JPS60125230A - Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas - Google Patents

Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas

Info

Publication number
JPS60125230A
JPS60125230A JP58234583A JP23458383A JPS60125230A JP S60125230 A JPS60125230 A JP S60125230A JP 58234583 A JP58234583 A JP 58234583A JP 23458383 A JP23458383 A JP 23458383A JP S60125230 A JPS60125230 A JP S60125230A
Authority
JP
Japan
Prior art keywords
magnesium
solution
exhaust gas
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58234583A
Other languages
Japanese (ja)
Inventor
Hitoshi Nishizawa
均 西沢
Kensuke Yano
謙介 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIMURA KAKOKI KK
Kimura Chemical Plants Co Ltd
Original Assignee
KIMURA KAKOKI KK
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIMURA KAKOKI KK, Kimura Chemical Plants Co Ltd filed Critical KIMURA KAKOKI KK
Priority to JP58234583A priority Critical patent/JPS60125230A/en
Publication of JPS60125230A publication Critical patent/JPS60125230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To reduce the discharge amount of a discharged aqueous MgSO4 solution, by holding the pH value of the recirculation solution containing an Mg(OH)2 absorbent of an absorbing tower to a low value and depositing, separating and recovering MgSO4 from a waste absorbing solution. CONSTITUTION:Exhaust gas is guided to an absorbing tower 1 and brought into contact with a recirculation solution of which the pH is adjusted to 4.0-6.5 by an Mg(OH)2 slurry to absorb and remove SO2. A part of the recirculation solution is guided to a neutralization/crystallization tank 2 and Mg(OH)2 is added to said tank 2 from a pipe 14 to convert Mg(HSO3)2 in the solution to MgSO3. The deposited MgSO3 is guided to a solid-luquid separator 3, and separated and recovered. The filtrate is guided to an oxidizing tower 4 through a filtrate tank 16 and MgSO3 in the solution is oxidized to MgSO4 by air to be discharge out of the system as an aqueous MgSO4 solution from a pipe 19.

Description

【発明の詳細な説明】 本発明は、亜硫酸カスを含む排ガスと水酸化マグネシウ
ム懸濁水とを気液接触させて、排ガス中の亜硫酸ガスを
吸収除去する湿式脱硫方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet desulfurization method for absorbing and removing sulfur dioxide gas from exhaust gas by bringing exhaust gas containing sulfite residue into gas-liquid contact with magnesium hydroxide suspension.

ボイラー等、あるいは、その他の化学工場より排出され
る排ガス中に含まれる亜硫酸ガスの除去手段として、排
ガスを吸収塔に導びき、アルカリ物質を含む水溶液を吸
収液として排ガスと気液接触させることにより排ガス中
の曲硫酸ガスを吸収除去する多くの湿式脱硫方法が提案
、実施されている。
As a means of removing sulfur dioxide gas contained in exhaust gas discharged from boilers, etc. or other chemical factories, the exhaust gas is led to an absorption tower and an aqueous solution containing an alkaline substance is used as an absorption liquid and brought into gas-liquid contact with the exhaust gas. Many wet desulfurization methods for absorbing and removing bent sulfuric acid gas from exhaust gas have been proposed and implemented.

これ夢の方法の一つとして、水に水酸化マグネシウムを
懸濁させて吸収剤として使用する方法がある。すなわち
、排ガスと水酸化マグネシウム懸濁水とを吸収塔内で気
液接触させることにより排ガス中の曲硫酸ガスをマグネ
シウム化合物として吸収除去する湿式脱硫方法であって
、この方法を実施する従来の方法は、吸収塔に水酸化マ
グネシウム懸濁水を連続注入することにより吸収塔循環
液(吸収制のPHを6.0〜7.0に保持しつつ排ガス
と吸収液とを気液接触せしめ、排カス中に含まれる亜硫
酸ガスを吸収除去し、清浄化された排ガスを系外に排出
すると共に、吸収反応により生成した亜硫酸マグネシウ
ム、およびli曲硫酸マグネシウムと、同時に生成した
亜硫酸マグネシウムが排ガス中に含まれる酸素により酸
化されて生成した硫酸マグネシウムとを含6吸収液(循
環液)の一部を抜出し、酸化装置に専びき水酸化マグネ
シウムを添加して含まれる重亜硫酸マグネシウムを亜硫
酸マグネシウムに変換した後、空気を通じて酸化し、無
害な硫酸マグネシウム水溶液として系外に排出、放流す
るものである。
One promising method is to suspend magnesium hydroxide in water and use it as an absorbent. That is, it is a wet desulfurization method in which the flue gas and magnesium hydroxide suspended water are brought into gas-liquid contact in an absorption tower to absorb and remove bent sulfuric acid gas in the flue gas as a magnesium compound. By continuously injecting magnesium hydroxide suspended water into the absorption tower, the exhaust gas and absorption liquid are brought into gas-liquid contact while maintaining the pH of the absorption tower circulation liquid (absorption system) at 6.0 to 7.0, and the The sulfur dioxide contained in the sulfur dioxide is absorbed and removed, and the purified exhaust gas is discharged to the outside of the system. At the same time, the magnesium sulfite produced by the absorption reaction and the magnesium sulfite produced at the same time remove the oxygen contained in the exhaust gas. A part of the absorption liquid (circulating liquid) containing magnesium sulfate produced by oxidation is extracted, and magnesium hydroxide is added exclusively to the oxidizer to convert the contained magnesium bisulfite into magnesium sulfite. It oxidizes through the process and is discharged and discharged from the system as a harmless aqueous magnesium sulfate solution.

しかし乍ら、硫酸マグネシウム自体は無害であるが、排
ガス中の亜硫酸ガス除去処理にあたり排出される硫酸マ
グネシウムの量は美大なもので、これら多量の硫酸マグ
ネシウム水溶液が湖、沼等に放流されると水の富栄養化
の原因となるため、近時地域によっては排出量を漸次現
制する傾向にある。
However, although magnesium sulfate itself is harmless, the amount of magnesium sulfate emitted during the process of removing sulfur dioxide gas from exhaust gas is enormous, and large amounts of these aqueous magnesium sulfate solutions are discharged into lakes, ponds, etc. This causes the eutrophication of water and water, so there is a recent trend in some regions to gradually reduce their emissions.

本発明は、このような現状に鑑みなされたもの本発明を
説明するにあたり、先ず水酸化−74グネシウム懸濁水
を吸収液として使用する湿式脱硫′法の反応機構につい
て説明すると、その吸収塔内における吸収反応生成物は
、前記したごとく亜硫酸マグネシウムと重亜硫酸マグネ
シウムであって、その吸収反応機構は次式により示され
る。
The present invention has been made in view of the current situation. In explaining the present invention, firstly, the reaction mechanism of the wet desulfurization method using suspension of -74gnesium hydroxide as an absorption liquid will be explained. The absorption reaction products are magnesium sulfite and magnesium bisulfite as described above, and the absorption reaction mechanism is shown by the following formula.

Mg (OH) x +802→M9S08−)−H,
0M9SOs−1−8Ch+HtO→My(H8Os)
!My(H5Os)2十MIF(OH)g→2Mg50
g+2HzO同時に、副反応として排ガス中に含まれる
酸素により循環液中の亜硫酸マグネシウムの一部は酸化
され、硫酸マグネシウムが生成する。その酸化反応機構
は次式により示される。
Mg (OH) x +802→M9S08-)-H,
0M9SOs-1-8Ch+HtO→My(H8Os)
! My(H5Os)20MIF(OH)g→2Mg50
g+2HzO At the same time, as a side reaction, some of the magnesium sulfite in the circulating fluid is oxidized by oxygen contained in the exhaust gas, producing magnesium sulfate. The oxidation reaction mechanism is shown by the following equation.

Mg505−1−70g÷MりSO。Mg505-1-70g÷Mri SO.

不発明番等は1々検討した結果、上記吸収反応における
亜硫酸マグネシウムと重亜硫酸マグネシウムの生成比率
が循環液のPHによりことなること、すなわち、PHが
高い重亜硫酸マグネシウムの生成比率が大で、PHが低
下するにしたがって重亜硫酸マグネシウムの生成比率が
大きくなること、ならびに、亜硫酸マグネシウムが水に
難溶性溶性であることに着目し、循環液のPHを4.0
〜6.5に保持して排ガスと気液接触させ、排ガス中の
亜硫酸ガスを吸収除去すると共に、更に吸収塔から抜取
った循環液に水酸(iマグネシウムを添加して含有する
重亜硫酸マグネジ今ムを亜硫酸マグネシウムとして晶析
、回収することに成功し本発明を完成したもので、本発
明は、水酸化マグネシウム懸濁水を鹸収剤として、排ガ
ス中の亜硫酸ガスを吸収除去する湿式脱硫法において、
吸収塔の循環液のPHを4.0〜6.5に保持すると共
に、抜取った吸収塔排液を晶析槽に導びき、水酸化マグ
ネシウムを添加して亜硫酸マグネシウムを析出させた後
、固液分離し、液分を酸化塔に導びき空気を・通じ硫酸
マグネシウム水溶液とすることを特徴とするものである
As a result of various studies, we found that the production ratio of magnesium sulfite and magnesium bisulfite in the above absorption reaction differs depending on the pH of the circulating fluid. Focusing on the fact that the production ratio of magnesium bisulfite increases as the pH decreases, and that magnesium sulfite is sparingly soluble in water, the pH of the circulating fluid was set to 4.0.
~ 6.5 and brought into gas-liquid contact with the exhaust gas to absorb and remove the sulfur dioxide gas in the exhaust gas, and also to absorb and remove sulfur dioxide from the circulating fluid extracted from the absorption tower. The present invention has been completed by successfully crystallizing and recovering sulfur dioxide as magnesium sulfite.The present invention is a wet desulfurization method in which sulfur dioxide gas in exhaust gas is absorbed and removed using magnesium hydroxide suspension water as a soap collecting agent. In,
While maintaining the pH of the circulating liquid of the absorption tower at 4.0 to 6.5, the extracted absorption tower effluent is led to a crystallization tank, and magnesium hydroxide is added to precipitate magnesium sulfite. It is characterized by separating solid and liquid, leading the liquid to an oxidation tower, and passing air through it to form an aqueous solution of magnesium sulfate.

以下、本発明を図面によって説明する。Hereinafter, the present invention will be explained with reference to the drawings.

図中、(1)は図示しないミストキャッチャ−を内蔵し
た吸収塔(充填塔)であるが、特に充填塔に限定される
ものではなくスプレー塔、棚段塔等、他の型式の吸収塔
でもよい。(2)は攪拌機付中和晶・析槽、(3)は固
液分離機、(4)は酸化塔を示す。
In the figure, (1) is an absorption tower (packed tower) with a built-in mist catcher (not shown), but it is not limited to a packed tower and may also be used for other types of absorption towers such as a spray tower or a plate tower. good. (2) shows a neutralization crystallization tank with a stirrer, (3) shows a solid-liquid separator, and (4) shows an oxidation tower.

本発明方法によれば、管(5)より導入された亜硫酸ガ
スを含む排ガスi、吸収塔α)内を上昇しつつ管(6)
を経て液分散器(7)より散布され充填層(8)を流下
する循環液と向流気液接触し、含有する亜硫酸ガスは反
応吸収され、清浄化された排ガスは排気筒(9)より糸
外に排出される。この間、循環液のPHは、管(1Gを
経て導入される水酸化マグネシウム懸濁液により4.0
〜6,5に調整される。循環液のPHが6.5をこえる
と後記する中和晶析槽における亜硫酸マグネシウムめ析
゛出量が減少し、4.0より低下すると亜硫酸ガスの吸
収反応速度が減少し不利である。好ましくはP H4,
5〜6.0λするとよい。
According to the method of the present invention, the exhaust gas i containing sulfur dioxide introduced from the pipe (5) rises in the absorption tower α) and passes through the pipe (6).
It comes into countercurrent gas-liquid contact with the circulating liquid that is dispersed from the liquid disperser (7) and flows down the packed bed (8), and the contained sulfur dioxide gas is reacted and absorbed, and the purified exhaust gas is sent to the exhaust pipe (9). It is discharged outside. During this period, the pH of the circulating fluid was increased to 4.0 by the magnesium hydroxide suspension introduced through the tube (1G).
Adjusted to ~6.5. When the pH of the circulating fluid exceeds 6.5, the amount of magnesium sulfite precipitated in the neutralization crystallization tank described later decreases, and when it falls below 4.0, the absorption reaction rate of sulfur dioxide gas decreases, which is disadvantageous. Preferably P H4,
It is preferable to set it to 5 to 6.0λ.

一方、液分散器(7)より散布され充填層(8)を流下
した循環液は、次いで管αηを経て循環ポンプ(2)に
より抜取られる。抜取られた循環液の一部は前記したご
とく管(6)を経て会散器(7)より塔内に散布され、
残部は管(至)を経て攪拌機付中和晶析槽(2)に導入
される。ここで管(ロ)を経て導入される水酸化マグネ
シウムにより中和され、液中の重亜硫酸マグネシウムは
亜硫酸マグネシウムに変換され、飽和濃度をこえた亜硫
酸マグネシウムは結晶として析出する。次いで析出した
亜硫酸マグネシウムの結晶を含む液はポンプ(J!9に
より固液分離機(3目と導かれる。ここで液中に含まれ
る亜硫酸マグネシウムの結晶は分離回収され、炉液はろ
液槽a→を経てポンプαηにより酸化塔(4)に導入さ
れ、管(至)を経て導入されろ空気により液中の亜硫酸
マグネシウム分は硫酸マグネシウムに酸化され、硫酸マ
グネシウム水溶液として管α呻より糸外に排出される。
On the other hand, the circulating liquid that has been dispersed from the liquid distributor (7) and flowed down the packed bed (8) is then extracted by the circulation pump (2) via the pipe αη. A portion of the circulating fluid that has been extracted is distributed into the tower from the diffuser (7) through the pipe (6) as described above,
The remainder is introduced into a neutralization crystallization tank (2) equipped with a stirrer via a tube. Here, the magnesium bisulfite in the liquid is neutralized by the magnesium hydroxide introduced through the tube (b) and converted to magnesium sulfite, and the magnesium sulfite that exceeds the saturation concentration precipitates as crystals. Next, the liquid containing the precipitated magnesium sulfite crystals is led to the solid-liquid separator (third stage) by a pump (J! The magnesium sulfite content in the liquid is oxidized to magnesium sulfate by the air introduced through the pipe (to), which is then discharged from the pipe through the pipe α as an aqueous magnesium sulfate solution. be done.

(イ)は固形物取出口を示す。(a) shows the solid matter outlet.

尚、本発明に使用する酸化塔としては、ノ〈ブリング型
式、多孔板型式等その他何れの型式のものでもよい。
The oxidation tower used in the present invention may be of any type, such as a knob type or a perforated plate type.

次に本発明の従来法に対する利点を述べる。Next, the advantages of the present invention over the conventional method will be described.

従来法は、吸収塔の循環液のPHを6.0〜7,0&と
調整して排ガス中の亜硫酸ガスを吸収除去するため、循
環液中の亜硫酸マグネシウムの全亜硫酸塩に対するモル
比(以下、比率という)が太きくなる。例えば循環液の
PHを6.5以上に保持した場合、亜硫酸マグネシウム
の比率は80%以上Cとなる。かつ、亜硫酸マグネシウ
ムは難溶性であるため、ややもすれば析出して機器類に
付着、スケール化するおそれがあるため全亜硫酸濃度の
低0状態で運転しなければならない。従って、吸収塔力
)ら排出される循環液に含まれる全亜硫酸塩濃度が低い
ため硫酸マグネシウムに酸化するための前処理工程(水
酸化マグネシウムを添加し、重亜硫酸マグネシウムを亜
硫酸マグネシウムに変換する)においても亜硫酸マグネ
シ−ラムは析出しなLまため亜硫酸塩類を回収すること
なく吸収塔循環液番よ全量硫酸マグネシウムとして放流
される。
In the conventional method, in order to absorb and remove sulfur dioxide gas in the exhaust gas by adjusting the pH of the circulating liquid of the absorption tower to 6.0 to 7.0, the molar ratio of magnesium sulfite to the total sulfite in the circulating liquid (hereinafter referred to as ratio) becomes thicker. For example, when the pH of the circulating fluid is maintained at 6.5 or higher, the ratio of magnesium sulfite becomes 80% or higher. In addition, since magnesium sulfite is poorly soluble, there is a risk that it will precipitate and adhere to equipment and form scales, so it must be operated at a low total sulfite concentration of 0. Therefore, since the total sulfite concentration contained in the circulating liquid discharged from the absorption tower is low, a pretreatment step for oxidizing it to magnesium sulfate (adding magnesium hydroxide to convert magnesium bisulfite to magnesium sulfite) Also, the magnesium sulfite is not precipitated, so the entire amount is discharged as magnesium sulfate to the absorption tower circulating liquid without recovering the sulfites.

流酸ガスを吸収除去するため、循環液中の亜硫酸マグネ
シウムの比率が小さくなり、重亜硫酸マグネシウムの比
率が大き4なる。例えば循環液のPI(を5.5に保持
すると亜硫酸マグネシウムの比率番よ20〜50%に低
下し、重亜硫酸マグネシウムの比率は50〜80%と増
大する。更にMJh硫酸マグネシウムは易溶性で、″析
出して機器類に付着、スケール化するおそれが小ないた
め、循環液中の全曲硫酸塩の濃度を高くすることができ
る。従って、吸収塔から排出される循環液中に含まれる
全亜硫酸塩の濃度が高くなり、吸収塔の排出液を酸化塔
の前段に設けた中和晶析槽に送り、水酸化マグネシウム
を添加して含まれる重亜硫酸マグネシウムを41!硫酸
マグネシウムに変換すれば、亜硫酸マグネシウムは畔溶
性であるので、飽和濃度をこえた亜硫酸マグネシウムは
結晶として析出する。
In order to absorb and remove flowing acid gas, the ratio of magnesium sulfite in the circulating fluid decreases, and the ratio of magnesium bisulfite increases to 4. For example, if the PI of the circulating fluid is maintained at 5.5, the ratio of magnesium sulfite decreases to 20-50%, and the ratio of magnesium bisulfite increases to 50-80%.Furthermore, MJh magnesium sulfate is easily soluble; ``Since there is little risk of precipitation, adhesion to equipment, and scale formation, the concentration of total sulfate in the circulating fluid can be increased.Therefore, the concentration of total sulfite contained in the circulating fluid discharged from the absorption tower can be increased. When the salt concentration increases, the effluent from the absorption tower is sent to the neutralization crystallization tank installed before the oxidation tower, and magnesium hydroxide is added to convert the contained magnesium bisulfite into 41!magnesium sulfate. Since magnesium sulfite is water-soluble, magnesium sulfite that exceeds the saturation concentration precipitates as crystals.

この析出した亜硫酸マグネシウムを分離、回収し、ろ液
を酸化して硫酸マグネシウム水溶液として放流する。
The precipitated magnesium sulfite is separated and collected, and the filtrate is oxidized and discharged as an aqueous magnesium sulfate solution.

従って本発明方法によれば、従来法に比し、放流される
硫酸マグネシウムの量を、分離回収した亜硫酸マグネシ
ウムの当量相当分だけ減少することができろ。
Therefore, according to the method of the present invention, compared to the conventional method, the amount of magnesium sulfate discharged can be reduced by the equivalent amount of separated and recovered magnesium sulfite.

実施例 第1図に示すよう構成された装置を使用して試験を行な
ったもので、被処理ガスとしてSOg950PPmを含
むボイラー排ガスを600 Nm” /Hrの割合で吸
収塔(1)に導入し、含有するSO2ガスを吸収除去し
た。
Example A test was conducted using an apparatus configured as shown in FIG. 1, in which boiler exhaust gas containing 950 PPm of SOg was introduced into the absorption tower (1) at a rate of 600 Nm''/Hr. The contained SO2 gas was absorbed and removed.

試験にあたり吸収塔循環液のPHを5.5に調整した。During the test, the pH of the absorption tower circulating liquid was adjusted to 5.5.

液温は50℃、液の組成は下記の通りであった。The liquid temperature was 50°C, and the composition of the liquid was as follows.

組成Total 50g−・−31,569/1My 
S O4・・・15.809# 循環液を38.11/HTの割合で抜取り中和晶析槽(
2)へ送り、Mg (OH) !110 wt%スラリ
ーを添加してPHを7.0に調整すると、多量のM g
 S Os・3H20の結晶が析出した。この中和晶析
槽の滞流時間は、1.0時間で、次いでこの結晶物を含
む懸濁液を分離機(3)に送り固液公爵した結果1.3
36kg / Hrの割合で固形物を回収した。この固
形物の組成は次記の通りであった。
Composition Total 50g--31,569/1My
S O4...15.809# The circulating fluid is extracted at a ratio of 38.11/HT and sent to the neutralization crystallization tank (
2), Mg (OH)! When adding 110 wt% slurry and adjusting the pH to 7.0, a large amount of M g
Crystals of SOs.3H20 were precipitated. The residence time in this neutralization crystallization tank was 1.0 hours, and the suspension containing the crystals was then sent to the separator (3) for solid-liquid separation, resulting in 1.3 hours.
Solids were collected at a rate of 36 kg/Hr. The composition of this solid was as follows.

組成Mg501・3H20・・・1.136#付着液・
・・0.204 p液は酸化塔(4)に送り空気を通じ酸化してM。
Composition Mg501・3H20...1.136#Adhesive liquid・
...0.204 The p liquid is sent to the oxidation tower (4) and oxidized through air to obtain M.

804水溶液として放流した。It was discharged as a 804 aqueous solution.

尚、以上の操作は連続して行なった。Note that the above operations were performed continuously.

流すべきM g S 04の42wt%をMg5O11
として分離回収できた。
42wt% of MgS04 to be flowed was replaced with Mg5O11.
It was separated and recovered as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する装置の一実施例のフローシー
トを示す。 1・・・吸収塔(充填塔) 2・・・中和晶析槽3・・
・分離機 4・・・酸化塔
FIG. 1 shows a flow sheet of one embodiment of the apparatus used in the present invention. 1... Absorption tower (packed tower) 2... Neutralization crystallization tank 3...
・Separator 4... Oxidation tower

Claims (1)

【特許請求の範囲】[Claims] 水酸化マグネシウムを吸収剤として、排ガス中の亜硫酸
ガスを吸収除去する湿式脱硫方法において、吸収塔の循
環液のPHを4.0〜6.5に保持すると共に、抜取っ
た吸収塔排液を晶析槽Cζ導びき、水酸化マグネシウム
を添加して亜硫酸マグネシウムを析出させた後、固液分
離し、液分を酸化して硫酸マグネシウム水溶液とするこ
とを特徴とする排ガス中の咥硫酸ガスを吸収除去する湿
式脱硫方法。
In a wet desulfurization method in which sulfur dioxide gas in exhaust gas is absorbed and removed using magnesium hydroxide as an absorbent, the pH of the circulating fluid in the absorption tower is maintained at 4.0 to 6.5, and the extracted absorption tower effluent is A crystallization tank Cζ is introduced, magnesium hydroxide is added to precipitate magnesium sulfite, solid-liquid separation is performed, and the liquid is oxidized to form an aqueous magnesium sulfate solution. A wet desulfurization method that uses absorption and removal.
JP58234583A 1983-12-12 1983-12-12 Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas Pending JPS60125230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234583A JPS60125230A (en) 1983-12-12 1983-12-12 Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234583A JPS60125230A (en) 1983-12-12 1983-12-12 Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas

Publications (1)

Publication Number Publication Date
JPS60125230A true JPS60125230A (en) 1985-07-04

Family

ID=16973290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234583A Pending JPS60125230A (en) 1983-12-12 1983-12-12 Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas

Country Status (1)

Country Link
JP (1) JPS60125230A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721337A (en) * 1986-02-10 1988-01-26 Mazda Motor Corporation Motor driven seat slide mechanism
US4824173A (en) * 1985-08-23 1989-04-25 Mazda Motor Corporation Automobile rear seat
US5676915A (en) * 1994-10-07 1997-10-14 Toyo Engineering Corporation Method for desulfurizing exhaust gas
CN112110422A (en) * 2020-09-23 2020-12-22 北京沃尔福环保科技有限公司 Method for co-producing concentrated sulfuric acid by flue gas desulfurization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055579A (en) * 1973-09-18 1975-05-15
JPS5057968A (en) * 1973-09-22 1975-05-20
JPS5232894A (en) * 1975-09-09 1977-03-12 Mitsui Miike Mach Co Ltd Process for removing sulfur oxide in waste gas and by-producting magne sium sulfate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055579A (en) * 1973-09-18 1975-05-15
JPS5057968A (en) * 1973-09-22 1975-05-20
JPS5232894A (en) * 1975-09-09 1977-03-12 Mitsui Miike Mach Co Ltd Process for removing sulfur oxide in waste gas and by-producting magne sium sulfate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824173A (en) * 1985-08-23 1989-04-25 Mazda Motor Corporation Automobile rear seat
US4721337A (en) * 1986-02-10 1988-01-26 Mazda Motor Corporation Motor driven seat slide mechanism
US5676915A (en) * 1994-10-07 1997-10-14 Toyo Engineering Corporation Method for desulfurizing exhaust gas
CN112110422A (en) * 2020-09-23 2020-12-22 北京沃尔福环保科技有限公司 Method for co-producing concentrated sulfuric acid by flue gas desulfurization

Similar Documents

Publication Publication Date Title
DE68916104T2 (en) Process for the desulfurization of a gas stream containing sulfur dioxide.
EP0405619B1 (en) A process for treating a chlorine-containing effluent and and apparatus therefor
US4147756A (en) Combustion gas scrubbing system
US3985860A (en) Method for oxidation of SO2 scrubber sludge
US4246245A (en) SO2 Removal
DK163868B (en) PROCEDURE FOR SIMULTANEOUS REMOVAL OF SO2, SO3 AND DUST FROM A COGAS GAS
PL168240B1 (en) Method of removing sulfur dioxide from combustion gases and method of obtaining gypsum and magnesium hydroxide
US4000991A (en) Method of removing fly ash particulates from flue gases in a closed-loop wet scrubbing system
US5645807A (en) Magnesium-enhanced sulfur dioxide scrubbing with gypsum formation
US3944649A (en) Multistage process for removing sulfur dioxide from stack gases
JP3572223B2 (en) Absorbent slurry treatment method and flue gas desulfurization system
LV12413B (en) Method of sulfur dioxide removal from gaseous streams with alpha hemihydrate gypsum product formation
JP3066403B2 (en) Method for removing sulfur dioxide from flue gas
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
US3965242A (en) Method for desulfurizing exhaust gas by alkali sulphite-gypsum process
JPS60125230A (en) Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas
US4021202A (en) Apparatus for removing sulfur dioxide from stack gases
US4167578A (en) Method for removing sulfur and nitrogen compounds from a gas mixture
US5614158A (en) Process for removing sulfur dioxide from gases and producing gypsum and purified magnesium hydroxide
JPS59230620A (en) Slurry concentration control method of wet waste gas desulfurization apparatus
US4313924A (en) Process for removal of sulfur dioxide from gas streams
US4014983A (en) Removal of hydrogen sulfide from gases
JPS6322165B2 (en)
JPS61222524A (en) Wet waste gas desulfurization method
JPH09122440A (en) Method for scrubbing sulfur dioxide being accompanied with formation of pure product of magnesium sulfite