JPS60123578A - Manufacture unit for fluorescent substance - Google Patents

Manufacture unit for fluorescent substance

Info

Publication number
JPS60123578A
JPS60123578A JP23179183A JP23179183A JPS60123578A JP S60123578 A JPS60123578 A JP S60123578A JP 23179183 A JP23179183 A JP 23179183A JP 23179183 A JP23179183 A JP 23179183A JP S60123578 A JPS60123578 A JP S60123578A
Authority
JP
Japan
Prior art keywords
furnace
inert gas
phosphor
gas
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23179183A
Other languages
Japanese (ja)
Inventor
Seiji Kato
加藤 清司
Noritaka Takada
高田 憲孝
Yasuhiko Hagiwara
萩原 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23179183A priority Critical patent/JPS60123578A/en
Publication of JPS60123578A publication Critical patent/JPS60123578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To provide titled unit capable of achieving significant energy conservation leading to reduction in production cost, by making an inert gas flow through the proximity of the exit of furnace into said furnace in the opposite direction to the moving direction of the calcinating material to effect higher thermal utilization as well as increased retention of the gas within the furnace. CONSTITUTION:Prior to the calcination of fluorescent substance, an inert gas e.g. N2, Ar, etc., is made to flow through ejection mouth 12 into the exit 3 in furnace 1, that is, in the opposite direction to the moving direction of vessels 8 on conveyor 6, using pressure pump 13 in gas introduction unit 11, to effect higher atmospheric pressure in cooling zone C; said inert gas introduction being performed continuously throughout the process. Following that, a feedstock mixture for the manufacture of fluorescent substance is filled in the vessels 8, which are mounted on the conveyor 6, being successively conveyed stepwise and continuously from inlet 2 to the exit 3 within the furnace 1 to carry out calcination.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、たとえば、八日燐酸塩螢光体などの焼成を行
な5螢党体の製造装置に[■するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention is directed to an apparatus for producing, for example, a five-day phosphor by firing an octoday phosphate phosphor.

〔発明の技術的背景〕[Technical background of the invention]

一般に、へ口燐酸塩螢9′c体、へロ燐酸カルシウム螢
光体などは、第1図に示すような装置を用いて製造して
いる。牙1図(alにおいて、(11は炉体で、この炉
体(1)は、入口部(2)から出口部(3)まで中空で
水平方向に長尺に形成されているとともに出口部(3)
が開放されている。また、炉体(1)の入口部(2)側
と出口部(3]側の上部にガス排気口+4] (5]が
設けられている。また、炉体(1)内の下部に溢って移
送体(6)が配設され、この移送体16)は油圧式ブツ
シャ装置(7)によって入口部(2)から出口部(3]
に向って押動移動されるようになっているとともに、移
送体(6)上に耐火性の焼成用の容器(8)が載置され
て移動されるようになっている。
In general, helophosphate phosphor 9'c, calcium helophosphate phosphor, etc. are manufactured using an apparatus as shown in FIG. In Fig. 1 (al), (11 is a furnace body, and this furnace body (1) is hollow and elongated in the horizontal direction from the inlet part (2) to the outlet part (3). 3)
is open. In addition, gas exhaust ports +4] (5) are provided at the top of the inlet (2) side and outlet (3) side of the furnace body (1). A transfer body (6) is arranged, and this transfer body 16) is moved from the inlet part (2) to the outlet part (3) by means of a hydraulic pusher device (7).
At the same time, a refractory firing container (8) is placed on the transfer body (6) and moved.

そして、炉体111内は、牙1図(町に示すよ5な焼成
温度−焼成時間で入口部(2)から出口部(3)に向っ
て、しだいに温度上昇する予熱区域(4)、一定の高温
状態の焼成区域(B)、しだいに温度降下する冷却区域
0となり、螢光体合成素材を容器(8)内に充填して入
口部(2)から出口部(3)まで段階的にかつ連続して
移動するよ5になっている。
Inside the furnace body 111, there is a preheating zone (4) where the temperature gradually increases from the inlet section (2) to the outlet section (3) at a firing temperature of 5 and a firing time as shown in Fig. 1. The firing zone (B) has a constant high temperature state, and the cooling zone 0 where the temperature gradually decreases.The phosphor synthetic material is filled into the container (8) and gradually moved from the inlet part (2) to the outlet part (3). It is set to 5 and moves continuously.

そうして、たとえば、へロ燐酸カルシウム螢光体の製造
にあたっては、一般に、燐酸カルシウム、炭酸カルシウ
ム、弗化カルシウム、三酸化アンチモン、炭酸マンガン
、塩化アンチモンあるいは塩化カルシウム、などの原料
を充分に混合して容器(8)内に充填し、この合成素材
を充填した容器(8)を移送体(6)上に載置して炉体
(1)内で入口部(2)から出口部(3)まで順次移送
する。この移送にともない、容器(8)内に充填された
合成素材は、まず、予熱区域(5)で材料の分解が行な
われ、螢光体の母体(5Ca5(PO4)2−Ca(F
、C))2・ カルシウムアパタイト)が形成される。
For example, in the production of calcium herophosphate phosphors, raw materials such as calcium phosphate, calcium carbonate, calcium fluoride, antimony trioxide, manganese carbonate, antimony chloride, or calcium chloride are generally thoroughly mixed. The container (8) filled with the synthetic material is placed on the transfer body (6) and transferred from the inlet part (2) to the outlet part (3) in the furnace body (1). ). Along with this transfer, the synthetic material filled in the container (8) is first decomposed in the preheating area (5), and the matrix of the phosphor (5Ca5(PO4)2-Ca(F
, C))2. Calcium apatite) is formed.

この分解の際に発生する分解ガスは各ガス排気口+4]
 (51から排出される。
The decomposed gas generated during this decomposition is each gas exhaust port +4]
(Ejected from 51.

つぎに、焼成区域田)において素桐から発生する塩化ア
ンチモン(SbC1,)ガス雰囲気中で賦活剤(Sb、
Mn )の母体へのダンピングが行なわれ、さらに、冷
却区域(Oにおいて多量の塩化アンチモン(Sbcl、
)ガス雰囲気中で螢光体の生成(合成)が完了する。
Next, an activator (Sb, Sb,
Dumping of Mn) into the matrix takes place, and a large amount of antimony chloride (Sbcl,
) The generation (synthesis) of the phosphor is completed in a gas atmosphere.

なお、この工程において、焼成容器(8)は予熱区域囚
で1.5時間、焼成区域の)でう時間を維持し、段階的
かつ連続的に移動する。
In this step, the firing container (8) is moved stepwise and continuously while maintaining an dwell time of 1.5 hours in the preheating zone and 1.5 hours in the firing zone.

〔背景技術の問題点〕[Problems with background technology]

しかし、上記のよ5な方法では、予熱区域(A)で発生
する分解ガス(H2O、CO2等)の蒸気圧は炉体(1
)内の塩化アンチモン(shcx、)ガス蒸気圧および
大気圧より大になるため、分解ガスの一部は冷却区域(
0に流れ込み、生成した螢光体の表面(容器(8)の表
面)に付着し、螢光体の発光効率を下げる欠点がある。
However, in the above five methods, the vapor pressure of the cracked gas (H2O, CO2, etc.) generated in the preheating zone (A) is
) in the cooling zone (
This has the disadvantage that it flows into the phosphor and adheres to the surface of the produced phosphor (the surface of the container (8)), reducing the luminous efficiency of the phosphor.

また、焼成区域(B)で発生した塩化アンチモン(Sh
Cl、)ガスの蒸気圧は冷却区域(Oより大で、かつ高
温のため、蒸気(ガス)の多くは冷却区域(C)より炉
体(1)外に逃げ出し、塩化アンチモン(F3bC1,
)ガス濃度を下げることにより螢光体の生成を悪化させ
、かつ、炉体11)内の熱効率を大幅に下げるという製
造コスト上無視できない問題がある。
In addition, antimony chloride (Sh
Since the vapor pressure of the gas (Cl,) is higher than that of the cooling zone (O) and the temperature is high, most of the steam (gas) escapes from the cooling zone (C) to the outside of the furnace body (1), forming antimony chloride (F3bC1,
) There is a problem that cannot be ignored in terms of manufacturing cost: lowering the gas concentration worsens the production of phosphor and also significantly lowers the thermal efficiency within the furnace body 11).

さらに、炉体(1)の出口部(3)の近傍では外部の空
気(02)が一部冷却区域(0に流れ込み、螢光体の表
面が高温のため賦活剤の酸化(MrL−+MrL)を起
し、表面が桃色に着色する。このように着色したものは
発光出力を著しく低下させ、螢光体として利用できない
。したがって、螢光体の製造効率を減少させる。
Furthermore, in the vicinity of the outlet (3) of the furnace body (1), some of the external air (02) flows into the cooling zone (0), and the activator is oxidized (MrL-+MrL) due to the high temperature of the surface of the phosphor. This causes the surface to be colored pink.Thus, the colored material significantly reduces the luminous output and cannot be used as a phosphor.Therefore, the production efficiency of the phosphor is reduced.

〔発明の目的〕[Purpose of the invention]

本発明は、上述のような点にかんがみてなさ才tたもの
で、各区域で発生するーガスの排出および維持を良好に
し、螢光体の発光効率を高めるとともに、炉体内の熱量
の利用効率を高めることを目白りとするものである。
The present invention has been made in view of the above-mentioned points, and improves the discharge and maintenance of the gas generated in each area, increases the luminous efficiency of the phosphor, and improves the efficiency of utilizing the heat amount in the furnace. The aim is to increase the

〔発明の概要〕[Summary of the invention]

本発明は、入口部から出口部まで中空で長尺に形成され
耐火性の焼成用の容器内に充填された螢光体合成素材を
入口部から出口部まで移動させつつ焼成を行なう炉体と
、この炉体の出口部に設けられ炉体の出口部近傍に螢光
体合成素材の移動方向と逆方向に不活性ガスを導入する
不活性ガス導入装置と、を備えたことを特徴とするもの
である。
The present invention provides a furnace body that performs firing while moving a phosphor synthetic material filled in a fire-resistant firing container that is hollow and elongated from an inlet to an outlet. , an inert gas introducing device is provided at the outlet of the furnace body and introduces an inert gas near the outlet of the furnace body in a direction opposite to the moving direction of the phosphor synthetic material. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を牙2図を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to Fig. 2.

矛2図(α)の装置も、前記牙1図の装置と同様に、入
口部(2)から出口部(3)まで中空で水平方向に長尺
に形成され出口部(3)が開放された炉体(1)、入口
部(2)および出口部+31側上部のガス排気口+41
 (51、移送体(6)、油圧式ブツシャ装置(7)、
螢光体合成素材を充填する容器(8)の構成を備えてい
るが、出口部(3)側上部のガス排気口(5)は開閉調
節自在としてガス圧調節口となっている。
The device shown in Figure 2 (α) is also hollow and elongated in the horizontal direction from the inlet part (2) to the outlet part (3), and the outlet part (3) is open, similar to the device shown in Figure 1. Furnace body (1), inlet part (2) and gas exhaust port +41 on the upper part of the outlet part +31 side
(51, transport body (6), hydraulic pusher device (7),
It has the structure of a container (8) filled with a fluorescent synthetic material, and the gas exhaust port (5) at the upper part on the exit part (3) side is a gas pressure adjustment port that can be opened and closed freely.

また、炉体(1)の出口部+31に不活性ガス導入装置
allを設ける。この不活性ガス導入装置uuは、出口
部(3)の上下部に不活性ガス噴出口lI21を設け、
この不活性ガス噴出口(1カを加圧ポンプG31を介し
て不活性ガス源に接続している。また、炉体tll内の
上下部に泊って発熱体Q41を配置する。
Further, an inert gas introducing device all is provided at the outlet portion +31 of the furnace body (1). This inert gas introduction device uu is provided with an inert gas outlet lI21 at the upper and lower part of the outlet part (3),
One of these inert gas jet ports is connected to an inert gas source via a pressurizing pump G31. Also, heat generating elements Q41 are disposed at the upper and lower parts of the furnace body tll.

そして、炉体(11内は、牙2図(町に示すような焼成
温度−焼成時間で入口部(2)から出口¥A(3)に向
って、しだいに温度上昇する予熱区域囚、一定の高温状
態の焼成区域(6)、しだいに温度降下する冷却区域Ω
となっているが、前記牙1図の装置に対して、予熱区域
囚および冷却区域00時間を大きくしである。
The inside of the furnace body (11) is a preheating area where the temperature gradually rises from the inlet (2) to the outlet A (3) at a firing temperature and firing time as shown in Figure 2. The firing zone (6) is at a high temperature, and the cooling zone (Ω) where the temperature gradually decreases.
However, compared to the device shown in Fig. 1, the preheating zone and the cooling zone are made larger.

そうして、螢光体の焼成にあたっては、焼成前にあらか
じめ窒素(N2)ガス、アルゴン(A?−)ガスなどの
不活性ガスを不活性ガス導入装置[1]Jにおける加圧
ポンプ(I31により不活性ガス噴出口任21噌)ら炉
体111 内の出口部(3)側に、すなわち、移送体1
6)による容器(8)の移動方向と逆方向に流入させ、
冷却区域Ωの気圧を高め、この不活性ガスの導入は作業
中継続して行なう。
Then, before firing the phosphor, inert gas such as nitrogen (N2) gas or argon (A?-) gas is injected into the inert gas introducing device [1] Therefore, the inert gas outlet (21) is placed on the outlet part (3) side in the furnace body 111, that is, the transfer body 1
6) in the direction opposite to the direction of movement of the container (8);
The air pressure in the cooling zone Ω is increased, and this inert gas is continuously introduced during the work.

そして、たとえば、ハロ燐酸塩螢光体の製造にあたって
は、燐酸カルシウム(CaHPQ 4) 、炭酸カル゛
シウム(CjICo、)、弗化カルシウム(CaF2)
、塩化カルシウム(CaCl2)あるいは塩化アンモニ
ウム(NH4C1り 、三酸化アンチモン(8A20s
)、炭酸マンガン(btnco 、)の原料を充分に混
合した合成素材を容器(8)内に充填し、従来と同様に
、この合成素材を充填した容器(8)を移送体(6)上
に載置して炉体(1)内で入口部(2)から出口部(3
)に順次段階的にかつ連続して移送する。これによって
、容器(8)内に充填さ扛た合成素材は、予熱区域(A
)で材料の分解が行なわれ、螢光体の母体が形成され、
焼成区域(B) において素材から発生する塩化アンチ
モン(ShC15)ガス雰囲気中で賦活剤の母体へのダ
シピングが行なわれ、冷却区域(0において多量の塩化
アンチモン(s5cz、)ガス雰囲気中で螢光体の生成
(合成)が完了する。
For example, in the production of halophosphate phosphors, calcium phosphate (CaHPQ4), calcium carbonate (CjICo), calcium fluoride (CaF2), etc.
, calcium chloride (CaCl2) or ammonium chloride (NH4C1), antimony trioxide (8A20s
), manganese carbonate (btnco, ) raw materials are fully mixed into a container (8), and as in the past, the container (8) filled with this synthetic material is placed on the transfer body (6). Place it in the furnace body (1) from the inlet part (2) to the outlet part (3).
) are transferred step by step and continuously. Thereby, the synthetic material filled in the container (8) is heated in the preheating area (A
), the material decomposes and a phosphor matrix is formed.
In the firing zone (B), the activator is dapied to the matrix in an atmosphere of antimony chloride (ShC15) gas generated from the material, and in the cooling zone (B), the phosphor is dumped in a large amount of antimony chloride (S5cz) gas atmosphere. The generation (synthesis) of is completed.

この際、前記のよ5に、炉体(1)の出口部(3)の近
傍より不活性ガスを容器(81の移動方向と逆方向に流
入して冷却区域(C)の気圧を高めていることから、予
熱区域(4)で発生する分解ガスは入口部(2)側のガ
ス排気口+41から十分にUト出される。また、この子
熱区域囚では従来の2倍近い時間をあて、合成材料の分
解および分解ガスの排除を完全に行なう。
At this time, as described in step 5 above, inert gas is introduced from near the outlet (3) of the furnace body (1) in the opposite direction to the moving direction of the container (81) to increase the pressure in the cooling zone (C). As a result, the decomposed gas generated in the preheating zone (4) is sufficiently discharged from the gas exhaust port +41 on the inlet section (2) side.Also, in this preheating zone, it takes nearly twice as much time as before. , complete decomposition of synthetic materials and elimination of decomposition gases.

また、焼成区域■で発生する螢光体の生成に必要な塩化
アンチモン(Sb、cl、)ガスは、不活性ガスによる
ガスカーテン作用で確実に保持され、焼成区域(B)お
よび冷却区域Oを高濃度に保持する。なお、段階的に増
す塩化7ンチモン(SbC15)ガス蒸気圧は、ガス圧
調節口としてのガス排気口(5)を調節操作することに
より、所定圧に保たれる。
In addition, antimony chloride (Sb, Cl,) gas, which is necessary for the production of phosphor and is generated in the firing zone (3), is reliably retained by the gas curtain effect of the inert gas, and is kept in the firing zone (B) and the cooling zone O. Maintain high concentration. Note that the vapor pressure of the 7th chloride (SbC15) gas, which increases stepwise, is maintained at a predetermined pressure by adjusting the gas exhaust port (5) as a gas pressure adjustment port.

また、冷却区域0では、塩化アンチモン(SbcA’、
)ガスが十分に充され、かつ、出口部+31の近傍では
炉体(11外からの空気を不活性ガスで遮断しているこ
とから、空気(02)との接触をなくし、螢光体の生成
および賦活剤の酸化を防ぎ、螢光体の発光効率を高める
ことができる。さらに、冷却区域(Qでは不活性ガスの
存在とともに移送時間が十分に長いため、出口部(3)
の温度が従来の500C程度に対して常温近くまで下り
、生成した螢光体が安定した状態で出口部(3)から出
て来る。
In addition, in cooling zone 0, antimony chloride (SbcA',
) gas is sufficiently filled, and air from outside the furnace body (11) is blocked off with inert gas in the vicinity of the outlet +31, eliminating contact with air (02) and preventing the phosphor from coming into contact with the air (02). It can prevent the formation and oxidation of the activator and increase the luminous efficiency of the phosphor.In addition, the cooling zone (Q) has a sufficiently long transport time together with the presence of an inert gas, so the exit section (3)
The temperature drops to near room temperature, compared to about 500C in the conventional case, and the generated phosphor comes out from the outlet (3) in a stable state.

実際の作業にあたっては、たとえば、炉体(1)が全長
15.6m、高さ1.117mの場合、不活性ガスは常
時110001/A流入させ、合成素材を充填した焼成
容器(8)を移送体(6)により900秒/容器IPの
速さで段階的にかつ連続し℃移動させる。そして、予熱
区域囚では1時間をかゆて従来の2倍近い時間をあて、
材料の分解および分解ガスの排除を十分に行なう。
During actual work, for example, if the furnace body (1) has a total length of 15.6 m and a height of 1.117 m, inert gas of 110001/A is always flowed in, and the firing container (8) filled with synthetic material is transferred. C. is moved stepwise and continuously at a rate of 900 seconds/vessel IP by means of the body (6). Then, in the preheating area prisoner, it takes one hour to itch, which is almost twice as long as before.
Thoroughly decompose materials and remove decomposed gases.

つぎに、混合材料の一例を示す。Next, an example of a mixed material will be shown.

材 料 重 量J) 燐酸カルシウム CaHPO41D 7 、 OO炭酸
カルシウム CcLCOs 52 、70弗化カルシウ
ム CcLF29゜75 塩化カルシウム CaC121゜20 酸化アンチモン 5b20S1.90 炭酸マンガン MnC:O55,18 そして、螢光体3Ca、(POa)2 Ca(F、 (
J)2/SA、Mnを形成する。
Material Weight J) Calcium phosphate CaHPO41D 7, OO calcium carbonate CcLCOs 52, 70 Calcium fluoride CcLF29゜75 Calcium chloride CaC121゜20 Antimony oxide 5b20S1.90 Manganese carbonate MnC:O55,18 And phosphor 3Ca, ( POa )2 Ca(F, (
J) Form 2/SA, Mn.

そして%牙1図の従来装置と、上記本発明の装置とによ
る結果を比較すると、 (xwaAg) る螢光体 のよ5な結果が得られ、また、品質の安定性を相対輝度
(彌によって比較すると、才う図のように従来装置によ
る螢光体((社)に比して本発明装置による螢光体<n
)が高輝度で安定していることが確認された。
Comparing the results obtained with the conventional device shown in Figure 1 and the device of the present invention, it was found that (xwaAg) was the best result for the phosphor. In comparison, as shown in the figure, the phosphor of the present invention is smaller than the phosphor of the conventional device.
) was confirmed to be high brightness and stable.

なお、上記実施例では、移送体(6)により合成素材を
充填した焼成用の容器(8)を移動させるよ5にしてい
るが、移送体16)を用いずに、容器(8)をブツシャ
171で直接押し込み移動するようにしてもよ(・。
In the above embodiment, the firing container (8) filled with the synthetic material is moved by the transfer body (6), but the container (8) is moved by a button without using the transfer body (16). You can also use 171 to move by pushing directly (・.

そして、本発明は、ハロ燐酸塩螢光体の製造に限1うず
、活性化された他の螢光体の製造にも広く用いることが
できる。
Although the present invention is limited to the production of halophosphate phosphors, it can also be widely used in the production of other activated phosphors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炉体の出口部の近傍から不活性ガスを
焼成体の移動方向と逆方向に流入させることにより、冷
却区域の気圧を高めて予熱区域で発生する分解ガスを確
実に排出することができるとともに、焼成区域で発生す
る螢光体の生成に必要な塩化アンチモンガスを保持する
ことができる。
According to the present invention, by injecting inert gas from near the outlet of the furnace body in the opposite direction to the direction of movement of the fired body, the pressure in the cooling zone is increased and the cracked gas generated in the preheating zone is reliably discharged. The antimony chloride gas required for phosphor production generated in the firing zone can be retained.

また、炉体外からの空気を不活性ガスで遮断することに
より、螢光体の生成および賦活剤の酸化を防止して、螢
光体の発ブC効率を高めることができる。
Furthermore, by blocking air from outside the furnace body with an inert gas, the generation of phosphor and the oxidation of the activator can be prevented, and the efficiency of emitting C of the phosphor can be increased.

さらに、炉体内のガスの保持を高めることにより、熱の
利用効率を高め、大幅な省エネルギー効果を果し、製造
コストの低減を行なうことができる。
Furthermore, by increasing the retention of gas within the furnace body, it is possible to increase heat utilization efficiency, achieve a significant energy saving effect, and reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

】・1図(0〕(力は従来の装置の説明図およびその焼
成温度−焼成時間の関係図、第2図(α)(力は本発明
の詳細な説明図およびその焼成温度−焼成時間の関係図
、牙5図は螢ツC体の相対輝度の比較図である。 (1)・・炉体、(2)・・入口部、(3)・・出口部
、(8)・・容器、(IIJ・・不活性ガス導入装置。
】・Figure 1 (0) (Force is an explanatory diagram of the conventional device and its firing temperature - firing time relationship diagram, Figure 2 (α) (Force is a detailed explanatory diagram of the present invention and its firing temperature – firing time Figure 5 is a comparison diagram of the relative brightness of firefly C bodies. (1) Furnace body, (2) Inlet part, (3) Outlet part, (8)... Container, (IIJ...Inert gas introduction device.

Claims (1)

【特許請求の範囲】[Claims] (1)入口部から出口部まで中空で長尺に形成され耐火
性の焼成用の容器内に充填された螢光体合成素材を入口
部から出口部まで移動させつつ焼成を行な5炉休と、 この炉体の出口部に設けられ炉体の出口部近傍に螢光体
合成素材の移動方向と逆方向に不活性ガスを導入する不
活性ガス導入装置と、 を備えたことを特徴とする螢光体の製造装R6
(1) Firing is carried out while moving the phosphor synthetic material filled in a fire-resistant firing container formed into a hollow and long shape from the entrance to the exit. and an inert gas introduction device that is provided at the outlet of the furnace body and introduces an inert gas into the vicinity of the outlet of the furnace body in a direction opposite to the moving direction of the phosphor synthetic material. Manufacturing equipment for phosphor R6
JP23179183A 1983-12-08 1983-12-08 Manufacture unit for fluorescent substance Pending JPS60123578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23179183A JPS60123578A (en) 1983-12-08 1983-12-08 Manufacture unit for fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23179183A JPS60123578A (en) 1983-12-08 1983-12-08 Manufacture unit for fluorescent substance

Publications (1)

Publication Number Publication Date
JPS60123578A true JPS60123578A (en) 1985-07-02

Family

ID=16929073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23179183A Pending JPS60123578A (en) 1983-12-08 1983-12-08 Manufacture unit for fluorescent substance

Country Status (1)

Country Link
JP (1) JPS60123578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545966B1 (en) 1999-02-12 2003-04-08 Benq Corporation Mechanism for triggering an eject device of a disk player

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545966B1 (en) 1999-02-12 2003-04-08 Benq Corporation Mechanism for triggering an eject device of a disk player

Similar Documents

Publication Publication Date Title
JPS6168311A (en) Process and apparatus for preparing aluminum nitride powder
JP4777058B2 (en) Anhydrous gypsum manufacturing method and anhydrous gypsum firing system
EP1042640B1 (en) Method for firing ceramic honeycomb bodies in a tunnel kiln
ES2109096T3 (en) METHOD FOR MANUFACTURING METALLIC CARBIDE POWDERS.
US3791844A (en) Phosphors for multi-color displays
JP2002060254A (en) Shaft type lime kiln and production process of quicklime
JPS60123578A (en) Manufacture unit for fluorescent substance
US3526550A (en) Surface preparation of iron-chromium alloy parts for metal-to- glass seals
US6918963B2 (en) Method and apparatus for coating electroluminescent phosphors
CN114682065B (en) Denitration agent for intelligent active amino reduction denitration and method for denitration of kiln tail flue gas
US2461020A (en) Production of tantalum nitride
JP2000017343A (en) Two-stage ignition type production of sintered ore
CN113614049A (en) Method and apparatus for producing quick lime using coke dry fire extinguishing equipment
US1810313A (en) Process of and apparatus for heat treating alkaline earth carbonate and other materials
US663089A (en) Method of making chlorin.
JPH10300359A (en) Rotary continuous furnace
KR100668796B1 (en) Huntite phosphor and white light emitting device using there
US3093594A (en) Method of making halophosphate phosphors
JPS62197317A (en) Production of vanadium suboxide
CN108676558A (en) Self-activation halogen apatite fluorescent powder and preparation method thereof
JPH11279668A (en) Production of sintered ore and sintering machine
US3002933A (en) Method of halophosphate phosphor manufacture
JP2586148B2 (en) Method for producing ZnS: Mn, Cu-based phosphor
JPH0662938B2 (en) Fluorescent material manufacturing method
JPS553172A (en) Method of manufacturing high voltage alkaline metal vapor discharge lamp