into magnesium sulfite. After separating the precipitated magnesium sulfite crystals in a furnace, they succeeded in refluxing the p liquid to an absorption tower and reusing it, completing the present invention.

以下、本発明を図面にもとづいて説明する。Hereinafter, the present invention will be explained based on the drawings.

図中、(1)は図示しないミストキャッチャ−を内蔵す
る吸収塔(充填塔)であるが、特に充填塔に(3)は固
液分−機を示す。
In the figure, (1) is an absorption tower (packed tower) incorporating a mist catcher (not shown), and (3) in particular shows a solid-liquid separator in the packed tower.

本発明方法によれば、管(4)より導入された曲硫流下
する循環液と向流気肢接触し、含有する亜硫酸ガスは反
応吸収され、清浄化された排ガスは排気筒(81より系
外に排出される。この間、管(9)より循環液にキレー
ト剤溶液が添加されると共に、循環液のPHは、管a〔
を経て導入される水酸化マグネシウム懸濁水により46
0〜6.5に調整される。循環液のPHが6.5をこえ
ると後記する中和晶析槽における亜硫酸マグネシウムの
析出社が減少し、4.0より低下すると亜硫酸ガスの吸
収反応速度が減少し不利である。好ましくはPH4,5
〜6.0に保持するとよい。
According to the method of the present invention, the sulfur dioxide introduced from the pipe (4) comes into countercurrent contact with the circulating fluid, the contained sulfur dioxide gas is reacted and absorbed, and the purified exhaust gas is sent to the system from the exhaust stack (81). During this time, the chelating agent solution is added to the circulating fluid from the pipe (9), and the pH of the circulating fluid is changed from the pipe (9) to the circulating fluid.
46 by the magnesium hydroxide suspension introduced through the
Adjusted to 0-6.5. If the pH of the circulating fluid exceeds 6.5, the amount of magnesium sulfite precipitated in the neutralization crystallization tank described later will decrease, and if it falls below 4.0, the absorption reaction rate of sulfur dioxide gas will decrease, which is disadvantageous. Preferably PH4.5
It is preferable to keep it at ~6.0.

尚、添加するキレート剤としては、エチレンジアミン四
酢酸(以下、EDTAと略記する)、ジエチレントリア
ミン五酢酸、あるいはニトリロ三酢酸等が使用できる。
As the chelating agent to be added, ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA), diethylenetriaminepentaacetic acid, nitrilotriacetic acid, or the like can be used.

その添加量は排ガスの成分および水酸化マグネシウム中
に含まれる不純物によりことなるもので、キレート剤と
してEDTAを使用する場合、通常循環液中のその濃度
が20〜2000ppmとなるよう添加すればよいが、
それ以上の濃度としてもよく、循環液中のキレート剤の
濃度は特に限定されるものではない。
The amount added varies depending on the components of the exhaust gas and the impurities contained in magnesium hydroxide. When using EDTA as a chelating agent, it is usually sufficient to add it so that the concentration in the circulating fluid is 20 to 2000 ppm. ,
The concentration of the chelating agent in the circulating fluid is not particularly limited, and the concentration may be higher than that.

一方、液分散器(6)より散布され充填層(7)を流下
した循環液は、次いで管C1,)を経て循環ポンプ(6
)により抜取られ、抜取られた循環液の一部は前記した
ごとく管(5)を経て分散器(6)より塔内に散布され
残部は管Q3を経て攪拌機付中和晶析槽(2)に導入さ
れる。ここで管α荀を経て導入される水酸イ(マグネシ
ウムにより中和され、液中の重亜硫酸マグネシウムは亜
硫酸マグネシウムに変換され、飽和濃度をこえた亜硫酸
マグネシウムは結晶として析出する。次いで析出した亜
硫酸マグネシウムの結晶を含む液はポンプa0により固
液分離機(3)に導かれる。
On the other hand, the circulating liquid that has been dispersed from the liquid disperser (6) and flows down the packed bed (7) then passes through the pipe C1,) to the circulation pump (6).
), and a part of the withdrawn circulating liquid passes through the pipe (5) and is dispersed into the column from the disperser (6) as described above, and the remainder passes through the pipe Q3 to the neutralization crystallization tank (2) with a stirrer. will be introduced in Here, the hydroxide (magnesium) introduced through the tube is neutralized, and the magnesium bisulfite in the liquid is converted to magnesium sulfite, and the magnesium sulfite that exceeds the saturation concentration precipitates as crystals.Then, the precipitated sulfite The liquid containing magnesium crystals is guided to the solid-liquid separator (3) by pump a0.

ここで液中に含まれる亜硫酸マグネシウムの結晶は分離
、回収され、p液は炉液槽aQを経てポンプ@により管
(ト)を経て吸収塔内に環流される。尚、Q*は固形物
取出口を示す。
Here, the magnesium sulfite crystals contained in the liquid are separated and recovered, and the p liquid passes through the furnace liquid tank aQ and is refluxed into the absorption tower via the pipe (g) by the pump @. Note that Q* indicates a solid matter outlet.

本発明は以上のように構成されるもので、次に本発明の
従来法に対する利点を述べる。
The present invention is constructed as described above, and the advantages of the present invention over conventional methods will be described next.

前記したごとく、水酸化マグネシウムを吸収剤とし排ガ
ス中の亜硫酸ガスを吸収除去する湿式脱硫方法における
吸収塔の循環液中には、吸収反応で生成される亜硫酸マ
グネシウムと、重亜硫酸マグネシウム(これ等亜硫酸塩
の生成比率は液のPHに支配される)、および酸化反応
により生成された硫酸マグネシウム(この生成速度は液
中の重金属イオンにより支配される)が混在する。
As mentioned above, in the wet desulfurization method that uses magnesium hydroxide as an absorbent to absorb and remove sulfur dioxide gas from exhaust gas, the circulating liquid of the absorption tower contains magnesium sulfite produced by the absorption reaction and magnesium bisulfite (such as sulfur dioxide). The salt production ratio is controlled by the pH of the liquid), and magnesium sulfate produced by the oxidation reaction (the production rate is controlled by heavy metal ions in the liquid) are mixed.

しかるに従来法は、吸収塔の循環液のPHを6.0〜7
.0 に調整して排ガス中の亜硫酸ガスを吸収除去する
ため、循環液中の亜硫酸マグネシウムの、全亜硫酸塩に
対するモル比(以下、比率という)が大きくなる。例え
ば循環液のPHを6.5以上に保持した場合、弗硫酸マ
グネシウムの比率は80%以上になる。かつ、亜硫酸マ
グネシウムは難溶性であるため、ややもすれば析出して
機器類に付着、スケール化するおそれがあるため全亜硫
酸濃度の低い状態で運転しなければならない。従って吸
収塔から排出される循環液に含まれる全亜硫酸塩濃度が
低いため硫酸マグネシウムに酸化するための前処理工程
(水酸化マグネシウムを添加し、重亜硫酸マグネシウム
を亜硫酸マグネシウムに変換する)においても弗硫酸ヤ
グネシウムは析出しないため、亜硫酸塩類を回収するこ
とな(吸収塔排出液は全量硫酸マグネシウムとして放流
される。
However, in the conventional method, the pH of the circulating liquid in the absorption tower is set to 6.0 to 7.
.. Since the sulfur dioxide gas in the exhaust gas is absorbed and removed by adjusting the temperature to 0, the molar ratio (hereinafter referred to as ratio) of magnesium sulfite to the total sulfite in the circulating fluid becomes large. For example, if the pH of the circulating fluid is maintained at 6.5 or higher, the proportion of magnesium fluorosulfate will be 80% or higher. In addition, since magnesium sulfite is poorly soluble, there is a risk that it will precipitate and adhere to equipment and form scales, so it must be operated at a low total sulfite concentration. Therefore, since the total sulfite concentration contained in the circulating liquid discharged from the absorption tower is low, even in the pretreatment process for oxidizing it to magnesium sulfate (adding magnesium hydroxide to convert magnesium bisulfite to magnesium sulfite), fluorine Since yagnesium sulfate does not precipitate, sulfites are not recovered (the entire amount of the absorption tower effluent is discharged as magnesium sulfate.

これに対し、本発明方法においては、吸収塔−の循環液
のPHを4.0〜6.5に調整して排ガス中の亜硫酸カ
スを吸収除去するため、循環液中の亜硫酸マグネシウム
の比率が小さくなり、重亜硫酸マグネシウムの比率が大
きくなる。例えば循環液のPHを5.5に保持すると亜
硫酸マグネシウムの比率は20〜50%に低下し、重亜
硫酸マグネシウムの比率は50〜80%と増大する。更
に重亜硫酸マグネシウムは易溶性で、析出して機器類に
付着、スケール化するおそれが少ないため、循環液中の
全亜硫酸塩の濃度を高くすることができる。′従って吸
収塔から排出される循環液中に含まれる全亜硫酸塩の濃
度が高くなり、吸収塔の排出液を書彬寺舎M肴棲→喰中
相晶析槽に送り、水酸化マグネシウムを添加しぞ含ま”
れる重亜硫酸マグネシウムを亜硫酸マグネシウムに変換
すれば、!!II!硫酸マグネシウムは難溶性であるの
で飽和濃度をこえた亜硫酸マグネシウムは結晶として析
出する。この析出した亜硫酸マグネシウムを分離、回収
し、炉液(亜硫酸マグネシウム飽和溶液)を吸収塔へ環
流する。
In contrast, in the method of the present invention, the pH of the circulating liquid in the absorption tower is adjusted to 4.0 to 6.5 to absorb and remove sulfite residue in the exhaust gas, so the ratio of magnesium sulfite in the circulating liquid is reduced. The proportion of magnesium bisulfite increases. For example, when the pH of the circulating fluid is maintained at 5.5, the proportion of magnesium sulfite decreases to 20-50%, and the proportion of magnesium bisulfite increases to 50-80%. Furthermore, since magnesium bisulfite is easily soluble and there is little risk of it precipitating and adhering to equipment or forming scales, it is possible to increase the total concentration of sulfites in the circulating fluid. 'Therefore, the concentration of total sulfites contained in the circulating liquid discharged from the absorption tower increases, and the discharged liquid from the absorption tower is sent to the Shubin Temple M Appanxia → Kui medium phase crystallization tank, where magnesium hydroxide is extracted. Contains additives
If you convert magnesium bisulfite into magnesium sulfite,! ! II! Since magnesium sulfate is poorly soluble, magnesium sulfite that exceeds the saturation concentration precipitates as crystals. The precipitated magnesium sulfite is separated and recovered, and the furnace liquid (saturated magnesium sulfite solution) is refluxed to the absorption tower.

本発明方法においては、従来法とことなり、循環液中に
キレート剤が添加されているため、吸収塔内における酸
化速度は著しく抑制され、硫酸マグネシウムの生成量は
きわめて少量である。従ってこのろ液を吸収塔へ環流再
使用しても何ら支障はない。勿論、この炉液を環流する
ことにより、循環液中の亜硫酸マグネシウムの濃度は上
昇するが、一方、亜硫酸マグネシウム結晶を分離する際
硫酸マグネシウムは付着液として同伴分離され、系外に
取出されるため、循環液中の硫酸マグネシウムは一定濃
度で平衡書とノ≠Φ−勢、吸収効果に (は何ら影箒し
ない。
In the method of the present invention, unlike the conventional method, since a chelating agent is added to the circulating liquid, the oxidation rate in the absorption tower is significantly suppressed, and the amount of magnesium sulfate produced is extremely small. Therefore, there is no problem in reusing this filtrate by refluxing it to the absorption tower. Of course, by circulating this furnace fluid, the concentration of magnesium sulfite in the circulating fluid increases, but on the other hand, when the magnesium sulfite crystals are separated, magnesium sulfate is entrained and separated as a deposited liquid and taken out of the system. , magnesium sulfate in the circulating fluid has no effect on the absorption effect at a constant concentration and the equilibrium book.

従って本発明方法によれば、従来法とことなり硫酸マグ
ネシウム水溶液を放流することなく、いわゆるクローズ
ドシステムで排ガス中の亜硫酸カスを吸収除去できる。
Therefore, according to the method of the present invention, unlike the conventional method, sulfite scum in exhaust gas can be absorbed and removed in a so-called closed system without discharging an aqueous magnesium sulfate solution.

尚、本発明の実施にあたり、場合によっては極少量の炉
液を放流してもよいことは云うまでもない。
In carrying out the present invention, it goes without saying that a very small amount of furnace liquid may be discharged depending on the case.

実施例 第1図に示すよう構成された装置を使用して試験を行な
ったもので、1処理ガスとして801950ppmを含
むボイラー排ガスを60ONml/Hr の割合で吸収
塔(1)に導入し、含有するSozガスを吸収除去した
Example A test was conducted using an apparatus configured as shown in Fig. 1, in which boiler exhaust gas containing 801,950 ppm was introduced into the absorption tower (1) at a rate of 60 ONml/Hr. Soz gas was absorbed and removed.

試験に当り、EDTA・2 N mを添加、循環液のE
DTA・2Nmの濃度を2000PPm1PHを5.5
゜に調整した。液温50℃で約20時間運転後、循環液
の組成は平衡に達した。その組成は下記の通りであった
During the test, 2 N m of EDTA was added to reduce the E of the circulating fluid.
The concentration of DTA・2Nm is 2000PPm1PH is 5.5
Adjusted to °. After about 20 hours of operation at a liquid temperature of 50°C, the composition of the circulating liquid reached equilibrium. Its composition was as follows.

組成 Total SOs −31,569/lMgS
O4・・・98.8971 循環液を48.31/Hrの割合で抜取り中和晶析槽(
21へ送り、Mg(OH)210wt%スラリー液を添
加してPHを7.0に調整すると多量のM g S O
s・3HxOの結晶が析出した。この中和晶析槽の滞流
時間は1.0時間で、次いでこの結晶を含む液を分離機
(3)に送り固液分離した結果、8.139#/Hrの
割合で固形物を分離回収した。
Composition Total SOs -31,569/lMgS
O4...98.8971 The circulating fluid is extracted at a rate of 48.31/Hr and sent to the neutralization crystallization tank (
21 and added a 210wt% Mg(OH) slurry to adjust the pH to 7.0, a large amount of Mg SO
Crystals of s.3HxO were precipitated. The residence time in this neutralization crystallization tank was 1.0 hours, and the liquid containing the crystals was then sent to the separator (3) for solid-liquid separation, resulting in the separation of solids at a rate of 8.139 #/Hr. Recovered.

この固形物の組成は次記の通り。The composition of this solid material is as follows.

組成 Mg5Os・3H20・・・2.669#付着液
・・・047# ろ液は吸収塔へ環流再使用した。尚、以上の操作は連続
して行なった。
Composition Mg5Os・3H20...2.669# Adhering liquid...047# The filtrate was refluxed to the absorption tower and reused. Note that the above operations were performed continuously.

以上の結果、本発明方法によれば従来法とことなり、M
 g S 04を含む排水を放流することなく、排ガス
中の弗硫酸ガスを除去することができた。
As a result, the method of the present invention is different from the conventional method, and M
The fluorosulfuric acid gas in the exhaust gas could be removed without discharging wastewater containing gS04.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する装置の一実施例のフローシー
トを示す。 l・・・吸収塔(充填塔)−2・・・中和晶析槽3・・
・固液分離機
FIG. 1 shows a flow sheet of one embodiment of the apparatus used in the present invention. l...Absorption tower (packed tower)-2...Neutralization crystallization tank 3...
・Solid-liquid separator

Claims (1)

【特許請求の範囲】[Claims] 水酸化マグネシウムを吸収剤として、排ガス中の亜硫酸
ガスを吸収除去する湿式脱硫方法において、吸収塔の循
環液にキレート剤を添加すると共に、循環液のPHを4
.0〜6.5に保持して排ガスと気液接触させ、排ガス
中の亜硫酸ガスを吸収除去すると共に、吸収塔から排出
される循環液に水酸化マグネシウムを添加して含まれる
重亜硫酸マグネシウムを亜硫酸マグネシウムとして析出
させたのち固液分離し、p液を吸収塔へ環流することを
特徴とする排ガス中の亜硫酸カスを吸収除去する湿式脱
硫方法。
In a wet desulfurization method in which sulfur dioxide gas in exhaust gas is absorbed and removed using magnesium hydroxide as an absorbent, a chelating agent is added to the circulating fluid of the absorption tower, and the pH of the circulating fluid is adjusted to 4.
.. 0 to 6.5 and bring it into gas-liquid contact with the exhaust gas to absorb and remove sulfur dioxide gas in the exhaust gas, and add magnesium hydroxide to the circulating fluid discharged from the absorption tower to convert the contained magnesium bisulfite into sulfite. A wet desulfurization method for absorbing and removing sulfite scum in exhaust gas, which is characterized by precipitating it as magnesium, followed by solid-liquid separation, and refluxing the p-liquid to an absorption tower.
JP58234584A 1983-12-12 1983-12-12 Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas Granted JPS60125231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234584A JPS60125231A (en) 1983-12-12 1983-12-12 Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234584A JPS60125231A (en) 1983-12-12 1983-12-12 Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas

Publications (2)

Publication Number Publication Date
JPS60125231A true JPS60125231A (en) 1985-07-04
JPS6322165B2 JPS6322165B2 (en) 1988-05-11

Family

ID=16973307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234584A Granted JPS60125231A (en) 1983-12-12 1983-12-12 Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas

Country Status (1)

Country Link
JP (1) JPS60125231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775515A1 (en) * 1995-10-20 1997-05-28 Dravo Lime Company Sulphur dioxide scrubbing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775515A1 (en) * 1995-10-20 1997-05-28 Dravo Lime Company Sulphur dioxide scrubbing

Also Published As

Publication number Publication date
JPS6322165B2 (en) 1988-05-11

Similar Documents

Publication Publication Date Title
US7419643B1 (en) Methods and apparatus for recovering gypsum and magnesium hydroxide products
US3944649A (en) Multistage process for removing sulfur dioxide from stack gases
US5645807A (en) Magnesium-enhanced sulfur dioxide scrubbing with gypsum formation
US4141961A (en) Production of H2 S from SO2 obtained from flue gas
JPS593207B2 (en) Gasly Yukara Sankaiou O Jiyokyosuru Hohou
JP3572223B2 (en) Absorbent slurry treatment method and flue gas desulfurization system
PL183184B1 (en) Method of desulphurising flue gases
US3961021A (en) Method for removing sulfur dioxide from combustion exhaust gas
JP3385137B2 (en) Treatment of flue gas desulfurization wastewater
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
US3812243A (en) Combined process for recovering s from h2s in claus plant and treating tailgas to remove h2s and so2
JPH0141376B2 (en)
JP3577832B2 (en) Method for removing Se from Se-containing liquid
US4021202A (en) Apparatus for removing sulfur dioxide from stack gases
US5614158A (en) Process for removing sulfur dioxide from gases and producing gypsum and purified magnesium hydroxide
JPS60125231A (en) Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas
GB2163141A (en) Method for removing and recovering sulphur in elemental form from gases containing sulphur dioxide or sulphur dioxide and hydrogen sulphide
JPS62225226A (en) Wet stack-gas desulfurization facility
JPS60125230A (en) Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas
US5683666A (en) Method for the removal of sulfur dioxide and nitrogen oxides for a gaseous stream
JP3665918B2 (en) Treatment method for petroleum combustion ash
JPH08252427A (en) Method for eliminating so2 from so2- containing gas by forming directly elementary sulfur
PL101552B1 (en) A METHOD OF REMOVING SULPHUR DIOXIDE FROM WASTE GASES
JPS59230620A (en) Slurry concentration control method of wet waste gas desulfurization apparatus
FR2513140A1 (en) PROCESS FOR THE REMOVAL OF SULFUR OXIDES FROM FUMES