JPS60124366A - Fuel cell power generating system - Google Patents
Fuel cell power generating systemInfo
- Publication number
- JPS60124366A JPS60124366A JP58230655A JP23065583A JPS60124366A JP S60124366 A JPS60124366 A JP S60124366A JP 58230655 A JP58230655 A JP 58230655A JP 23065583 A JP23065583 A JP 23065583A JP S60124366 A JPS60124366 A JP S60124366A
- Authority
- JP
- Japan
- Prior art keywords
- water
- electrolyte
- make
- fuel cell
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の属する技術分野〕 る自由電解液形の燃料電池を用いた発電装置に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a power generation device using a free electrolyte type fuel cell.
前述のような自由電解液形燃料電池は、例えば苛性カリ
などのアルカリ水溶液を電解質とし、燃料ガスとして水
素を、酸化ガスとして空気または酸素をもちいる低温運
転形の燃料電池に適している。この種燃料電池を用いる
発電装置としては、この燃料電池本体のほかに電解液を
循環させる循環系や、燃料ガスと酸化ガスを供給する反
応ガス供給系が付Rl、て設けられるが、かかる付属系
の果す機能としては前述の液の循環とガスの供給のほか
に電池本体内で発電作用に伴って発生する熱量と反応生
成水さの除去がある。電池運転時の発生、Ml:に持ち
出すのが有利である。寸だ、この手段は・発電作用に伴
って電池内で生じる反応生成水の除去にも共用できる大
きな利点がある。The free electrolyte fuel cell described above is suitable for a low-temperature operation type fuel cell that uses an alkaline aqueous solution such as caustic potash as an electrolyte, hydrogen as a fuel gas, and air or oxygen as an oxidizing gas. In addition to the fuel cell main body, a power generation device using this type of fuel cell is equipped with a circulation system for circulating an electrolytic solution and a reaction gas supply system for supplying fuel gas and oxidizing gas. In addition to the above-mentioned liquid circulation and gas supply, the functions of the system include the removal of the amount of heat generated in the battery body as a result of power generation and the water produced by the reaction. It is advantageous to take out the generation during battery operation, Ml:. Indeed, this method has the great advantage that it can also be used to remove reaction product water that occurs within the battery as a result of power generation.
第1図はかかる手段を用いた燃料電池発電装置の構成を
系統図で示すもので、燃料電池本体1゜は燃料ガス電極
11と酸化ガス電極12とによって、燃料ガス室j3と
酸化ガス室14と電解液室15との3室に仕切られた枠
として模式的に示されている。電解液循環系2oは電解
液溜め21と電解液ポンプ22を含み電解液Eを電解液
室15に通流させる。反応ガス供給系中の燃料ガス供給
系30は図の左方の図示しない燃料ガス源から燃料ガス
F例えば水素をエジェクタ31を介して電池内の燃料ガ
ス室13に送り、該燃料ガス室13から電池を出る燃料
ガスを凝縮器32を介して前述のエジェクタ31に吸い
込んで再び電池に送る。FIG. 1 is a system diagram showing the configuration of a fuel cell power generation apparatus using such a means, in which a fuel cell main body 1° is connected to a fuel gas chamber j3 and an oxidizing gas chamber 14 by a fuel gas electrode 11 and an oxidizing gas electrode 12. It is schematically shown as a frame partitioned into three chambers, ie, an electrolyte chamber 15 and an electrolyte chamber 15. The electrolyte circulation system 2o includes an electrolyte reservoir 21 and an electrolyte pump 22, and allows the electrolyte E to flow into the electrolyte chamber 15. A fuel gas supply system 30 in the reaction gas supply system sends a fuel gas F, for example, hydrogen, from a fuel gas source (not shown) on the left side of the figure to a fuel gas chamber 13 in the cell via an ejector 31, and from the fuel gas chamber 13. The fuel gas exiting the battery is sucked into the ejector 31 described above via the condenser 32 and sent to the battery again.
このようにして燃料ガス供給系3oは消費量の数倍の燃
料ガスを燃料ガス室13に通流させるガス供給兼循環系
として構成されておシ、電池内で生の際発生する顕熱は
冷却水Wによって持ち去られる。In this way, the fuel gas supply system 3o is configured as a gas supply and circulation system that allows several times the consumption amount of fuel gas to flow into the fuel gas chamber 13, and the sensible heat generated in the battery is It is carried away by the cooling water W.
もう一方の反応ガス供給系である酸化ガス供給系40は
図の左方から酸化ガスとしての空気Aをブロワ41に吸
引して、電池本体10内の酸化ガス室14に供給する。The oxidizing gas supply system 40, which is the other reactive gas supply system, sucks air A as an oxidizing gas from the left side of the figure into a blower 41 and supplies it to the oxidizing gas chamber 14 in the battery main body 10.
この場合空気Aは酸化ガスとして有効々酸素を20%程
度しか含まないので、その全量が燃料電池本体10内で
消費されることはなく、反応にあずからなかりた残シの
窒素は消費されなかった酸素分とともに電池を出て、凝
縮器42を介して大気に放出される。もっともこの場合
には、凝縮器によシ排出空気中に含まれる水分を凝縮さ
せる必要はとくにがく、そのi!ま大気放出してもよい
。In this case, since the air A effectively contains only about 20% oxygen as an oxidizing gas, the entire amount is not consumed within the fuel cell main body 10, and the remaining nitrogen that does not participate in the reaction is consumed. The remaining oxygen leaves the battery and is discharged to the atmosphere via the condenser 42. However, in this case, there is no need to use a condenser to condense the moisture contained in the exhaust air. It may also be released into the atmosphere.
さて、上述の系統では電池本体】0内で生じる発熱量と
反応生成水とを反応ガス中に蒸発される水蒸気の形で電
池外に取り出しているので、必要なだけの熱量と生成量
とが常に平衡して除去されるわけにはゆかず、通常の電
池の運転条件では必要り地帯を、l−h出モらと十スジ
益生暑しμの可眩生成水を電池からとシ出してしまうこ
とになる。Now, in the above-mentioned system, the calorific value generated within the battery body and the water produced by the reaction are taken out of the battery in the form of water vapor that evaporates into the reaction gas, so the necessary amount of heat and generated amount can be obtained. It cannot always be removed in an equilibrium manner, and under normal battery operating conditions, it is possible to remove the necessary area from the battery. It will end up being put away.
従って、そのままでは電解液の濃度が規定値より高くな
ってしまうので、補給水を電解液に加える必要がある。Therefore, if left as is, the concentration of the electrolytic solution will become higher than the specified value, so it is necessary to add makeup water to the electrolytic solution.
第1図中の補給水供給系5oはとのためのもので、前述
の凝縮器32.42中で凝縮された凝縮水Cを凝縮水溜
め5oで受け、−補給水として補給水ポンプ52により
電解液循環系2゜1内の電解液溜め21に供給する。な
お、凝縮水溜め51にはオーバーフロ一部51bがあシ
水面51aを越える所定量以上の凝縮水は排出される。The make-up water supply system 5o in FIG. It is supplied to the electrolyte reservoir 21 in the electrolyte circulation system 2°1. Incidentally, condensed water exceeding a predetermined amount exceeding the overflow portion 51b and the water surface 51a is discharged into the condensed water reservoir 51.
しかし、以上のように構成された燃料電池発電装置には
電池出力が時間的に変動しゃすい欠点があシ、その主な
原因は前述の補給水供給系にあることがわかった。すな
わち、凝縮器32.42中で凝縮される凝縮水の温度は
冷却水Wにより電池の運転温度よりもがなり低く、この
比較的低温の凝縮水Cを凝縮水溜め51がら補給水ポン
プ52により補給水として電解液溜め21に供給した時
、第2図に示す実測結果の(a)に示すように電解液溜
めの電解液温度Tが10℃程度−たん@居にイ千Tする
。同図(a+は横軸が時間(分)を縦軸が電解液温度T
を示し、時刻tsは補給水の供給開始時、時刻を吋供給
終了時である。このような、電解液温度の一時低下に基
づく電池出力Pの変動は同図(b)に示すように予想外
に大きく、補給水の供給終了に戻るまで10分以上を要
している。However, the fuel cell power generating apparatus configured as described above has a drawback in that the battery output fluctuates over time, and it has been found that the main cause of this is the above-mentioned make-up water supply system. That is, the temperature of the condensed water condensed in the condensers 32 and 42 is lower than the operating temperature of the battery due to the cooling water W, and this relatively low temperature condensed water C is transferred from the condensed water reservoir 51 to the make-up water pump 52. When water is supplied to the electrolyte reservoir 21 as make-up water, the electrolyte temperature T in the electrolyte reservoir is approximately 10° C., as shown in (a) of the actual measurement results shown in FIG. In the same figure (a+, the horizontal axis is time (minutes) and the vertical axis is the electrolyte temperature T.
The time ts is the start of supply of makeup water, and the time ts is the end of supply. The fluctuation in the battery output P due to such a temporary drop in the electrolyte temperature is unexpectedly large, as shown in FIG. 2(b), and it takes more than 10 minutes to return to the end of the supply of makeup water.
語−水の供給を連続的にしてやればよいが、電解液に補
給水を加え過ぎると濃度が下がり電池出力にも影響する
ので、運転操作上は補給水の供給は間欠的な方がよい。Water can be supplied continuously, but if too much make-up water is added to the electrolyte, the concentration will drop and this will affect the battery output, so it is better to supply make-up water intermittently for operational reasons.
また、冷却水Wの温度を上げれば凝縮水温度従って補給
水温度を上げることはできるが、反応ガスとくに燃料ガ
スから水分凝縮が不十分となって、湿った燃料ガスが電
池本体に供給される結果となシ、電極の機能を損じるお
それがでてくる。燃料ガス中の湿分によって電極のガス
拡散性が悪く々ると電極の発電作用が低下するからであ
る。In addition, if the temperature of the cooling water W is raised, the condensed water temperature and therefore the make-up water temperature can be raised, but moisture condensation from the reaction gas, especially the fuel gas, becomes insufficient, and moist fuel gas is supplied to the battery body. As a result, the function of the electrode may be impaired. This is because if the gas diffusivity of the electrode becomes poor due to moisture in the fuel gas, the power generation effect of the electrode will be reduced.
上述の従来装置のもつ欠点に鑑み、本発明は電解液循環
系への補給水の供給が電池の出力に影響を及ぼすことが
少なく、安定した出力が得られるように燃料電池発電装
置を構成することを目的とする。In view of the above-mentioned drawbacks of the conventional devices, the present invention configures a fuel cell power generation device so that the supply of make-up water to the electrolyte circulation system has little effect on the output of the battery and stable output can be obtained. The purpose is to
体を通して電解液を循環させる電解液循環系と、電・池
水体に反応ガスを供給するとともに該本体内流させる反
応ガス供給系と、該反応ガス供給系により電池本体から
排出される反応生成水の前記過剰排出量に相当する補給
水を前記電解液溜めに供給する補給水供給系と、電解液
溜めに供給される該補給水を電池本体から反応ガスとと
もに持ち出される熱量により該反応ガスの電池本体から
の吐出温度と同温度に加熱する熱交換手段とにより構成
することにより達成される。An electrolytic solution circulation system that circulates an electrolytic solution through the body, a reactive gas supply system that supplies reactive gas to the battery/cell water body and causes it to flow within the body, and reaction product water that is discharged from the battery body by the reactive gas supply system. a make-up water supply system that supplies make-up water to the electrolyte reservoir in an amount corresponding to the excess discharge amount; This is achieved by constructing a heat exchanger that heats to the same temperature as the discharge temperature from the main body.
[発明の実施例] 以下図を参照しながら本発明の詳細な説明する。[Embodiments of the invention] The present invention will be described in detail below with reference to the drawings.
第3図は本発明の第1実施例を示す系統図であって、第
1図と同一の部分には同一の符号′l);イヰされてい
るが、図を簡略化し、て要部を重点的に示すために、燃
料ガス供給系はこの図から省略されて嵐Lii”−の方
が本発明の詳細な説明上も重要である力・図示のように
、この実施例における電解液循環系20は第1図の場合
と大きく異′なるところはないが、電解液溜め21には
液面21aを検出する電極形の液面検出器21bが示さ
れている。この液面検出器21bはその図の下方に伸び
た左右の電極脚の先端に液面21aが来たとき検出信号
を発し、これによって補給水供給系50の補給水ポンプ
52を起動、停止させて、液面21aが比較的小範囲内
にあるように制御すること罠より、電解液溜め21内の
電解液Eの量を従って電解液循環系内の電解液の総液量
を一定に調節する。これにより電池本体10の電解液室
15に送られる電解液の濃度が所定値に保たれる。また
電解液室15から電解液溜め21への電解液の戻り配管
の先端は、電解液面21aの直上に開口しており、電池
本体内で電解液内に微量の反応ガスが混入していても、
この部位で液から分離して大気に放散されの酸化ガス室
14に送るが、該酸化ガス室14から電池本体外に排出
される空気は、補給水供給系50に追加された予熱槽5
3のフィンつき熱交換チューブ53aを経て凝縮器42
に入り、そのフィンつき冷却管42a内を、流れる冷却
水Wによシ冷却されて、その中に含まれる反応生成水分
が凝縮される。凝縮器を出た空気はその一部が大気At
に放出されるが、残余のかなりの部分は再びプロワ41
に吸引され電池本体に再循環される。この実施例のよう
に酸化ガス供給系を循環系とするととにより、プロワ4
1が大気から吸い込む空気よりも多量の空気が酸化ガス
室14に通流され、電池本体内で生じた発熱量が十分に
除去されて凝縮器42内で冷却水Wに伝達される。また
反応生成水の除去についても同じであって、酸化ガス室
14内を通流する空気量を増すことにより、酸化ガス供
給系単独で、あるいは燃料ガス供給系と合わせて、電池
本体10内で生じるよりも多量の反応生成水分が電池本
体10内の電解液から取り去られ、電極のガス拡散性が
十分な状態で電池が運転される。FIG. 3 is a system diagram showing the first embodiment of the present invention, in which the same parts as in FIG. In order to emphasize this, the fuel gas supply system is omitted from this figure. The circulation system 20 is not much different from that shown in FIG. 1, but an electrode-type liquid level detector 21b is shown in the electrolytic solution reservoir 21 to detect the liquid level 21a. 21b emits a detection signal when the liquid level 21a comes to the tips of the left and right electrode legs extending downward in the figure, and this starts and stops the make-up water pump 52 of the make-up water supply system 50 to lower the liquid level 21a. By controlling the amount of electrolyte E within a relatively small range, the amount of electrolyte E in the electrolyte reservoir 21 is adjusted to a constant value, and the total amount of electrolyte in the electrolyte circulation system is thereby kept constant. The concentration of the electrolyte sent to the electrolyte chamber 15 of the main body 10 is maintained at a predetermined value.The tip of the electrolyte return pipe from the electrolyte chamber 15 to the electrolyte reservoir 21 is placed directly above the electrolyte surface 21a. It is open, so even if a small amount of reactive gas is mixed into the electrolyte inside the battery,
At this point, the air is separated from the liquid and sent to the oxidizing gas chamber 14 where it is diffused into the atmosphere.The air discharged from the oxidizing gas chamber 14 to the outside of the battery body is fed to a preheating tank 5 added to the make-up water supply system 50.
3 through the finned heat exchange tube 53a to the condenser 42.
The finned cooling pipe 42a is cooled by the flowing cooling water W, and the water produced by the reaction contained therein is condensed. Part of the air that leaves the condenser becomes atmospheric At
However, a significant portion of the remainder is discharged to the blower 41 again.
is sucked into the battery and recirculated to the battery body. By using a circulation system as the oxidizing gas supply system as in this embodiment, the blower 4
A larger amount of air than the air that the cell 1 draws in from the atmosphere is passed through the oxidizing gas chamber 14, and the amount of heat generated within the battery body is sufficiently removed and transferred to the cooling water W within the condenser 42. The same applies to the removal of reaction product water, and by increasing the amount of air flowing through the oxidizing gas chamber 14, the oxidizing gas supply system alone or together with the fuel gas supply system can be removed within the battery main body 10. A larger amount of reaction-produced water than is produced is removed from the electrolyte in the battery body 10, and the battery is operated in a state where the gas diffusivity of the electrodes is sufficient.
このように反応ガス供給系により反応生成水がばならな
い。この補給水としては、従来と同様に凝縮器42中の
不純物の少々い凝縮水Cを利用するのが望ましく、この
ため凝縮水Cは凝縮器421
の底部から図の右下に示された凝縮水溜め51に導かれ
、そのオーバフロー51bのレベル捷で一定量が貯留さ
れる。凝縮水溜め51の側方には前述の予熱槽53が並
べて設置されており、両者の凝縮水貯留部が連通されて
いるので、予熱槽53中にもその液面53bが凝縮水溜
め51の液面51aと同じに々るだけの所定量の凝縮水
が貯留されている。この予熱槽53内の凝縮水は前述の
熱交換チューブ53a内を流れる電池本体10により温
められた空気で加熱され、該温気は電池の運転温度と実
質上同温度であるので、凝縮水も電池の運転温度と同温
度に暖められる。もちろん、電池本体10から予熱槽5
3に至る空気配管は、熱絶縁で覆って外気への熱の逸出
を防止するのが望ましい。このように電池温度まで予熱
された予熱槽53中の凝縮水け、前述の電解液溜め21
の液面検出器21bからの指令により、補給水ボンので
ある。同図(a)かられかるように電解液溜め内の電解
液温度Tは従来よシかなシ減少し、その変動は実測値で
約3℃であった。また、これに対応して同図(b)に示
す電池出力Pの変動も小さくカリ、実測値で1.、5
%程度であった。もつとも、この成績は予熱槽53中で
予熱された凝縮水の温度が電池温度60℃に比し約10
℃低い50℃の場合であって、予熱をより十分にするこ
とにより改善できる値であるが、それでも電池出力の変
動率1,5係の値は電池出力を受けるインノ(−ター装
置によI+ ゲマ 1++1/r 儲p1 八 1色曲
の 正 のイカ、入−→ 斧 l蘭f>られかるように
電解液温度Tと電池出力Pとが−たん低下してから正常
値に戻るまでの時間も大幅に減少している。In this way, the reaction gas supply system prevents reaction product water from being released. As this make-up water, it is desirable to use the condensed water C with a little impurity in the condenser 42 as in the past, and for this reason, the condensed water C is poured from the bottom of the condenser 421 into the condensed water shown in the lower right of the figure. The water is led to the water reservoir 51, and a certain amount is stored by adjusting the level of the overflow 51b. The above-mentioned preheating tanks 53 are installed side by side on the side of the condensed water reservoir 51, and the condensed water reservoirs of both are in communication, so that the liquid level 53b in the preheating tank 53 is also equal to that of the condensed water reservoir 51. A predetermined amount of condensed water is stored as much as the liquid level 51a. The condensed water in the preheating tank 53 is heated by the air heated by the battery body 10 flowing in the heat exchange tube 53a, and since the temperature is substantially the same as the operating temperature of the battery, the condensed water is also heated. It is heated to the same temperature as the battery's operating temperature. Of course, from the battery body 10 to the preheating tank 5
It is desirable that the air piping leading to No. 3 be covered with thermal insulation to prevent heat from escaping to the outside air. The condensed water in the preheating tank 53, which has been preheated to the battery temperature in this way, and the electrolyte reservoir 21 described above
The replenishment water bottle is turned on in response to a command from the liquid level detector 21b. As can be seen from Figure (a), the temperature T of the electrolytic solution in the electrolytic solution reservoir decreased compared to the conventional method, and the actual measured value was about 3°C. Correspondingly, the fluctuations in the battery output P shown in FIG. , 5
It was about %. However, this result shows that the temperature of the condensed water preheated in the preheating tank 53 is about 10°C compared to the battery temperature of 60°C.
This is a value that can be improved by preheating the battery at a low temperature of 50°C, but even so, the value of the 1st and 5th coefficients of variation in battery output is still low due to the I + Gema 1++1/r profit p1 8 1 color song positive squid, input - → ax lran f>As you can see, the time from when the electrolyte temperature T and battery output P decrease by -tan until they return to normal values. has also decreased significantly.
第5図は本発明の第2の実施例を示す系統図である。こ
の図には燃料ガス供給系3oが示されている以外、前第
3図と同一の部分には同一符号が付されている。この実
施例が前の実施例とv#c々る点は、予熱槽53中の凝
縮水Cを加熱する媒体として、燃料ガス供給系3oの凝
縮器32と酸化ガけるガス系よりも施行しゃすい利点が
ある。もっり、、粋電池本体10から排出された反応ガ
スより1鴬にの冷却水温が低くなることは避けられない
が、’4凝縮器中では反応ガス中に@まれでいた水菜気
分が凝縮する際多量の顕熱が発生されるので、これによ
って温められた冷却水の凝縮器出口温度は反応ガスの入
口温度とあまシ大差がない。また予熱熱量が不足しない
ように、図示のように2個の凝縮器32.42からの冷
却水を予熱槽53に導入することができる。FIG. 5 is a system diagram showing a second embodiment of the present invention. In this figure, except that the fuel gas supply system 3o is shown, the same parts as in the previous FIG. 3 are given the same reference numerals. This embodiment differs from the previous embodiment in that it is used as a medium for heating the condensed water C in the preheating tank 53, rather than the condenser 32 of the fuel gas supply system 3o and the oxidizing gas system. There are many advantages. It is inevitable that the temperature of the cooling water will be lower than the reaction gas discharged from the battery main body 10, but in the '4 condenser, the mizuna mood that was rare in the reaction gas will condense. Since a large amount of sensible heat is generated, the condenser outlet temperature of the cooling water warmed by this is not much different from the reactant gas inlet temperature. Further, in order to prevent the amount of preheating heat from being insufficient, cooling water from two condensers 32 and 42 can be introduced into the preheating tank 53 as shown in the figure.
以上説明した画集流側とも、補給水を予熱する熱源とし
て電池本体から出てくる電池と同温度の反応ガスを用い
ているので、補給水はほぼ電池と同温度に予熱され、予
熱の過剰や不足によシミ消液の温度に無用な変動を与え
ることがなく、本発明を実施した系統は極めて安定な動
作をする。壕だ、反応ガス供給系によシミ池本体には反
応生成水よりも過剰に水分を電池外に排出させうるだけ
の流量の反応ガスが送られるので、補給水を十分子熱し
うる温められた反応ガスの量が得られる点はぼ同温度に
温められるので、電池に循環供給される電解液の温度が
補給水の供給によシ変動することが従来に比して非常に
少なくな勺、燃料電池の発電出力が変動することがほと
んどなくhる。Both of the above-mentioned art collection systems use reactive gas that comes out of the battery body and has the same temperature as the batteries as a heat source to preheat the make-up water, so the make-up water is preheated to almost the same temperature as the batteries, which prevents excessive preheating. There is no needless fluctuation in the temperature of the stain remover due to shortage, and the system in which the present invention is implemented operates extremely stably. Well, the reactant gas supply system sends reactant gas to the main body of the pond at a flow rate that is sufficient to discharge water in excess of the reaction product water to the outside of the battery, so it is heated enough to heat up the make-up water. Since the point at which the amount of reaction gas is obtained is heated to approximately the same temperature, the temperature of the electrolyte that is circulated to the battery fluctuates due to the supply of make-up water is much less than before. The power generation output of the fuel cell hardly fluctuates.
pた本発明による燃料電池発電装置の系統は、前述した
ように本質的に安定であって、制御や調整の行き過ぎに
よる系統内変動を生じるおそれがなく、安心して運転を
継続することができる。さらには以上に付随して電解液
循環系の総液量制御、従って電解液の濃度制御も信頼性
が高く、反応ガス供給系により電極のガス拡散性が良好
な条件に保たれることと相俟って、燃料電池発電装置を
高い効率で長期運転するととを保証しうるものである。The system of the fuel cell power generation apparatus according to the present invention is essentially stable as described above, and there is no risk of fluctuations within the system due to excessive control or adjustment, and operation can be continued with peace of mind. Furthermore, accompanying the above, the total liquid volume control of the electrolyte circulation system, and therefore the concentration control of the electrolyte, is also highly reliable, and this is compatible with the fact that the gas diffusivity of the electrode is maintained under good conditions by the reaction gas supply system. In this way, it is possible to guarantee that the fuel cell power generation device can be operated with high efficiency for a long period of time.
第1図は従来の燃料電池発電装置の構成を示す系統図、
第2図は当該従来装置の運転成績を示すグラフ図、第3
図は本発明による燃料電池装置の第1の実施例の構成を
示す系統図、第4図は当該第1の実施例装置の運転成績
を示すグラフ図、第手段としての電解液の液面検出器、
30:反応ガス供給系としての燃料ガス供給系、32.
42:反応生成水分を凝縮させる凝縮器、40:反応ガ
?供給系としての酸化ガス供給系、50:補給水、祖給
系、53:補給水用予熱槽、53a 、53C:熱交換
手段としてのフィンつき熱交換チューブ、A:反応ガス
としての空気、C:補給水として用いられる凝縮水、E
:電解質、F:反応ガスとしての燃料ガス、である。
j−’fitイ着特免キー川1]履節
才1図 51
P
才3図Figure 1 is a system diagram showing the configuration of a conventional fuel cell power generation device.
Figure 2 is a graph showing the operating results of the conventional device;
The figure is a system diagram showing the configuration of the first embodiment of the fuel cell device according to the present invention, FIG. vessel,
30: Fuel gas supply system as a reaction gas supply system, 32.
42: Condenser that condenses the water produced by the reaction, 40: Reaction gas? Oxidizing gas supply system as a supply system, 50: Makeup water, primary supply system, 53: Makeup water preheating tank, 53a, 53C: Fined heat exchange tube as heat exchange means, A: Air as reaction gas, C : Condensed water used as make-up water, E
: electrolyte, F: fuel gas as reaction gas. j-'fit special license key river 1] 1st figure 51 P 3rd figure
Claims (1)
電作用を営む燃料電池本体と、電解液の総液量を一定に
調節する電解液溜めを含み、電池本体を通して電解液を
循環させる電解液循環系と、流させる反応ガス供給系と
、該反応ガス供給系に;:より電池本体から排出される
反応生成水の前記過剰排出憚・に相当する補給水を前記
電解液溜めに供!給する補給水供給系と、電解液溜めに
供給される該補給水を電池本体から反応ガスとともに持
ち出される熱量により該反応ガスの電池本体からの吐出
温度と同温度に加熱する熱交換手段とを備えてなる燃料
電池発電装置。 2、特許請求の範囲第1項記載の発電装置におい補給水
とを直接熱交換する補給水子熱槽であることを特徴とす
る燃料電池発電装置。 3)特許請求の範囲第1項記載の発電装置において、反
応ガス供給系が反応ガスを冷却水によシ冷却して該反応
ガスとともに電池本体から排出される反応生成水分を凝
縮させる凝縮器を含み、熱交換手段が該凝縮器からの出
口側冷却水と補給水とを熱交換する補給水子熱槽である
ことを特徴とする燃料電池発電装置。 4)特許請求の範囲第3項記載の発電装置において、補
給水として凝縮器内で凝縮された反応生成−’hlする
燃料電池発電装置。 /[Scope of Claims] 1) A fuel cell that includes a fuel cell main body through which an electrolytic solution is passed and generates electricity by receiving a reaction gas supply, and an electrolytic solution reservoir that adjusts the total amount of electrolytic solution to a constant level; An electrolyte circulation system that circulates the electrolyte through the main body, a reaction gas supply system that causes the electrolyte to flow, and make-up water that corresponds to the excess discharge of reaction product water discharged from the battery main body. into the electrolyte reservoir! a make-up water supply system for supplying the electrolyte; and a heat exchange means for heating the make-up water supplied to the electrolyte reservoir to the same temperature as the discharge temperature of the reactant gas from the battery main body by the amount of heat taken out from the battery main body together with the reactant gas. Fuel cell power generation equipment. 2. A fuel cell power generation device characterized in that it is a make-up water thermal tank that directly exchanges heat with make-up water in the power generation device according to claim 1. 3) In the power generation device according to claim 1, the reaction gas supply system includes a condenser that cools the reaction gas with cooling water and condenses reaction product water discharged from the battery body together with the reaction gas. 1. A fuel cell power generation device, wherein the heat exchange means is a make-up water thermal tank that exchanges heat between the outlet-side cooling water from the condenser and make-up water. 4) A fuel cell power generating apparatus according to claim 3, in which the reaction product -'hl is condensed in the condenser as make-up water. /
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58230655A JPS60124366A (en) | 1983-12-08 | 1983-12-08 | Fuel cell power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58230655A JPS60124366A (en) | 1983-12-08 | 1983-12-08 | Fuel cell power generating system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60124366A true JPS60124366A (en) | 1985-07-03 |
JPH02823B2 JPH02823B2 (en) | 1990-01-09 |
Family
ID=16911202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58230655A Granted JPS60124366A (en) | 1983-12-08 | 1983-12-08 | Fuel cell power generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60124366A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63152880A (en) * | 1986-12-17 | 1988-06-25 | Fuji Electric Co Ltd | Electrolyte concentration control system of liquid electrolyte type fuel cell |
US5117664A (en) * | 1988-03-07 | 1992-06-02 | Nissan Motor Co., Ltd. | Steering lock for automotive vehicle |
EP0559653A1 (en) * | 1990-11-13 | 1993-09-15 | Perry Oceanographics, Inc. | Closed loop reactant/product management system for electrochemical galvanic energy devices |
US5618739A (en) * | 1990-11-15 | 1997-04-08 | Seiko Instruments Inc. | Method of making light valve device using semiconductive composite substrate |
WO2004049481A3 (en) * | 2002-11-22 | 2005-04-21 | Intelligent Energy Ltd | Thermal energy management in electrochemical fuel cells |
JP2013191545A (en) * | 2012-01-24 | 2013-09-26 | Boeing Co:The | Utilizing phase change material, heat pipes, and fuel cells for aircraft applications |
-
1983
- 1983-12-08 JP JP58230655A patent/JPS60124366A/en active Granted
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63152880A (en) * | 1986-12-17 | 1988-06-25 | Fuji Electric Co Ltd | Electrolyte concentration control system of liquid electrolyte type fuel cell |
US5117664A (en) * | 1988-03-07 | 1992-06-02 | Nissan Motor Co., Ltd. | Steering lock for automotive vehicle |
EP0559653A1 (en) * | 1990-11-13 | 1993-09-15 | Perry Oceanographics, Inc. | Closed loop reactant/product management system for electrochemical galvanic energy devices |
EP0559653A4 (en) * | 1990-11-13 | 1995-04-19 | Perry Oceanographics Inc | Closed loop reactant/product management system for electrochemical galvanic energy devices |
US5618739A (en) * | 1990-11-15 | 1997-04-08 | Seiko Instruments Inc. | Method of making light valve device using semiconductive composite substrate |
WO2004049481A3 (en) * | 2002-11-22 | 2005-04-21 | Intelligent Energy Ltd | Thermal energy management in electrochemical fuel cells |
US7498094B2 (en) | 2002-11-22 | 2009-03-03 | Intelligent Energy Limited | Thermal energy management in electrochemical fuel cells |
KR101065648B1 (en) | 2002-11-22 | 2011-09-20 | 인텔리전트 에너지 리미티드 | Thermal energy management in electrochemical fuel cells |
JP2013191545A (en) * | 2012-01-24 | 2013-09-26 | Boeing Co:The | Utilizing phase change material, heat pipes, and fuel cells for aircraft applications |
US9548504B2 (en) | 2012-01-24 | 2017-01-17 | University Of Connecticut | Utilizing phase change material, heat pipes, and fuel cells for aircraft applications |
US10218010B2 (en) | 2012-01-24 | 2019-02-26 | The Boeing Company | Utilizing phase change material, heat pipes, and fuel cells for aircraft applications |
Also Published As
Publication number | Publication date |
---|---|
JPH02823B2 (en) | 1990-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7052790B2 (en) | Fuel cell system and operation method having a condensed water tank open to atmosphere | |
US6420060B1 (en) | Solid polymer electrolyte fuel cell cogeneration system | |
US6468681B1 (en) | Fuel cell system | |
JPS61116763A (en) | Operation of fuel battery system | |
JPH0821403B2 (en) | How to operate a fuel cell power plant | |
KR20010025031A (en) | System and method of water management in the operation of a fuel cell | |
US7029775B2 (en) | Fuel cell system | |
JPH06504158A (en) | Method and device for replenishing hydrogen consumed by a fuel cell | |
JPS60124366A (en) | Fuel cell power generating system | |
DE69805129D1 (en) | Device for generating ozone | |
US4040435A (en) | Fuel cells and methods of operating them | |
JP2006093157A (en) | Solid polymer fuel cell system | |
JP2811905B2 (en) | Steam generator for fuel cell power generation system | |
EP1052717B1 (en) | Fuel cell system | |
JPS60264055A (en) | Fuel battery and method of using same | |
JP5226814B2 (en) | Fuel cell system | |
JP2002100382A (en) | Fuel cell power generator | |
JP2000182646A (en) | Fuel cell power-generating facility | |
JP4158468B2 (en) | Fuel cell power generation system | |
JPH1064573A (en) | Recovery system of fuel cell exhaust gas system heat and water | |
JP3106552B2 (en) | Water treatment system for fuel cell power plant | |
JPH1064566A (en) | Fuel cell power generator and waste heat recovery method therefor | |
CN221687565U (en) | Waste heat recovery system of fuel cell | |
JP2710124B2 (en) | Pure water supply control device for fuel cell steam separator | |
JPH04138671A (en) | Fuel cell |