JPS61222524A - Wet waste gas desulfurization method - Google Patents

Wet waste gas desulfurization method

Info

Publication number
JPS61222524A
JPS61222524A JP60064793A JP6479385A JPS61222524A JP S61222524 A JPS61222524 A JP S61222524A JP 60064793 A JP60064793 A JP 60064793A JP 6479385 A JP6479385 A JP 6479385A JP S61222524 A JPS61222524 A JP S61222524A
Authority
JP
Japan
Prior art keywords
water
gypsum
magnesium hydroxide
separated
gas desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60064793A
Other languages
Japanese (ja)
Inventor
Yazaemon Morita
森田 弥左衛門
Shinichi Okada
伸一 岡田
Masamichi Hayakawa
正道 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI SEKIYU KK
Original Assignee
FUJI SEKIYU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI SEKIYU KK filed Critical FUJI SEKIYU KK
Priority to JP60064793A priority Critical patent/JPS61222524A/en
Publication of JPS61222524A publication Critical patent/JPS61222524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high grade gypsum, by mixing MgSO4-containing waste water and CaCl2-containing waste water to form and separate gypsum ad recoverying water containing Mg(OH)2 and CaCl2 from the separated solution to respectively reutilize Mg(OH)2 and CaCl2. CONSTITUTION:Magnesium sulfate-containing waste water 1 and calcium chloride-containing water 2 are mixed to be introduced into a reaction tank 3 to form gypsum which is, in turn, separated by a filter press while calcium sulfate 8 is added to the separated filtrate 7 to form Mg(OH)2 in a reaction tank 9. The reaction product 10 is separated into magnesium hydroxide 12 and a filtrate by a filter press 11 and Mg(OH)2 is used as the adsorbent in wet desulfurization while the filtrate is sent to a CaCl2-containing water tank 14 and a part 15 of said filtrate is sent to a reverse osmosis unit 16 to obtain conc. CaCl2-containing water 17 which is, in turn, returned to a tank 14 and a part of transmitted water 18 is used in the aqueous Mg(OH)2 slurry in a slurry tank 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水酸化マグネシウムによる湿式排煙脱硫法に
おいて、処理後の廃液中から水酸化マグネシウムを連続
的に回収し”C湿式排煙脱硫に再使用すると共に高品位
の石膏を副生せしめようとするものである。副生ずる石
膏は高純度であって・広汎な用途を有する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a wet flue gas desulfurization method using magnesium hydroxide, in which magnesium hydroxide is continuously recovered from the waste liquid after treatment. The aim is to reuse the gypsum and produce high-quality gypsum as a by-product.The gypsum that is produced as a by-product is of high purity and has a wide range of uses.

(従来の技術〕 従来、水酸化マグネシウムによる湿式排煙脱硫法が公知
であり、排煙と水酸化マグネシウムを含む水スラリーと
接触せしめて硫黄酸化物を主に亜硫酸マグネシウムとし
て除去している。即ち、反応式で示すと次の如くである
(Prior Art) Conventionally, a wet flue gas desulfurization method using magnesium hydroxide is known, in which flue gas is brought into contact with a water slurry containing magnesium hydroxide to remove sulfur oxides mainly as magnesium sulfite. The reaction formula is as follows.

802 + Mg (0均z−9MgSOa + H2
O更に、亜硫酸マグネシウムは、水に離溶性であるので
、亜硫酸マグネシウム含有水中に空気を吹き込むなどし
て亜硫酸マグネシウムを溶解性の大きい硫酸マグネシウ
ムに変えて排出回収する方法が特公昭51−16192
号公報に記載されている。
802 + Mg (0 average z-9MgSOa + H2
Moreover, since magnesium sulfite is dissolvable in water, there is a method of converting magnesium sulfite into highly soluble magnesium sulfate by blowing air into water containing magnesium sulfite and then discharging and collecting it.
It is stated in the No.

これらの従来法においては、少なくとも除去しようとす
る硫黄酸化物と等しいモル数の水酸化マグネシウムが消
費され、そのコストは多大なものとなる。又、硫酸マグ
ネシウム含有排水は、そのまま河川、もしくは海へ排出
されることとなり、環境上好ましい方法とは言えない。
In these conventional methods, at least the same number of moles of magnesium hydroxide as the sulfur oxide to be removed is consumed, resulting in a large cost. Moreover, wastewater containing magnesium sulfate is discharged as it is into rivers or the sea, which is not an environmentally preferable method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記した水酸化マグネシウムによる湿式排煙
脱硫法において、硫酸マグネシウムを含有する廃液中か
ら水酸化マグネシウムを回収再使用することにより、硫
酸マグネシウム含有廃水の外部排出をなくし、更に高品
位の石膏を副生ずることによって、経済性が高く、環境
上好ましい排煙脱硫法を提供することを目的とする。
In the wet flue gas desulfurization method using magnesium hydroxide described above, the present invention eliminates external discharge of wastewater containing magnesium sulfate by recovering and reusing magnesium hydroxide from waste liquid containing magnesium sulfate, and further improves the quality of the waste gas. The purpose of the present invention is to provide a flue gas desulfurization method that is highly economical and environmentally preferable by producing gypsum as a by-product.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、水酸化マグネシウムによる湿式排煙脱硫法に
おいて、酸化処理後の吸収廃液、即ち、排煙と水酸化マ
グネシウムを含む吸収液とを接触せしめて硫黄酸化物を
亜硫酸マグネシウムとした後、更に該溶液を酸化して硫
酸マグネシウムに変えてなる吸収廃液に、複数の工程か
らなる処理を加えることにより水酸化マグネシウムを回
収して排煙の吸収液に再使用すると共に、石膏を副生さ
せる湿式排煙脱硫法の改良に関する。
In the wet flue gas desulfurization method using magnesium hydroxide, the present invention further provides a method for converting sulfur oxides into magnesium sulfite by contacting the absorption waste liquid after oxidation treatment, that is, the flue gas and the absorption liquid containing magnesium hydroxide. Wet-type absorption liquid that is made by oxidizing the solution and converting it into magnesium sulfate is subjected to a multi-step process to recover magnesium hydroxide and reuse it as a flue gas absorption liquid, as well as producing gypsum as a by-product. Regarding improvement of flue gas desulfurization method.

本発明は次の各工程よりなるものである。即ち、(1)
湿式排煙脱硫法において排出される硫酸マグネシウムを
含有する排水と塩化カルシウム含有水を混合2反応せし
め石膏を生成分離する0 (2)  上記(1)の工程における分離液に水酸化カ
ルシウム、もしくは、酸化カルシウムを加えて反応せし
め、水酸化マグネシウムを生成せしめる。
The present invention consists of the following steps. That is, (1)
The wastewater containing magnesium sulfate discharged in the wet flue gas desulfurization method and the water containing calcium chloride are mixed and reacted to produce and separate gypsum (2) The separated liquid in the step (1) above contains calcium hydroxide, or Calcium oxide is added and reacted to produce magnesium hydroxide.

(3)  上記(2)の工程の生成混合物中から、固液
分離操作により固形分である水酸化マグネシウムを分離
せしめ、分離した水酸化マグネシウムを湿式排煙脱硫法
の吸収剤として再使用せしめる。
(3) Magnesium hydroxide, which is a solid content, is separated from the mixture produced in step (2) above by a solid-liquid separation operation, and the separated magnesium hydroxide is reused as an absorbent in the wet flue gas desulfurization method.

(4)上記(3)の工程で得られる分離液を逆浸透膜で
濃縮せしめた後、濃縮後の塩化カルシウム含有水を上記
(1)の工程で再使用する。
(4) After concentrating the separated liquid obtained in step (3) above using a reverse osmosis membrane, the concentrated calcium chloride-containing water is reused in step (1) above.

の一連の工程からなる水酸化マグネシウムによる湿式排
煙脱硫法の改良法である。
This is an improved method of wet flue gas desulfurization using magnesium hydroxide, which consists of a series of steps.

従来の湿式排煙脱硫法から副生ずる硫酸マグネシウム含
有排水の硫酸マグネシウム濃度は、通常5〜15重量%
であって、上記工程(1)で再使用する工程(4)から
得られた塩化カルシウム含有水の塩化カルシウム濃度は
、1〜6重量−であることが好ましい。更に、塩化カル
シウムの濃度の設定は好ましくは上記工程(4)におけ
る逆浸透膜での濃縮操作の操作性、経済性を考慮してな
される。塩化カルシウムと硫酸マグネシウムのモル比は
1.1〜1.3の範囲が好ましい。反応温度は常温から
沸点までの範囲、反応圧力は常圧であり、石膏を分離す
る際の操作性、経済性等により各々の条件を設定する。
The concentration of magnesium sulfate in the magnesium sulfate-containing wastewater produced as a by-product from the conventional wet flue gas desulfurization method is usually 5 to 15% by weight.
The calcium chloride concentration of the calcium chloride-containing water obtained from step (4) to be reused in step (1) above is preferably 1 to 6 weight. Further, the concentration of calcium chloride is preferably set in consideration of the operability and economic efficiency of the concentration operation using the reverse osmosis membrane in step (4). The molar ratio of calcium chloride and magnesium sulfate is preferably in the range of 1.1 to 1.3. The reaction temperature is in the range from room temperature to the boiling point, and the reaction pressure is normal pressure, and each condition is set depending on the operability, economic efficiency, etc. when separating gypsum.

(1)の工程、(3)の工程での固液分離操作は通常の
単位操作、即ち濾過、遠心分離等で良く、望ましい方法
としては、フィルタープレス、スクリューデンカンター
等による方法が挙げられる0上記工程(2)において酸
化カルシウムもしくは水酸化カルシウムは、水溶スラリ
ー状で添加する方法が操作上好ましい。
The solid-liquid separation operations in steps (1) and (3) may be carried out by ordinary unit operations such as filtration, centrifugation, etc., and preferred methods include methods using a filter press, screw den canter, etc. In the above step (2), it is preferable in terms of operation that calcium oxide or calcium hydroxide be added in the form of an aqueous slurry.

工程(4)における逆浸透膜は、海水の淡水化に適用で
きる程度の性能をもった通常のものが使用できる。尚、
塩化カルシウム含有水の濃縮操作に、多段フラッシュの
ような熱効率の優れた蒸発による濃縮法を採ろうとする
場合、末法に比較して運転費用が数倍以上になり、所要
設備は増大し、好ましいものとは言えない。
As the reverse osmosis membrane in step (4), a conventional reverse osmosis membrane having performance applicable to seawater desalination can be used. still,
When attempting to concentrate a water containing calcium chloride using an evaporation method with excellent thermal efficiency, such as multi-stage flash, the operating costs are several times higher and the required equipment increases compared to the powder method, making it undesirable. It can not be said.

(実施例〕 次に、本発明の実施態様の一例を図面に示したフローシ
ートにより説明する。
(Example) Next, an example of an embodiment of the present invention will be described with reference to a flow sheet shown in the drawings.

硫酸マグネシウム含有排水1と塩化カルシウム含有水2
が混合され、反応槽3に導入され、硫酸基の大部分は、
塩化カルシウムと反応し、石膏となる。
Wastewater containing magnesium sulfate 1 and water containing calcium chloride 2
are mixed and introduced into reaction tank 3, and most of the sulfate groups are
Reacts with calcium chloride to form gypsum.

反応生成物4はフィルタープレス5によって、石膏6と
濾液7に分離される。濾液7に酸化カルシウム8が加え
られ、反応槽9に導入される。反応槽9では、マグネシ
ウムの大部分が水酸基と反応し、水酸化マグネシウムと
なる。
The reaction product 4 is separated into gypsum 6 and filtrate 7 by a filter press 5. Calcium oxide 8 is added to the filtrate 7 and introduced into the reaction tank 9. In reaction tank 9, most of the magnesium reacts with hydroxyl groups to become magnesium hydroxide.

反応生成物1oは、フィルタープレス11によつて、水
酸化マグネシウム12と濾液に分離される。濾別された
水酸化マグネシウムは、スラリ一槽20で逆浸透膜浸透
液19が加えられ、水溶スラリーとなり、21の配管に
より硫黄酸化物吸収セクションに送られる。
The reaction product 1o is separated into magnesium hydroxide 12 and a filtrate by a filter press 11. The filtered magnesium hydroxide is added with a reverse osmosis membrane permeation liquid 19 in a slurry tank 20 to form an aqueous slurry, which is sent to the sulfur oxide absorption section through a pipe 21.

濾液は、塩化カルシウム含有水タンク14に送・八 られる。タンク内容物の1部16は、逆浸透膜ユニット
16に送られ、濃縮塩化カルシウム含有水17は、タン
ク14に戻される。透過水18の1部は、スラリ一槽2
oで水酸化マグネシウム水溶スラリー用に使われ、他は
系外へ排出される。
The filtrate is sent to a calcium chloride-containing water tank 14. A portion 16 of the tank contents is sent to the reverse osmosis membrane unit 16 and concentrated calcium chloride containing water 17 is returned to the tank 14. A portion of the permeated water 18 is added to the slurry tank 2.
o is used for magnesium hydroxide aqueous slurry, and the rest is discharged outside the system.

逆浸透膜ユニットには、膜を保護する目的で、pH調整
機器、濾過器が付属している。タンク14での水溶液溶
要分濃度は、逆浸透膜ユニットの稼動によって、はぼ一
定に保たれることになる。
The reverse osmosis membrane unit comes with a pH adjustment device and a filter to protect the membrane. The concentration of the aqueous solution dissolved in the tank 14 is kept approximately constant by the operation of the reverse osmosis membrane unit.

次に本発明を実施して得られる効果について、各工程ご
とに実例を挙げて説明する。
Next, the effects obtained by implementing the present invention will be explained by giving examples for each step.

実施例 (11石膏の回収 石油系ピッチ微粉混焼ボイラーに設置した水酸化マグネ
シウムによる湿式排煙脱硫装置からの硫酸マグネシウム
含有排水を、濾過した後、水で希釈し、濃度の異る硫酸
マグネシウム含有水を得た。
Example (11) Recovery of gypsum Magnesium sulfate-containing wastewater from a wet flue gas desulfurization device using magnesium hydroxide installed in a petroleum-based pitch fine powder co-firing boiler was filtered and diluted with water to produce magnesium sulfate-containing water with different concentrations. I got it.

各々濃度を変えた硫酸マグネシウム含有液500dに、
攪拌しながら室温で塩化カルシウムを対硫酸マグネシウ
ムモル比で1.2の割合で加え、5分間放置した。次い
で反応混合物を、ガラス製フィルターで濾過した。濾別
された固形分を水洗し、乾燥した固形分の重量を測定し
、固形分中のCaを原子吸光分析法によりCa804・
V2 H20として石膏としての純度、及び硫酸マグネ
シウムの等モル分が石膏になるとして、それに対する回
収率を求めた。結果は表1のとおりであった。
500 d of magnesium sulfate-containing liquid with different concentrations,
Calcium chloride was added at a molar ratio of 1.2 to magnesium sulfate at room temperature while stirring, and the mixture was left for 5 minutes. The reaction mixture was then filtered through a glass filter. The filtered solid content was washed with water, the weight of the dried solid content was measured, and Ca in the solid content was determined by atomic absorption spectrometry.
Assuming that V2H20 has purity as gypsum and that an equimolar amount of magnesium sulfate becomes gypsum, the recovery rate was determined. The results are shown in Table 1.

以下余白 表   1 (2)水酸化マグネシウムの回収 上記の如くして石膏を濾別した後の塩化マグネシウム含
有水を水で希釈し、濃度の異る・塩化マグネシウム含有
水を得た。塩化マグネシウム含有水500WLlに攪拌
しながら室温で水酸化カルシウムスリラーを加え5分間
放置した。次いで、反応混合物をガラス製フィルターで
濾過した。濾別された固形分を水洗した後、固形分の重
量を測定し、固形分中のMgを原子吸光分析法により分
析し、M g (OH) 2として計算し、固形分とし
て回収された水酸化マグネシウムの回収率を求めた。結
果は表2のとおりであった。
Table 1 (2) Recovery of magnesium hydroxide The magnesium chloride-containing water after filtering off the gypsum as described above was diluted with water to obtain magnesium chloride-containing waters with different concentrations. Calcium hydroxide thriller was added to 500 WL of magnesium chloride-containing water at room temperature with stirring and left for 5 minutes. The reaction mixture was then filtered through a glass filter. After washing the filtered solid content with water, the weight of the solid content was measured, and the Mg in the solid content was analyzed by atomic absorption spectrometry and calculated as M g (OH) 2. The recovery rate of magnesium oxide was determined. The results are shown in Table 2.

表   2 (3)系外に排出される塩化カルシウム濃度水酸化マグ
ネシウ°ムを上記の如く固形分として分離した後の濾液
のうち、塩化カルシウム含有量の高い濾液を水で希釈し
、濃度の異る電化カルシウム含有水を得た。市販されて
いる逆浸透膜エレメント(東し株式会社製。
Table 2 (3) Calcium chloride concentration discharged outside the system Among the filtrate after separating magnesium hydroxide as a solid content as described above, the filtrate with a high calcium chloride content was diluted with water to determine the concentration. Electrified calcium-containing water was obtained. Commercially available reverse osmosis membrane elements (manufactured by Toshi Co., Ltd.).

5P−120,201龍9bX1016in)による塩
化カルシウム含有水の濃縮試験を行った。逆浸透膜エレ
メント1個で供給する水溶液の流量°、正圧力試験中一
定に調節しながら透過液量と透過液中及び濃縮液中の塩
化カルシウム濃度を測定した。結果は表3の通りであっ
た0以  下  余  白 上記のいずれのケースでも、濃縮液に回収されるCaC
1zは、99.8重量%であり、濃縮液に回収されたC
aCl2は、石膏回収に再循環使用可能であった。
A concentration test of calcium chloride-containing water was conducted using 5P-120, 201 Dragon 9b x 1016 inches). While adjusting the flow rate of the aqueous solution supplied by one reverse osmosis membrane element constant during the positive pressure test, the amount of permeated liquid and the concentration of calcium chloride in the permeated liquid and concentrated liquid were measured. The results were as shown in Table 3.
1z is 99.8% by weight, and the C recovered in the concentrate is
The aCl2 could be recycled for gypsum recovery.

〔発明の効果〕〔Effect of the invention〕

実施例中(1)の結果から、石膏の収率は理論値の99
%以上であり、得られる石膏の純度は、少なくとも97
〜98重量襲以上である。乾燥後の石膏中に遊離水分が
余だあると言えるならば、副生ず2石膏は高純度なもの
と考えられる。
From the results of (1) in Example, the yield of gypsum is 99% of the theoretical value.
% or more, and the purity of the obtained gypsum is at least 97%.
~98 weight stroke or higher. If it can be said that there is a surplus of free water in the gypsum after drying, then the by-product 2 gypsum is considered to be of high purity.

実施例中(2)の結果から、水酸化マグネシウムの回収
率を95%以上に維持することは容易であると推測され
る。又、水酸化マグネシウムの使用量は、少なくとも9
5%程度減少させることができるO 実施例中(3)の結果から、透過水中の塩化カルシウム
濃度を、数百重量ppM程度に維紳すやことは容易であ
り、系外へ排出される排水中の塩類量は微小であると言
える。又、逆浸透膜による濃縮は容易に行なうことがで
き、所要膜面積が多大にならないことが分る。又、塩化
カルシウムのロスは、極く微量であると言える。
From the results in Example (2), it is presumed that it is easy to maintain the recovery rate of magnesium hydroxide at 95% or higher. In addition, the amount of magnesium hydroxide used is at least 9
From the results in Example (3), it is easy to maintain the calcium chloride concentration in the permeated water to about several hundred ppM by weight, and the concentration of calcium chloride in the permeated water can be reduced by about 5%. It can be said that the amount of salt inside is minute. It is also understood that concentration using a reverse osmosis membrane can be easily performed and the required membrane area does not become large. Moreover, it can be said that the loss of calcium chloride is extremely small.

上記のように本発明方法によれば、処理液中から水酸化
マグネシウム及び塩化カルシウムを回収して系内に返還
再利用し、更に高品位の石膏を副生ずることにより経済
性を高めると共に、系外に排出される廃水は、極微量の
塩化カルシウムを含有するのみであるので、環境汚染上
の問題が生ずることもなく、工業的に優れた方法である
As described above, according to the method of the present invention, magnesium hydroxide and calcium chloride are recovered from the treatment solution and recycled back into the system, and high-quality gypsum is produced as a by-product, thereby improving economic efficiency and improving the system efficiency. Since the wastewater discharged outside contains only a trace amount of calcium chloride, this method does not cause any environmental pollution problems and is an industrially excellent method.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法を実施する際の一例を示すフローシー
トである。 1・・・硫酸マグネシウム含有排水。 2・・・塩化カルシウム含有水。 3・・・反応槽、     6・・・石膏。 8・・・酸化カルシウム、 9・・・反応槽。 12・・・水酸化マグネシウム。 16・・・逆浸透膜ユニット。 2o・・・スラリ一槽。
The drawing is a flow sheet showing an example of implementing the method of the present invention. 1...Wastewater containing magnesium sulfate. 2... Calcium chloride-containing water. 3...Reaction tank, 6...Gypsum. 8... Calcium oxide, 9... Reaction tank. 12...Magnesium hydroxide. 16... Reverse osmosis membrane unit. 2o...One tank of slurry.

Claims (4)

【特許請求の範囲】[Claims] (1)水酸化マグネシウムを用いる湿式排煙脱硫法にお
いて、排出される硫酸マグネシウムを含有する排水と塩
化カルシウム含有水とを混合反応せしめ、生成した石膏
を分離し、
(1) In the wet flue gas desulfurization method using magnesium hydroxide, the discharged wastewater containing magnesium sulfate and water containing calcium chloride are mixed and reacted, and the generated gypsum is separated,
(2)上記(1)の工程における分離液に水酸化カルシ
ウムもしくは酸化カルシウムを加えて反応せしめ、水酸
化マグネシウムを生成させ、
(2) adding calcium hydroxide or calcium oxide to the separated liquid in the step (1) above and reacting it to produce magnesium hydroxide;
(3)上記(2)の工程の生成液中から固液分離操作に
より水酸化マグネシウムを分離して湿式排煙脱硫工程の
吸収剤として再使用し、
(3) Separating magnesium hydroxide from the liquid produced in step (2) above by solid-liquid separation operation and reusing it as an absorbent in the wet flue gas desulfurization process;
(4)上記(3)の工程で得られる分離液を逆浸透膜で
濃縮後、濃縮された塩化カルシウム含有水を上記(1)
の工程で再使用する ことよりなる湿式排煙脱硫法。
(4) After concentrating the separated liquid obtained in step (3) above using a reverse osmosis membrane, the concentrated calcium chloride-containing water is used as described in step (1) above.
A wet flue gas desulfurization method that involves reuse in the process.
JP60064793A 1985-03-28 1985-03-28 Wet waste gas desulfurization method Pending JPS61222524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60064793A JPS61222524A (en) 1985-03-28 1985-03-28 Wet waste gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60064793A JPS61222524A (en) 1985-03-28 1985-03-28 Wet waste gas desulfurization method

Publications (1)

Publication Number Publication Date
JPS61222524A true JPS61222524A (en) 1986-10-03

Family

ID=13268466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60064793A Pending JPS61222524A (en) 1985-03-28 1985-03-28 Wet waste gas desulfurization method

Country Status (1)

Country Link
JP (1) JPS61222524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683154A1 (en) * 1991-11-05 1993-05-07 Perrier Materiel Process and plant for the treatment of the effluents originating from the surface treatment of materials
WO2016074190A1 (en) * 2014-11-13 2016-05-19 Dow Global Technologies Llc Treatment of flue gas desulfurization wastewater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683154A1 (en) * 1991-11-05 1993-05-07 Perrier Materiel Process and plant for the treatment of the effluents originating from the surface treatment of materials
WO2016074190A1 (en) * 2014-11-13 2016-05-19 Dow Global Technologies Llc Treatment of flue gas desulfurization wastewater

Similar Documents

Publication Publication Date Title
EP1106237B1 (en) Method of treating waste waters from a flue gas desulphuriser
EP0405619B1 (en) A process for treating a chlorine-containing effluent and and apparatus therefor
JP7124928B2 (en) Wastewater treatment method
US4996032A (en) Process for removing sulfur dioxide from flue gases
WO2009039655A1 (en) Selective sulphate removal by exclusive anion exchange from hard water waste streams
CN109930169B (en) Purification method and device for waste salt
HU206642B (en) Method for cleaning the hot flue gases of boilers or cement works
CN102282106A (en) Utilisation of desalination waste
US7419643B1 (en) Methods and apparatus for recovering gypsum and magnesium hydroxide products
WO2017201484A1 (en) Sulfate reduction in flue gas desulfurization system by barium precipitation
US5645807A (en) Magnesium-enhanced sulfur dioxide scrubbing with gypsum formation
CN104909390B (en) A kind of embrane method couples lime-flue gas purified brine technique
US7247284B1 (en) Method and apparatus for regeneration of flue gas scrubber caustic solutions
JP3572223B2 (en) Absorbent slurry treatment method and flue gas desulfurization system
JP3066403B2 (en) Method for removing sulfur dioxide from flue gas
EP2305604A2 (en) Purification method for an alkali metal chloride and method for producing an alkali metal hydroxide
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
US4092402A (en) Method for removing sulfur dioxide from exhaust gas
US5338457A (en) Removal of aluminum and sulfate ions from aqueous solutions
JPS61222524A (en) Wet waste gas desulfurization method
US4167578A (en) Method for removing sulfur and nitrogen compounds from a gas mixture
US4021202A (en) Apparatus for removing sulfur dioxide from stack gases
US4012297A (en) Mercury recovery and recycle process
US5614158A (en) Process for removing sulfur dioxide from gases and producing gypsum and purified magnesium hydroxide
JPH05220334A (en) Waste liquid treatment and equipment for flue gas desulfurizer