JPS63152880A - Electrolyte concentration control system of liquid electrolyte type fuel cell - Google Patents

Electrolyte concentration control system of liquid electrolyte type fuel cell

Info

Publication number
JPS63152880A
JPS63152880A JP61300289A JP30028986A JPS63152880A JP S63152880 A JPS63152880 A JP S63152880A JP 61300289 A JP61300289 A JP 61300289A JP 30028986 A JP30028986 A JP 30028986A JP S63152880 A JPS63152880 A JP S63152880A
Authority
JP
Japan
Prior art keywords
electrolyte
amount
water
reaction gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61300289A
Other languages
Japanese (ja)
Other versions
JPH0719616B2 (en
Inventor
Yoshiharu Kobayashi
義治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61300289A priority Critical patent/JPH0719616B2/en
Publication of JPS63152880A publication Critical patent/JPS63152880A/en
Publication of JPH0719616B2 publication Critical patent/JPH0719616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep the concentration of electrolyte constant and to increase the total efficiency of a power generating system by installing an arithmetic and control unit which computes the amount of water to be removed and determines the reaction gas flow necessary for exhausting outside the produced water based on computed data and controls the operation of a blower. CONSTITUTION:A current sensor 24 serving as an output detector is installed in an electricity output circuit of a fuel cell 1. Temperature sensors 25, 26 which detect reaction gas temperature are installed before and after a condenser 13 in a reaction gas circulator 12. An arithmetic and control unit 27 serving as microcomputer which sets the amount of air blasting based on detected data of each sensor and operates a blower 11 is installed. The amount of produced water and the amount of water to be removed per the amount of air blasting are computed based on the detected values. Based on the computed data, the reaction gas flow necessary for exhausting outside the produced water is determined and the operation of the blower is controlled. The amount of produced water and the amount of removed water are always balanced and the concentration of electrolyte is kept constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、液体電解液型燃料電池発電装置を対象に、
燃料電池の負荷変動、温度条件の変動ぺにかかわらず電
池内部の電解液濃度を常に一定維持するようにした電解
液濃度の管理システムに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention targets a liquid electrolyte fuel cell power generation device.
The present invention relates to an electrolyte concentration management system that maintains the electrolyte concentration inside the fuel cell at a constant level regardless of changes in load and temperature conditions of the fuel cell.

〔従来の技術〕[Conventional technology]

この種の燃料電池は、液体電解液を満たした電解液室と
、該電解液室を挟んでその両側に対向する燃料電極、#
素電極と、各電極に対応する反応ガス室とから成り、か
つ各反応ガス室を通じて各電極へ燃料ガスおよび酸化剤
ガス(空気)を供給することにより、電極内部での起電
反応により発電することは周知の通りである。またこの
起電反応に伴い、水素と酸素とが反応して生成水が生じ
るようになる。
This type of fuel cell has an electrolyte chamber filled with a liquid electrolyte, fuel electrodes facing on both sides of the electrolyte chamber, and
It consists of an elementary electrode and a reaction gas chamber corresponding to each electrode, and by supplying fuel gas and oxidant gas (air) to each electrode through each reaction gas chamber, electricity is generated by an electromotive reaction inside the electrode. This is well known. Further, along with this electromotive reaction, hydrogen and oxygen react to generate water.

ところで上記の反応生成水がこのまま液体電解液中に溶
は込むと電解液が過度に希釈されて起電反応が低下する
。このために一般に反応ガス室に起電反応に必要なガス
量より多い反応ガスを通風し、電解液と反応ガスとの温
度差、電解液に対する水の濃度拡散等により生成水を蒸
気として余剰反応ガスと一緒に電池外部に排出する方式
が従来より採用されている。
However, if the water produced by the reaction is dissolved in the liquid electrolyte as it is, the electrolyte will be excessively diluted and the electromotive reaction will be reduced. For this purpose, generally more reaction gas than is required for the electromotive reaction is ventilated into the reaction gas chamber, and excess reaction occurs as the generated water becomes steam due to the temperature difference between the electrolyte and the reaction gas, the concentration diffusion of water relative to the electrolyte, etc. Conventionally, a method has been adopted in which the gas is discharged to the outside of the battery along with the gas.

しかしてこの場合に電池内部に生じる生成水発生量と電
池外部に排出する生成水除去量とのバランスが崩れると
電解液濃度が変化し、かつその濃度が適正範囲を逸脱す
るようになると起電時性が低下するようになる。特に電
解液濃度が希釈する方向に大きく変化した場合には運転
途中で電解液を適正濃度のものと交換する等の保守が必
要となる。
However, in this case, if the balance between the amount of generated water generated inside the battery and the amount of generated water removed outside the battery is disrupted, the electrolyte concentration will change, and if the concentration deviates from the appropriate range, electricity will be generated. Timeliness begins to decline. In particular, if the electrolyte concentration changes significantly in the direction of dilution, maintenance such as replacing the electrolyte with one of an appropriate concentration during operation is required.

このために従来では電解液濃度の管理方式として、あら
かじめ最大発電量に対する燃料電池の生成水発生量を求
めて置き、かつこの生成水量を蒸気として電池外へ排出
するに必要な風量よりも若干多めの反応ガス量を反応ガ
ス室に送風するとともに、電池外部に排出された生成水
蒸気を凝縮器に導いて凝縮2分離し、この凝縮水の一部
を電解液に戻して電解液濃度の一定維持を図るようにし
た方式が一般に採用されている。
For this reason, the conventional method for controlling the electrolyte concentration is to determine in advance the amount of generated water generated by the fuel cell for the maximum power generation amount, and to set the amount of water slightly larger than the amount of air required to discharge this amount of generated water as steam to the outside of the cell. The amount of reaction gas is blown into the reaction gas chamber, and the generated water vapor discharged outside the battery is led to a condenser where it is condensed and separated into two parts. A part of this condensed water is returned to the electrolyte to maintain a constant electrolyte concentration. A method that aims to achieve this is generally adopted.

次に上記した電解液濃度管理方式を実施するための従来
におけるシステムフローを第2図に示して説明する0図
において1は液体電解液型燃料電池であり、液体電解液
を満たした電解液室2と、該電解液室2を挟んでその両
側に対向する多孔質の水素電極3.酸素電極4と、各電
極3,4の外側に画成した水素室5.酸素室6とから成
る。ここで前記電解液室2は電解液管路7を介して外部
の電解液タンク8と導通し合っている。なお9は電解液
タンク8から電解液室2へ電解液を送り込むための電解
液ポンプである。一方、水素室5の入口には図示されて
ない改質装置から引き出した燃料ガス供給管路10が接
続配管され、さらに水素室5の出口と入口との間にまた
がり送風機11を介装した燃料ガス循環路12が配管さ
れており、かつこの循環路12の途中には風冷式の凝縮
器13が設置しである。またこのa11器13の液溜部
と前記した電解液タンク8との間が電磁弁14、ドレン
用の三方?f磁弁15.生成水ポンプ16を含む凝縮水
戻り管路17で結ばれている。なお18は酸素室6に接
続配管した空気供給管路、19は燃料電池の冷却ファン
、20は凝縮器I3の冷却ファン、21は電極の温度セ
ンサ、22は凝縮器13に付属する凝縮水レベルセンサ
、23は電解液タンク8に付属する電解液レベルセンサ
である。
Next, a conventional system flow for implementing the electrolyte concentration management method described above is shown and explained in Fig. 2. In Fig. 0, 1 is a liquid electrolyte type fuel cell, and an electrolyte chamber filled with liquid electrolyte. 2, and porous hydrogen electrodes 3 facing on both sides of the electrolyte chamber 2. An oxygen electrode 4 and a hydrogen chamber 5 defined outside each electrode 3,4. It consists of an oxygen chamber 6. Here, the electrolyte chamber 2 is electrically connected to an external electrolyte tank 8 via an electrolyte conduit 7. Note that 9 is an electrolyte pump for feeding electrolyte from the electrolyte tank 8 to the electrolyte chamber 2. On the other hand, a fuel gas supply pipe 10 drawn out from a reformer (not shown) is connected to the inlet of the hydrogen chamber 5, and a blower 11 is interposed between the outlet and the inlet of the hydrogen chamber 5. A gas circulation path 12 is piped, and an air-cooled condenser 13 is installed in the middle of this circulation path 12. Also, between the liquid reservoir part of this A11 vessel 13 and the electrolyte tank 8 mentioned above is a solenoid valve 14, which is used for draining on three sides. f magnetic valve 15. They are connected by a condensed water return line 17 that includes a produced water pump 16. Note that 18 is an air supply pipe connected to the oxygen chamber 6, 19 is a cooling fan for the fuel cell, 20 is a cooling fan for the condenser I3, 21 is an electrode temperature sensor, and 22 is a condensed water level attached to the condenser 13. The sensor 23 is an electrolyte level sensor attached to the electrolyte tank 8.

かかるシステムフローにおいて、電池本体1の反応ガス
室5.6に燃料ガス、空気を供給することにより電極2
.3で起電反応して電気、熱、生成水が発生する。ここ
で反応熱による電池の温度上昇は温度センサ21で検出
され、冷却ファン19を運転して電池が適正運転温度と
なるように冷却する。また電池内部に鎚生し、余剰燃料
ガスをキャリアガスとして反応ガス室5から送風機11
により電池外部へ排出された生成水蒸気は凝縮器13に
導かれた上で凝縮1分離されてその液溜部に貯留し、ま
た除湿された燃料ガスは循環路12を経て再び燃料ガス
室5に還流する。なお凝縮器13の液溜部のレベルが一
部坩上になれば、凝縮水レベルセンサ22が作動して電
磁弁14が開き、ドレン用を磁弁15のドレンボートを
通じて系外に排水される。
In this system flow, by supplying fuel gas and air to the reaction gas chamber 5.6 of the battery body 1, the electrode 2
.. 3, an electromotive reaction occurs and electricity, heat, and water are generated. Here, a temperature rise in the battery due to reaction heat is detected by the temperature sensor 21, and the cooling fan 19 is operated to cool the battery to a proper operating temperature. In addition, surplus fuel gas is produced inside the battery and used as a carrier gas from the reaction gas chamber 5 to the blower 11.
The produced water vapor discharged to the outside of the battery is led to the condenser 13, where it is condensed and separated and stored in the liquid reservoir, and the dehumidified fuel gas is returned to the fuel gas chamber 5 via the circulation path 12. Reflux. Note that when the level of the liquid reservoir of the condenser 13 reaches a certain level, the condensed water level sensor 22 is activated, the solenoid valve 14 is opened, and the drain water is drained out of the system through the drain boat of the solenoid valve 15. .

一方、燃料電池の運転時には先述のように常に過剰ぎみ
に水蒸気が電池外部へ持ち去られるために、電解液は、
全体として運転経過とともに液量が徐々に減少して高濃
度に移行するようになる。そして外部の電解液タンク8
の電解液レベルが下限レベル以下に減少すると、電解液
レベルセンサ23が作動し、この信号に基づいて生成水
ポンプ16を始動するとともに三方電磁弁15を切換え
、凝縮水戻り管路17を通じて凝縮水を電解液タンク8
へ補給して電解液を希釈する。これにより電解液タンク
8.したがって該タンクと導通する電池本体1の電解液
室2の電解液レベルが再び規定の上限レベルまで回復す
るようになる。このようにして起電反応に伴う生成水を
蒸気として電池外部へ過剰ぎみに排出して凝縮1回収し
、この回収凝縮水のうち必要水量を電解液タンクに戻す
ように電解液レベルを管理することにより、電解液濃度
が略一定範囲に維持されることになる。
On the other hand, when a fuel cell is in operation, as mentioned above, excessive water vapor is always carried away to the outside of the cell, so the electrolyte is
Overall, as the operation progresses, the liquid volume gradually decreases and becomes highly concentrated. and external electrolyte tank 8
When the electrolyte level decreases below the lower limit level, the electrolyte level sensor 23 is activated, and based on this signal, the generated water pump 16 is started and the three-way solenoid valve 15 is switched, and the condensed water is returned through the condensed water return pipe 17. The electrolyte tank 8
dilute the electrolyte by replenishing it. This allows the electrolyte tank 8. Therefore, the electrolyte level in the electrolyte chamber 2 of the battery main body 1 which is in communication with the tank is restored to the specified upper limit level again. In this way, the water produced by the electromotive reaction is discharged as steam to the outside of the battery in excess and collected as condensation, and the electrolyte level is managed so that the required amount of recovered condensed water is returned to the electrolyte tank. As a result, the electrolyte concentration is maintained within a substantially constant range.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記した従来の電解液濃度管理システムでは
次記のような欠点がある。すなわち、(11燃料電池の
負荷変動、温度条件等の著しい変化に対して常に過剰ぎ
みに生成水を電池外部に除去させるためには、凝縮器、
am水ポンプ等を含めた補機類が大形化し、かつ補機動
力も大となる。
However, the conventional electrolyte concentration management system described above has the following drawbacks. In other words, (11) In order to always remove excess generated water to the outside of the cell in response to significant changes in the fuel cell's load fluctuations, temperature conditions, etc., a condenser,
Auxiliary equipment, including AM water pumps, etc., will become larger and the power of the auxiliary equipment will also increase.

(2)システムを構成する上で、外部の電解液タンク、
電解液配管、凝縮水戻り管路等を含めた電解液、凝縮水
の配管路が必要となり、それだけ発電装置が大形化し、
しかもこれら配管路に付いては耐溶剤性等の材質制限も
あって設備がコスト高となる。
(2) When configuring the system, an external electrolyte tank,
Electrolyte and condensed water piping, including electrolyte piping and condensed water return piping, are required, which increases the size of the power generation equipment.
Furthermore, there are limitations on the materials used for these piping lines, such as solvent resistance, which increases the cost of the equipment.

この発明の目的は、燃料電池の起電反応に伴う生成水発
生量と反応ガス室を通じて電池外部に排出する生成水除
去量とを負荷変動、温度条件の変化等に即応させて常に
バランスするよう反応ガスの送風量を制御することによ
り、電解液濃度の一定維持を図りつつ、従来システムに
おける補m頚。
The purpose of this invention is to constantly balance the amount of generated water generated by the electromotive reaction of the fuel cell and the amount of generated water removed that is discharged to the outside of the cell through the reaction gas chamber by immediately responding to load fluctuations, changes in temperature conditions, etc. By controlling the amount of reactant gas blown, the electrolyte concentration can be maintained constant while maintaining the same amount of energy as in the conventional system.

外部の電解液タンクおよびこれに付属する各種配管類を
不要にして大幅な設備の簡略、補機動力の節減化を可能
にし、ひいては燃料電池発電システムの総合効率の向上
が図れるようにすることにある。
By eliminating the need for an external electrolyte tank and the various piping that comes with it, it is possible to significantly simplify equipment, reduce the power of auxiliary equipment, and ultimately improve the overall efficiency of the fuel cell power generation system. be.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明によれば、電池
の出力検出器と、電池から排出する反応ガスの温度検出
器と、前記各検出値から生成水の発生量および単位風量
当たりの除去水量を演算し、かつこの演算結果を基に生
成水を電池外部へ排出するに要する反応ガスの必要送風
量を決定して前記送風機を運転制御する演算制御部とを
備えて電解液濃度管理システムを構成するものとする。
In order to solve the above-mentioned problems, the present invention provides a battery output detector, a temperature detector for the reaction gas discharged from the battery, and an amount of produced water generated and removed per unit air volume based on each of the detected values. An electrolyte concentration management system comprising: a calculation control section that calculates the amount of water, determines the required air flow rate of the reaction gas required to discharge the generated water to the outside of the battery based on the calculation result, and controls the operation of the blower; shall consist of:

〔作用〕 上記構成において、燃料電池の出力、排出反応ガスの温
度を計測し、その出力に対応する電流検出値を基にファ
ラデーの法則より起電反応に伴う生成水発生量を、また
反応ガス温度の検出値を基に反応ガスの単位風量当たり
の生成水蒸気の除去量を求めることにより、その運転条
件で電池内部に発生する生成水を蒸気として電池外に排
出するに要する反応ガスの必要風量が算出でき、かつこ
の必要風量を設定値として送風機の送風量制御を行うこ
とにより従来方式のように電池より過剰ぎみ〆I取出し
た凝縮水を再び電解液に戻す操作、およびそれに必要な
補機類設備を必要とすることなく、凝縮水を全て系外に
排出しつつ常に電解液濃度を一定濃度に維持して安定し
た出力特性を得ることができるようになる。
[Function] In the above configuration, the output of the fuel cell and the temperature of the discharged reaction gas are measured, and based on the detected current value corresponding to the output, the amount of water generated due to the electromotive reaction is determined according to Faraday's law, and the amount of water generated due to the electromotive reaction is calculated. By determining the amount of generated water vapor removed per unit air volume of reaction gas based on the detected temperature value, the required air volume of reaction gas required to discharge the generated water generated inside the battery as steam to the outside of the battery under the operating conditions. can be calculated, and by controlling the air flow rate of the blower using this required air volume as a set value, it is possible to remove excess condensed water from the battery as in the conventional method, and return the condensed water extracted from the battery to the electrolyte again, and the auxiliary equipment required for this. This makes it possible to constantly maintain the electrolyte concentration at a constant concentration while discharging all condensed water to the outside of the system, and to obtain stable output characteristics without the need for similar equipment.

〔実施例〕〔Example〕

第1図はこの発明の実施例によるシステムフローを示す
ものであり、第2図に対応する部材には同じ符号が付し
である。すなわちこの発明により燃料電池の電気出力回
路には出力検出器としての電流センサ24を、また反応
ガス循環路12における凝縮器13の前後には反応ガス
温度を検出する温度センサ25.26を備え、さらに前
記各センサより取り込んだ検出値を基に必要風量を設定
して送風機11を運転制御するマイクロコンピュータと
しての演算制御部27を備えている。また第2図に示し
た外部の電解液タンク8.およびこれに付属する補機類
、配管路は無く、かつ凝縮器13の液溜部には電磁弁1
4を介して系外に開放したドレン配管28が接続配管さ
れている。
FIG. 1 shows a system flow according to an embodiment of the present invention, and members corresponding to those in FIG. 2 are given the same reference numerals. That is, according to the present invention, the electric output circuit of the fuel cell is equipped with a current sensor 24 as an output detector, and temperature sensors 25 and 26 for detecting the temperature of the reaction gas are provided before and after the condenser 13 in the reaction gas circulation path 12, Furthermore, it is provided with an arithmetic control section 27 as a microcomputer that controls the operation of the blower 11 by setting the required air volume based on the detected values obtained from each of the sensors. Also, the external electrolyte tank 8 shown in FIG. There are no auxiliary equipment or piping lines attached to this, and there is no solenoid valve 1 in the liquid reservoir of the condenser 13.
A drain pipe 28 that is open to the outside of the system via a pipe 4 is connected to the drain pipe 28 .

ここで燃料電池の運転時における電池内部での生成水発
生量x1は、ファラデーの法則により、電流センサ24
で計測した電流検出値Iから、次式により算出される。
Here, the amount of water produced inside the fuel cell x1 during operation of the fuel cell is determined by the current sensor 24 according to Faraday's law.
It is calculated from the current detection value I measured by the following formula.

一方、反応ガスの単位風量光たりの生成水除去量x2は
、温度センサ25.26で計測した凝縮器13の入口温
度検出値TI、および出口温度検出値T2から、次式に
より算出される。
On the other hand, the generated water removal amount x2 per unit air volume light of the reaction gas is calculated from the detected inlet temperature value TI of the condenser 13 and the detected outlet temperature value T2 of the condenser 13 measured by the temperature sensors 25 and 26 using the following equation.

VOPO−k・Pi  PG−P2 但し、m:1solの完全ガスの体積 PO:大気圧 Pl:温度T1の時の飽和蒸気圧 P2:温度子2の時の飽和蒸気圧 に:凝縮器入口における飽和度 ここで発生生成水を水蒸気として電池外部に排出するに
要する送風6111の必要送風量は、前記(1)および
(2)式より、 として求めることができる。
VOPO-k・Pi PG-P2 However, m: Volume of complete gas of 1 sol PO: Atmospheric pressure Pl: Saturated vapor pressure at temperature T1 P2: Saturated vapor pressure at temperature T2: Saturation at condenser inlet The amount of air 6111 required to discharge the water generated here as water vapor to the outside of the battery can be determined from equations (1) and (2) above as follows.

一方、送風機11は可変速ファンであり、かつその運転
電圧−ファン回転数による送風機の風量特性をあらかじ
め演算制御部27に入力して置き、ここで前記式の必要
送風量を設定値として送風機11を運転制御することに
より、反応ガス循環路工2には前記の必要送風量に対応
した反応ガスが通風され、かつこの過程で反応ガスをキ
ャリアとして反応ガス室5より排出された水蒸気が凝縮
器13で凝縮して気液分離されることになる。また凝縮
器12で回収された凝縮水はドレン配管28を通じて系
外に排出される。なおこの場合に、凝縮器13に付属の
冷却ファン20の風量は循環反応ガス中に含まれている
生成水の水蒸気をすべて1!縮させるに充分な温度まで
冷却できる能力が必要である。またこの冷却ファン20
は一定風量でもよいが、水蒸気量の増減に応じて風量を
可変とすればさらに補機動力を節減化が図れる。
On the other hand, the blower 11 is a variable speed fan, and the air volume characteristics of the blower depending on the operating voltage and the fan rotation speed are inputted in advance to the calculation control unit 27, and the required air flow rate of the above formula is set as a set value. By controlling the operation of the reaction gas circulation path 2, the reaction gas corresponding to the above-mentioned required air flow rate is ventilated, and in this process, the water vapor discharged from the reaction gas chamber 5 using the reaction gas as a carrier is transferred to the condenser. It is condensed in step 13 and separated into gas and liquid. Further, the condensed water collected by the condenser 12 is discharged to the outside of the system through the drain pipe 28. In this case, the air volume of the cooling fan 20 attached to the condenser 13 is 1! for all the water vapor of the generated water contained in the circulating reaction gas. The ability to cool the material to a temperature sufficient to cause it to shrink is required. Also, this cooling fan 20
Although the air volume may be constant, if the air volume is made variable according to the increase or decrease in the amount of water vapor, the power of the auxiliary equipment can be further reduced.

このようにして燃料電池の負荷条件、温度条件に対応し
て送風機11の送風量をコントロールすることにより、
生成水発生量と電池外部に排出する生成水除去量とを常
にバランスさせて電解液濃度を一定に維持することがで
きるようになる。しかも凝縮器137分H回収した凝縮
水は電解液に戻すことなく全て系外に排出できるので、
第2図に示した電解液の戻り配管系、外部の電解液タン
ク。
By controlling the amount of air blown by the blower 11 in accordance with the load conditions and temperature conditions of the fuel cell in this way,
The electrolyte concentration can be maintained constant by constantly balancing the amount of produced water generated and the amount of produced water removed to be discharged to the outside of the battery. Moreover, all of the condensed water recovered by the condenser can be discharged out of the system without being returned to the electrolyte.
Electrolyte return piping system and external electrolyte tank shown in Figure 2.

およびこれらに付属する補1svtが一切不要となり、
発電システム全体としての設備を大幅に簡略化できるよ
うになる。
and supplementary 1svt attached to these are no longer required,
The equipment for the entire power generation system can be significantly simplified.

なお上記は燃料ガス供給配管系に付いてのみ、反応ガス
を循環方式として送風量管理を行う例を示したが、空気
供給配管系に付いても同様に実施することが可能である
Note that although the above example shows an example in which the air flow rate is controlled using a reaction gas circulation method only for the fuel gas supply piping system, it is possible to implement the same method for the air supply piping system as well.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、電池の出力検出器
と、電池から排出する反応ガスの温度検出器と、前記各
検出値から生成水の発生量および単位風量光たりの除去
水量を演算し、かつこの演算結果を基に生成水を電池外
部へ排出するに要する反応ガスの必要送風量を決定して
前記送風機を運転制御する演算制御部とを備えて電解液
濃度管理システムを構成したことにより、燃料電池の負
荷条件、温度条件等の変動に即応して反応ガス送風量を
適正制御し、電池内部で発生する反応生成水量と水蒸気
として電池外部に排出する生成水除去量とを常にバラン
スさせて電解液濃度の一定維持を図りつつ、従来のシス
テムと比べて大幅な設備の簡略化が可能となり、かつこ
れにより発電システムの小形化、設備費の低減化に加え
て補機動力の節減により発電システムの総合効率の向上
も図れる等の実用式効果を得ることができる。
As described above, according to the present invention, the output detector of the battery, the temperature detector of the reaction gas discharged from the battery, and the amount of produced water generated and the amount of water removed per unit air volume light are calculated from each of the detected values. and an arithmetic control unit that determines the required blowing volume of the reaction gas necessary to discharge the generated water to the outside of the battery based on the calculation result and controls the operation of the blower, thereby configuring an electrolyte concentration management system. By doing so, the amount of reaction gas blowing can be appropriately controlled in response to changes in fuel cell load conditions, temperature conditions, etc., and the amount of reaction product water generated inside the cell and the amount of product water removed that is discharged to the outside of the cell as water vapor are constantly controlled. While maintaining a constant electrolyte concentration through balance, it is possible to significantly simplify the equipment compared to conventional systems, and in addition to downsizing the power generation system and reducing equipment costs, it also reduces the power consumption of auxiliary equipment. Practical effects such as improving the overall efficiency of the power generation system can be achieved through savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれこの発明の実施例、およ
び従来における液体電解液型燃料電池の電解液濃度管理
システムのシステムフロー図である。各図において、 1:液体電解液型燃料電池の電池本体、2:電解液室、
3.4:多孔質電極、5.6:反応ガス室、11:送風
機、12:反応ガス循環路、13=凝縮器、24:電流
センサ、25,2111温度センサ、27:演算制御部
。 第1図
FIG. 1 and FIG. 2 are system flow diagrams of an embodiment of the present invention and a conventional electrolyte concentration management system for a liquid electrolyte fuel cell, respectively. In each figure, 1: the cell body of the liquid electrolyte fuel cell, 2: the electrolyte chamber,
3.4: porous electrode, 5.6: reaction gas chamber, 11: blower, 12: reaction gas circulation path, 13 = condenser, 24: current sensor, 25, 2111 temperature sensor, 27: calculation control section. Figure 1

Claims (1)

【特許請求の範囲】 1)液体電解液を満たした電解液室、該電解液室を挟ん
でその両側に対向する多孔質の燃料電極、酸素電極、お
よび各電極に対応する反応ガス室からなる液体電解液型
燃料電池に対し、各反応ガス室に反応ガスを供給して発
電を行うとともに、起電反応に伴って生じる反応生成水
を蒸気として余剰反応ガスとともに送風機により電池外
部に排出するようにした液体電解液型燃料電池において
、電池の出力検出器と、電池から排出する反応ガスの温
度検出器と、前記各検出値から生成水の発生量および単
位風量当たりの除去水量を演算し、かつこの演算結果を
基に生成水を電池外部へ排出するに要する反応ガスの必
要送風量を決定して前記送風機を運転制御する演算制御
部とを備えたことを特徴とする液体電解液型燃料電池の
電解液濃度管理システム。 2)特許請求の範囲第1項記載の電解液濃度管理システ
ムにおいて、出力検出器が燃料電池の出力回路に設置し
た電流センサであり、かつ該電流検出器の検出値を基に
演算制御部でファラデーの法則から負荷条件に対応した
生成水発生量を算出することを特徴とする液体電解液型
燃料電池の電解液濃度管理システム。 3)特許請求の範囲第1項記載の電解液濃度管理システ
ムにおいて、反応ガス室に接続したガス循環路内に介装
した気液分離用の凝縮器に対し、その入口側と出口側に
反応ガスの温度検出器としての温度センサを設け、かつ
該温度センサの検出値を基に演算制御部で温度条件に対
応した単位風量当たりの生成水除去量を算出することを
特徴とする液体電解液型燃料電池の電解液濃度管理シス
テム。
[Claims] 1) Consists of an electrolyte chamber filled with liquid electrolyte, porous fuel electrodes and oxygen electrodes facing each other on both sides of the electrolyte chamber, and reaction gas chambers corresponding to each electrode. In a liquid electrolyte fuel cell, a reactant gas is supplied to each reactant gas chamber to generate electricity, and the water produced by the reaction generated during the electromotive reaction is discharged as steam along with excess reactant gas to the outside of the cell using a blower. In the liquid electrolyte fuel cell, the output detector of the battery, the temperature detector of the reaction gas discharged from the battery, and the amount of produced water generated and the amount of water removed per unit air volume are calculated from each of the detected values, and a calculation control section that determines the required blowing amount of the reaction gas required to discharge the produced water to the outside of the cell based on the calculation result and controls the operation of the blower. Battery electrolyte concentration management system. 2) In the electrolyte concentration management system according to claim 1, the output detector is a current sensor installed in the output circuit of the fuel cell, and the arithmetic and control unit performs a calculation based on the detected value of the current detector. An electrolyte concentration management system for a liquid electrolyte fuel cell, which is characterized by calculating the amount of generated water corresponding to load conditions based on Faraday's law. 3) In the electrolyte concentration control system according to claim 1, a reaction gas is provided on the inlet side and the outlet side of the condenser for gas-liquid separation installed in the gas circulation path connected to the reaction gas chamber. A liquid electrolytic solution characterized in that a temperature sensor is provided as a gas temperature detector, and based on the detected value of the temperature sensor, an arithmetic and control unit calculates the amount of generated water removed per unit air volume corresponding to temperature conditions. electrolyte concentration management system for type fuel cells.
JP61300289A 1986-12-17 1986-12-17 Liquid electrolyte fuel cell power generator Expired - Lifetime JPH0719616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61300289A JPH0719616B2 (en) 1986-12-17 1986-12-17 Liquid electrolyte fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61300289A JPH0719616B2 (en) 1986-12-17 1986-12-17 Liquid electrolyte fuel cell power generator

Publications (2)

Publication Number Publication Date
JPS63152880A true JPS63152880A (en) 1988-06-25
JPH0719616B2 JPH0719616B2 (en) 1995-03-06

Family

ID=17882996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61300289A Expired - Lifetime JPH0719616B2 (en) 1986-12-17 1986-12-17 Liquid electrolyte fuel cell power generator

Country Status (1)

Country Link
JP (1) JPH0719616B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009410A2 (en) * 2001-07-18 2003-01-30 Tel-Aviv University Future Technology Development L.P. Fuel cell with proton conducting membrane and with improved water and fuel management
US6698278B2 (en) * 2001-12-19 2004-03-02 Ballard Power Systems Inc. Indirect measurement of fuel concentration in a liquid feed fuel cell
JP2006086111A (en) * 2004-08-19 2006-03-30 Yamaha Motor Co Ltd Fuel cell system and its control method
JP2009238392A (en) * 2008-03-25 2009-10-15 Equos Research Co Ltd Fuel cell system
JP4820947B2 (en) * 1999-02-01 2011-11-24 モトローラ モビリティ インコーポレイテッド Integrated sensor and monitoring method for monitoring a fuel cell membrane
EP2460208A4 (en) * 2009-07-29 2014-05-07 Searete Llc Instrumented fluid-surfaced electrode
US10074879B2 (en) 2009-07-29 2018-09-11 Deep Science, Llc Instrumented fluid-surfaced electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882479A (en) * 1981-11-10 1983-05-18 Toshiba Corp Fuel battery generating system
JPS60124366A (en) * 1983-12-08 1985-07-03 Agency Of Ind Science & Technol Fuel cell power generating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882479A (en) * 1981-11-10 1983-05-18 Toshiba Corp Fuel battery generating system
JPS60124366A (en) * 1983-12-08 1985-07-03 Agency Of Ind Science & Technol Fuel cell power generating system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820947B2 (en) * 1999-02-01 2011-11-24 モトローラ モビリティ インコーポレイテッド Integrated sensor and monitoring method for monitoring a fuel cell membrane
WO2003009410A2 (en) * 2001-07-18 2003-01-30 Tel-Aviv University Future Technology Development L.P. Fuel cell with proton conducting membrane and with improved water and fuel management
WO2003009410A3 (en) * 2001-07-18 2003-12-18 Univ Ramot Fuel cell with proton conducting membrane and with improved water and fuel management
US7727663B2 (en) 2001-07-18 2010-06-01 Tel-Aviv University Future Technology Development L.P. Fuel cell with proton conducting membrane and with improved water and fuel management
US7951511B2 (en) 2001-07-18 2011-05-31 Tel-Aviv University Future Technology Development L.P. Fuel cell with proton conducting membrane and with improved water and fuel management
US6698278B2 (en) * 2001-12-19 2004-03-02 Ballard Power Systems Inc. Indirect measurement of fuel concentration in a liquid feed fuel cell
JP2006086111A (en) * 2004-08-19 2006-03-30 Yamaha Motor Co Ltd Fuel cell system and its control method
JP2009238392A (en) * 2008-03-25 2009-10-15 Equos Research Co Ltd Fuel cell system
EP2460208A4 (en) * 2009-07-29 2014-05-07 Searete Llc Instrumented fluid-surfaced electrode
US10074879B2 (en) 2009-07-29 2018-09-11 Deep Science, Llc Instrumented fluid-surfaced electrode

Also Published As

Publication number Publication date
JPH0719616B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
CN102203999B (en) Fuel cell cooling
US6855442B2 (en) Fuel cell and method of operating same
CN104040771A (en) Fuel cell system
JPH0286070A (en) Electrolyte concentration control system for liquid electrolyte type fuel cell
JPS63152880A (en) Electrolyte concentration control system of liquid electrolyte type fuel cell
JP3928526B2 (en) Fuel cell system
JP2019123899A (en) Water electrolysis system
JPH07240220A (en) Fuel cell system
JP7029268B2 (en) Fuel cell system
JP6959097B2 (en) Fuel cell system
US10020523B2 (en) Fuel cell system and control method for fuel cell system
JP4432400B2 (en) Control device for fuel cell system
EP3118922B1 (en) Fuel cell system
JP2008071539A (en) Fuel battery system and fluid distribution method of fuel battery stack
KR20140129738A (en) Air supply device for fuel cell system and method for adjusting pressure of air blower
US6723220B2 (en) Protonic rate level sensing device for an electrolysis cell
JP2815690B2 (en) Startup control device for liquid electrolyte fuel cell
JP2018106818A (en) Fuel cell system
JP2005063801A (en) Fuel cell system and movable body
JP6136185B2 (en) Fuel cell system
JP2006147234A (en) Control device of fuel cell
JP7016025B2 (en) Fuel cell system and its operation method
JPS5882480A (en) Fuel battery generating system
KR20210071117A (en) Driving control system and control method of fuel cell vehicle
JP2004253208A (en) Fuel cell system