JPS60122738A - Manufacture of preform for optical fiber - Google Patents

Manufacture of preform for optical fiber

Info

Publication number
JPS60122738A
JPS60122738A JP22784283A JP22784283A JPS60122738A JP S60122738 A JPS60122738 A JP S60122738A JP 22784283 A JP22784283 A JP 22784283A JP 22784283 A JP22784283 A JP 22784283A JP S60122738 A JPS60122738 A JP S60122738A
Authority
JP
Japan
Prior art keywords
pressure
reaction tube
burner
internal pressure
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22784283A
Other languages
Japanese (ja)
Other versions
JPS6212181B2 (en
Inventor
Tamotsu Kamiya
保 神谷
Kunihiko Toyoda
豊田 邦彦
Noriaki Furuya
古屋 憲章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP22784283A priority Critical patent/JPS60122738A/en
Publication of JPS60122738A publication Critical patent/JPS60122738A/en
Publication of JPS6212181B2 publication Critical patent/JPS6212181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01846Means for after-treatment or catching of worked reactant gases

Abstract

PURPOSE:To prevent the expanding and bursting of a reaction tube at the position by keeping the internal pressure of the reaction tube in the vicinity of the position on the supply sie of a glass material where the forward trip of a burner is started higher than the external air pressure and lower than the internal pressure of the other part in an internal CVD method. CONSTITUTION:A reaction tube 2 is rotated, and a glass material is supplied from one end. A burner 5 is travelled rightward, and high-pressure air is supplied into a control chamber 3 by a fan 13 to keep the internal pressure of the chamber 3 at P1 which is necessary for keeping the equilibrium with the shrinking force of the reaction tube 2. when the burner 5 reaches the terminal of the forward trip and strikes against a limit switch 6b, the opening degree of a motor valve 14 is decreased and the flow rate of the high-pressure air is reduced to keep the internal pressure of the control chamber 3 at P2 which is lower than the pressure P1 and slightly higher than the external air pressure. The pressure P2 is kept until the burner 5 collides against a limit switch 6a on the other side and changes its direction and a specified time elapses. The pressure P1 is increased to P2 after a specified time.

Description

【発明の詳細な説明】 (産業上の利用分野) 木兄8Aij 、内封CVD法による光フアイバ用プリ
フォームの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing an optical fiber preform by an internal CVD method.

(従来技術) 内封CVD法(MCVD法)は、石英管の一端から気相
のガラス原料を供給しつつ石英管の長手方向沿いにバー
ナを往復動させて加熱することにより、石英管の内面に
ガラス層を堆積させるというもので、こうして得られた
中空石英パイプをコラプスすることによりプリフォーム
が得られる。
(Prior art) In the internally sealed CVD method (MCVD method), the inner surface of the quartz tube is heated by reciprocating a burner along the longitudinal direction of the quartz tube while supplying a vapor phase glass raw material from one end of the quartz tube. A preform is obtained by collapsing the hollow quartz pipe obtained in this way.

ところで上記MCVD法では、バーナによる加熱時、通
常石英管は収縮するため、石英管の内圧を外気圧よりも
高く保持することによって石英管の熱的塑性変形を防止
することが行われている。
By the way, in the above MCVD method, since the quartz tube normally contracts when heated by a burner, thermal plastic deformation of the quartz tube is prevented by maintaining the internal pressure of the quartz tube higher than the external pressure.

しかしこうした場合には、次のような点が問題となって
くる。
However, in such a case, the following problems arise.

即ち、石英管の一端から供給された気相のガラス原料は
、バーナの熱により他giliへ向うにつれてその温度
が上昇することになり、従ってバーナが石英管の成る個
所の直下に達しても当該個所における石英管内部の温度
は急激に上昇するということがない。
In other words, the temperature of the gaseous glass raw material supplied from one end of the quartz tube increases as it moves towards the other end due to the heat of the burner. The temperature inside the quartz tube does not rise rapidly at any point.

ところが、上記ガラス原料の供給側たる石英管の一端で
は、該ガラス原料の温度が未だ低く、従って、バーナが
戻って来て次層の堆積を行うべく加熱を始めると、石英
管内のガラス原料は急激に熱せられて膨張することにな
り、この結果、バーナの往動開始点付近は局部的に内圧
が高くなるため、石英管の収縮力と内圧との平衡が内圧
方向に移動することになり、このため局部的に石英管が
膨らみ、このようなことの繰返しのうちには遂に石英管
は破断してしまうことになる。
However, at one end of the quartz tube, which is the supply side of the glass raw material, the temperature of the glass raw material is still low, so when the burner returns and starts heating to deposit the next layer, the glass raw material inside the quartz tube is It is rapidly heated and expands, and as a result, the internal pressure locally increases near the start point of the burner's reciprocal movement, and the equilibrium between the contraction force of the quartz tube and the internal pressure shifts in the direction of the internal pressure. As a result, the quartz tube swells locally, and as this happens repeatedly, the quartz tube eventually breaks.

(発明の目的) 本発明の目的は、石英管の熱的塑性変形を抑止しつつバ
ーナの往動開始点での石英管の膨張、破裂を防止するこ
とにある。
(Objective of the Invention) An object of the present invention is to prevent expansion and rupture of the quartz tube at the starting point of forward movement of the burner while suppressing thermal plastic deformation of the quartz tube.

(発明の構成) 本発明は、反応管内に1気相のガラス原料を供給しつつ
該反応管の長手方向沿いにバーナを往復動させることに
より加熱し、該反応管の内周壁にガラス層を堆積させる
肉付CVD法による光フアイバ用プリフォームの製造方
法において、前記ガラス原料が供給される側のノ仁−す
の往動開始点付近では前記反応管の内圧を外気圧よシも
僅かに高く、かつ当該個所以外の内圧よシも低く設定す
ることにより、気相のガラス原料の膨張に起因する内圧
の増大を相殺し、当該個所での反応管の膨張、破裂を防
止するというものである。
(Structure of the Invention) The present invention provides heating by reciprocating a burner along the longitudinal direction of the reaction tube while supplying glass raw material in one gas phase into the reaction tube, thereby forming a glass layer on the inner circumferential wall of the reaction tube. In a method for producing an optical fiber preform by a depositing CVD method, the internal pressure of the reaction tube is slightly lower than the external pressure near the starting point of the reciprocation of the core on the side where the glass raw material is supplied. By setting the internal pressure high and the internal pressure at other locations low, the increase in internal pressure caused by the expansion of the glass raw material in the gas phase is offset, and the expansion and rupture of the reaction tube at the relevant locations are prevented. be.

(実施例) 以下図面に示す実施例を参照しながら本発明を説明する
と、第1図tag、tb)は従来例と本発明に係る方法
との反応管の内圧の設定条件を比較したもので、縦軸は
反応管の内圧Pl、横軸はバーナの往復に要する時間り
を示す。
(Example) The present invention will be explained below with reference to the examples shown in the drawings. Figure 1 (tag, tb) compares the setting conditions of the internal pressure of the reaction tube between the conventional example and the method according to the present invention. , the vertical axis shows the internal pressure Pl of the reaction tube, and the horizontal axis shows the time required for the reciprocation of the burner.

同図(aJに示すように、従来例では、反応管の全長に
おいて、外気圧(通常大気圧と等しく、同図では外気圧
を零としている)よりもPlだけ高い値に設定していた
As shown in the figure (aJ), in the conventional example, the entire length of the reaction tube was set to a value higher than the external pressure (normally equal to atmospheric pressure, and in the figure, the external pressure is set to zero) by Pl.

このため前述の理由により、第2図の実線て示すように
1バーナの往動開始点付近Aでは、反応管の外径がd、
からd、に膨張し、しかもこの外径d、はガラスの堆積
層数nを重ねると共に徐々に増大する傾向を示し、遂に
は破裂に到っていた。
Therefore, for the above-mentioned reason, as shown by the solid line in Fig. 2, near the forward movement start point A of one burner, the outer diameter of the reaction tube is d,
The outer diameter d showed a tendency to gradually increase as the number of layers of glass accumulated, n, until it finally burst.

そこで第1図1b3 K示すように、本発明では、反応
管の内圧を2段階に変化させるようにした。
Therefore, as shown in FIG. 1b3K, in the present invention, the internal pressure of the reaction tube is changed in two stages.

即ち、気相のガラス原料が適当な温度に達し加水分解反
応が定常的に生起している部分では、反応管の収縮力と
平衡を保つのに必要な内圧P1に設定し、バーナの往動
開始点付近では、上記P1よりも小さくかつ外気圧より
も僅かに大きいP2に設定する。
That is, in the area where the gas phase glass raw material reaches an appropriate temperature and the hydrolysis reaction is occurring steadily, the internal pressure is set to P1 necessary to maintain equilibrium with the contraction force of the reaction tube, and the forward movement of the burner is Near the starting point, P2 is set to be smaller than P1 and slightly larger than the outside pressure.

このように設定した結果が第2図の点線であり、d2が
反応管の外径を示している。
The result of this setting is shown by the dotted line in FIG. 2, where d2 indicates the outer diameter of the reaction tube.

通常、外径が最も膨張する個所は、バーナが戻って来て
再度加熱を開始し、加熱によって温度が上昇し始め、所
定の反応温度に到達した個所であり、当該個所への到達
時間は、反応管の寸法、バーナスピード及びバーナの火
力等の加熱条件に依存することになり、またP2の値及
びP2からP、への移行時間もこれらの条件に依存する
ことになる。
Usually, the point where the outer diameter expands the most is the point where the burner returns and starts heating again, and the temperature begins to rise due to heating and reaches a predetermined reaction temperature, and the time to reach that point is: It depends on the heating conditions such as the dimensions of the reaction tube, the burner speed and the firepower of the burner, and the value of P2 and the transition time from P2 to P also depend on these conditions.

尚、第2図において縦軸は反応管の外径、横軸は反応管
の長手方向を示すのもので、Bはバーナの復動始点(往
動終点)である。
In FIG. 2, the vertical axis indicates the outer diameter of the reaction tube, the horizontal axis indicates the longitudinal direction of the reaction tube, and B is the start point of the backward movement (end point of the forward movement) of the burner.

次に上記方法に使用される装置について説明する。Next, the apparatus used in the above method will be explained.

第3図に示すように、ガラス旋盤1に、石英製の反応管
2の両端部を回転自在に取イτjけ、該反応管2の一端
から気相のガラス原料を供給するようにすると共に他端
を制御室3に回転/−ル4を介して取付け、制御室3と
反応管2とを連通状態に保持する。
As shown in FIG. 3, both ends of a quartz reaction tube 2 are rotatably mounted on the glass lathe 1, and glass raw material in a vapor phase is supplied from one end of the reaction tube 2. The other end is attached to the control chamber 3 via a rotary lever 4 to keep the control chamber 3 and the reaction tube 2 in communication.

さらに、加熱用のバーナ6を、反応管2の1に手方向沿
いに走行自在に設けると共に該バーナ6の走行範囲両端
にリミットスイッチ6 a 、 6bを設置し、同スイ
ッチを演算回路7に接続する。
Further, a heating burner 6 is installed in the reaction tube 2 so as to be freely movable along the hand direction, and limit switches 6 a and 6 b are installed at both ends of the travel range of the burner 6 , and the switches are connected to the arithmetic circuit 7 . do.

また上記制御室3には、その内圧を測定させるための測
定器8が接続されており、その測定値は、演算子9に入
力されるようになっている。
A measuring device 8 for measuring the internal pressure is connected to the control room 3, and the measured value is input to an operator 9.

該演算子9には、外部設定器10も接続されており、該
演算子9からの信号は、これに接続された駆動回路11
に供給され、同回路11からの信号に応じてモータM1
が作動し、電動弁112の開口度を調節するようになっ
ている。
An external setting device 10 is also connected to the operator 9, and a signal from the operator 9 is sent to a drive circuit 11 connected to the external setting device 10.
motor M1 according to the signal from the same circuit 11.
is activated to adjust the opening degree of the electric valve 112.

上記制御室3には、さらに高圧空気供給用のファン13
が、電動弁■14を介して接続されており、該電動弁1
114は、上記演算回路7からの信号に応じて作動する
モータM2によって駆動されるようになっている。
The control room 3 further includes a fan 13 for supplying high-pressure air.
are connected via the electric valve 14, and the electric valve 1
114 is driven by a motor M2 that operates in response to a signal from the arithmetic circuit 7.

また演算回路7からの信号は上記駆動回路11にも供給
されるようになっている。
Further, the signal from the arithmetic circuit 7 is also supplied to the drive circuit 11.

次に上記構成に係る装置の作用について述べる。Next, the operation of the device having the above configuration will be described.

反応管2を回転させ、一端からガラス原料を供給しつつ
、バーナ6を図面において右方向に走行させる一方、フ
ァン13を作動させて制御室3内に高圧空気を供給する
While the reaction tube 2 is rotated and glass raw material is supplied from one end, the burner 6 is run rightward in the drawing, and the fan 13 is operated to supply high pressure air into the control chamber 3.

制御室3内の圧力は測定器8によって測定され、同室3
内の圧力が上記P、に保持されるよう電動弁112の開
度が制御され、この開度に応じて制御室3内の気体が排
気口15から排気されることになる。
The pressure inside the control room 3 is measured by a measuring device 8, and the pressure inside the control room 3 is measured by a measuring device 8.
The opening degree of the electric valve 112 is controlled so that the pressure inside is maintained at the above-mentioned P, and the gas in the control chamber 3 is exhausted from the exhaust port 15 according to this opening degree.

尚、上記P、の値は外部設定器10によって指定される
Note that the value of P is specified by the external setting device 10.

また、ファン13からの流量は電動弁[14によって制
御される。
Further, the flow rate from the fan 13 is controlled by an electric valve [14].

上記バーナ6が、往路の終端に達し、一方のリミットス
イッチ6bに衝突すると、同スイッチ6bは動作して信
号を発し、この信号は演算回路7に入力され、電動弁■
14は開度が小さくなり、流量が減少する一方、電動弁
112は所定の開度に固定されることになり、制御室3
内の圧力は%P2に保持される。
When the burner 6 reaches the end of its forward path and collides with one of the limit switches 6b, the switch 6b operates and issues a signal. This signal is input to the arithmetic circuit 7, and the electric valve
14 becomes smaller in opening and the flow rate decreases, while the electric valve 112 is fixed at a predetermined opening, and the control chamber 3
The pressure inside is maintained at %P2.

この圧力P2は、バーナ6が他方のリミットスイッチ6
aに衝突し、方向を転換して後、所定時間が経過するま
で保持され、所定時間後、圧力P1に上昇させられるこ
とになる。
This pressure P2 is applied to the burner 6 by the other limit switch 6.
After colliding with point a and changing direction, it is held until a predetermined time has elapsed, and after the predetermined time, the pressure is increased to P1.

つまり、電動弁U14の開度を犬にして流量を増加させ
、併せて制御室3の内圧制御を作動させるのである。
In other words, the opening degree of the electric valve U14 is increased to increase the flow rate, and at the same time, the internal pressure control of the control chamber 3 is activated.

とのP、からP、への切換えは、タイマによって行われ
る。
The switching from P and P to P is performed by a timer.

こ\でより具体的な例について述べると、外径24闘、
内径21mmの反応管を用い、Pl=20m+H20、
P2=5■H20、バーナの走行速度200 Mn/M
、加熱温度1800℃の条件下で反応管の内周壁にガラ
ス層を堆積させたところ、外径の変動は僅かで24±0
.2 tanであった。
Here are some more specific examples: OD 24,
Using a reaction tube with an inner diameter of 21 mm, Pl = 20 m + H20,
P2=5■H20, burner running speed 200 Mn/M
When a glass layer was deposited on the inner circumferential wall of the reaction tube at a heating temperature of 1800°C, the outer diameter changed only slightly by 24±0.
.. It was 2 tan.

(効 果) 本発明は以上から明らかなように、気相のガラス原料が
供給される反応管の一端、即ち、バーナの往動開始点付
近の内圧を反応が定常的に生起する個所のそれよりも小
さくするので、往動開始点付近の気相原料が急激に膨張
し、内圧が上昇しても、この上昇分は、設定内圧の減少
分によって相殺されることKなり、従ってその近辺の管
の部分が膨張し、破裂する、と云ったことが未然に防止
されることになる。
(Effects) As is clear from the above, the present invention reduces the internal pressure at one end of the reaction tube to which the gaseous glass raw material is supplied, that is, near the starting point of the forward movement of the burner, to that at the point where the reaction occurs steadily. , so even if the gas-phase raw material near the forward movement start point expands rapidly and the internal pressure increases, this increase will be offset by the decrease in the set internal pressure. This prevents the tube from expanding and bursting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図La)は、従来のバーナの位置と反応管の内圧と
の関係を示すグラフ、同図tblは本発明におけるバー
ナの位置と内圧との関係を示すグラフ、第2図は従来例
と本発明との反応管の外径の変動を対比したグラフ、第
3図は本発明に係る装置の略示図である。 2・・・・・反応管 5 @ll+l@@バーナ 特許出願人 代理人 弁理士 井 藤 誠
Figure 1 La) is a graph showing the relationship between the conventional burner position and the internal pressure of the reaction tube, Figure tbl is a graph showing the relationship between the burner position and internal pressure in the present invention, and Figure 2 is a graph showing the relationship between the burner position and the internal pressure in the conventional example. A graph comparing the variation of the outer diameter of the reaction tube with that of the present invention, FIG. 3 is a schematic diagram of the apparatus according to the present invention. 2...Reaction tube 5 @ll+l@@Barna Patent applicant representative Patent attorney Makoto Ifuji

Claims (1)

【特許請求の範囲】[Claims] 反応管内に、気相のガラス原料を供給しつつ該反応管の
長手方向沿いにバーナを往復動させることにより加熱し
、該反応管の内周壁にガラスJZを堆積させる内封CV
D法による光フアイバ用プリフォームの製造方法におい
て、前記ガラス原料が供給される側のバーナの往動開始
点付近では前記反応管の内圧を、外気圧よシも僅かに高
くかつ当該個所以外の内圧よシも低く設定することを特
徴とする光フアイバ用プリフォームの#遣方法。
An inner-enclosed CV in which glass JZ is deposited on the inner circumferential wall of the reaction tube by heating it by reciprocating a burner along the longitudinal direction of the reaction tube while supplying glass raw materials in a gas phase into the reaction tube.
In the method for manufacturing an optical fiber preform by method D, the internal pressure of the reaction tube is set to be slightly higher than the external pressure near the reciprocating start point of the burner on the side where the glass raw material is supplied, and at a point other than that point. A method for using a preform for optical fiber, which is characterized by setting the internal pressure to a low level.
JP22784283A 1983-12-02 1983-12-02 Manufacture of preform for optical fiber Granted JPS60122738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22784283A JPS60122738A (en) 1983-12-02 1983-12-02 Manufacture of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22784283A JPS60122738A (en) 1983-12-02 1983-12-02 Manufacture of preform for optical fiber

Publications (2)

Publication Number Publication Date
JPS60122738A true JPS60122738A (en) 1985-07-01
JPS6212181B2 JPS6212181B2 (en) 1987-03-17

Family

ID=16867218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22784283A Granted JPS60122738A (en) 1983-12-02 1983-12-02 Manufacture of preform for optical fiber

Country Status (1)

Country Link
JP (1) JPS60122738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1300371A2 (en) * 2001-10-03 2003-04-09 Alcatel Method and device for manufacturing an optical fibre preform by the modified chemical vapour deposition process
EP1719739A1 (en) * 2004-02-27 2006-11-08 Sumitomo Electric Industries, Ltd. Method and device for producing optical fiber matrix
JP2013075787A (en) * 2011-09-30 2013-04-25 Fujikura Ltd Method for producing optical fiber preform and method for producing optical fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015112382A1 (en) 2015-07-29 2017-02-02 J-Fiber Gmbh Method for defined deposition of a glass layer on an inner wall of a preform and preform and communication system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1300371A2 (en) * 2001-10-03 2003-04-09 Alcatel Method and device for manufacturing an optical fibre preform by the modified chemical vapour deposition process
EP1300371A3 (en) * 2001-10-03 2003-08-13 Alcatel Method and device for manufacturing an optical fibre preform by the modified chemical vapour deposition process
EP1719739A1 (en) * 2004-02-27 2006-11-08 Sumitomo Electric Industries, Ltd. Method and device for producing optical fiber matrix
EP1719739A4 (en) * 2004-02-27 2011-06-22 Sumitomo Electric Industries Method and device for producing optical fiber matrix
JP2013075787A (en) * 2011-09-30 2013-04-25 Fujikura Ltd Method for producing optical fiber preform and method for producing optical fiber

Also Published As

Publication number Publication date
JPS6212181B2 (en) 1987-03-17

Similar Documents

Publication Publication Date Title
JP2001068538A (en) Electrode structure, mounting base structure, plasma treatment system, and processing unit
WO2014094390A1 (en) Apparatus for manufacturing depressed cladding ultra-low water peak optical fiber core rod and method thereof
JPS60122738A (en) Manufacture of preform for optical fiber
US4770682A (en) Device for manufacturing optical fiber preforms
JP3949425B2 (en) Heat treatment apparatus and method for optical fiber preform
CN100380558C (en) Method and device for forming electric discharge tube of low-pressure electric discharge lamp
JP2011042562A (en) Method and device for manufacturing primary preform for optical fiber
JP3377164B2 (en) Optical fiber cooling device
JP2006193397A (en) Method and apparatus for drawing glass preform
JP5519145B2 (en) Optical fiber manufacturing method using isothermal, low pressure plasma deposition technology
JP6170958B2 (en) Optical fiber preform manufacturing method
JP2003063841A (en) Method and apparatus for producing optical fiber preform
JPH052990A (en) Manufacture of small-sized bulb
US2879436A (en) Traveling wave tube and method of constructing the same
US20040099013A1 (en) Optical fibers and methods of fabrication
US9266767B2 (en) PCVD method for manufacturing a primary preform for optical fibers
EP2947056B1 (en) A method and a device for manufacturing an optical preform by means of an internal vapour deposition process, as well as corresponding substrate tube assembly
KR100966585B1 (en) Method of manufacturing a solid perform
KR20020095843A (en) Temperature control apparatus of heating jacket
JP2007112668A (en) Method and apparatus for manufacturing glass member
JPS59217633A (en) Apparatus for manufacturing optical fiber preform
KR20040002666A (en) Optical element molding apparatus
JP4297095B2 (en) Optical fiber preform manufacturing method and manufacturing apparatus
JPS6236831Y2 (en)
JP2014034494A (en) Method for manufacturing optical fiber preform