JPS6012270A - Adjusting method of casting temperature - Google Patents

Adjusting method of casting temperature

Info

Publication number
JPS6012270A
JPS6012270A JP12019083A JP12019083A JPS6012270A JP S6012270 A JPS6012270 A JP S6012270A JP 12019083 A JP12019083 A JP 12019083A JP 12019083 A JP12019083 A JP 12019083A JP S6012270 A JPS6012270 A JP S6012270A
Authority
JP
Japan
Prior art keywords
temperature
copper
casting
holding furnace
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12019083A
Other languages
Japanese (ja)
Other versions
JPH0245544B2 (en
Inventor
Hajime Yamashita
山下 初
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP12019083A priority Critical patent/JPH0245544B2/en
Publication of JPS6012270A publication Critical patent/JPS6012270A/en
Publication of JPH0245544B2 publication Critical patent/JPH0245544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D46/00Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain an excellent casting in the stage of pouring molten copper from a holding furnace into a casting mold by reading the temp. rising speed of spouts provided before and behind the holding furnace and controlling the temp. of the molten copper to be supplied into the casting mold. CONSTITUTION:A temp. detector is attached to a spout 2 which conducts the copper melted in a shaft furnace 1 to a holding furnace 3 and/or a spout 4 which conducts the molten copper from the furnace 3 to a tundish 5, etc. The temp. rise DELTAt deg.C at the time DELTAH is then measured. A copper wire calculated preliminarily to meet the measured DELTAt/DELTAH is supplied to a molten metal well 6 in accordance with the change in the speed of a pinch roll 9 driven by a motor 8, thereby controlling the temp. of the molten copper to be supplied into the casting mold.

Description

【発明の詳細な説明】 シャフト炉は銅の溶解炉として溶解時の熱効率が非常に
優れていることから広く用いられているところであるが
、このシャフト炉から鋳造装置に至る間で鋳造温度と湯
温を調節して品質の良い鋳造ノ々−を能率良く生産する
ことがめられる。
[Detailed Description of the Invention] Shaft furnaces are widely used as copper melting furnaces because of their excellent thermal efficiency during melting. It is possible to efficiently produce high-quality castings by controlling the temperature.

ところでこれまで銅の溶解から鋳造までの行程概略図を
示せば第1図のとおシである。
By the way, a schematic diagram of the process from melting copper to casting is shown in Fig. 1.

即ちシャフト炉1で溶解された銅は第1の樋2を通シ保
持炉3に入シ、−たんここで湯を溜めてここで鋳造湯量
と湯温を概略鯛整し、更に第2の樋4を経−てレードル
又はタンディシュ5に至シここで湯量と湯溜りが微調整
され鋳造機(図示せずンに供給され鋳造されるものであ
る。
That is, the copper melted in the shaft furnace 1 passes through the first gutter 2 and enters the holding furnace 3, where hot water is stored and the amount and temperature of the casting hot water are approximately adjusted. The molten metal flows through a gutter 4 to a ladle or tundish 5, where the amount and pool of molten metal are finely adjusted and supplied to a casting machine (not shown) for casting.

ところでこのような方法で鋳造すると注湯点の所での温
度のばらつきが大きく最高60℃の温度差を生じている
。鋳型の中に注湯された銅はその後第2図に示すが如く
すし状の結晶成長が見られるが、鋳造温度は品質上鋳肌
が悪くならない範囲で、できるだけ低い万が望ましく、
良好な鋳造品の品質を保持するためには第1の樋2の箇
所に作業員がついていて、埋金をする等して温度調節を
する必要がある。
However, when casting using this method, there is a large variation in temperature at the pouring point, resulting in a temperature difference of up to 60°C. After the copper is poured into the mold, sushi-shaped crystal growth can be seen as shown in Figure 2.However, it is desirable that the casting temperature be as low as possible without degrading the casting surface in terms of quality.
In order to maintain good quality of the cast product, it is necessary for a worker to be present at the first gutter 2 and to adjust the temperature by filling it with metal or the like.

又、鋳造温度は例えば1i20℃以下では鋳造温度が低
過ぎて、鋳造品からガスが抜は切れずに巣が入るおそれ
がある。
Further, if the casting temperature is, for example, 1i20° C. or lower, the casting temperature is too low, and there is a risk that gas may not be completely removed from the cast product and cavities may be formed.

即ちシャフト炉から出てくる銅の温度は、溶けが良くな
ると温度は低めで、溶けが悪いと温度は高めであるが、
電気鋼の大きさで溶けてくる銅の温度は異なるものであ
る。
In other words, the temperature of the copper coming out of the shaft furnace will be lower if the melting is good, and higher if the melting is poor.
The temperature at which the copper melts differs depending on the size of the electric steel.

即ち、シャフト炉で溶解する原料は電気鋼、棒鋼、情調
等があり、更に電気銅でもいろいろなブランドのものが
あり、形状も異なるものである。
That is, the raw materials melted in a shaft furnace include electric steel, bar steel, and steel, and there are also various brands of electric copper, and they have different shapes.

このため原料銅によって銅の溶解スピードが異なp1溶
解していた銅の温度も異なっている。
For this reason, the melting speed of copper differs depending on the raw material copper, and the temperature of the copper melting p1 also differs.

そこで銅の6解量に応じて保持炉の大きさとタンディシ
ュ又はレードルの大きさが決められ、炉1少ンデイシュ
又はレードルの大きさに見合ったノ々−ナーがそれぞれ
取シ付けられ湯温を測定しながら保持炉の燃焼用バルブ
の開閉を行なっていたが、それでも最高60℃位の温度
差が生ずるのが現状でちシ、これによる鋳造品の鋳肌荒
れや、鋳造品の脆化等の諸問題が残っていたのである。
Therefore, the size of the holding furnace and the size of the tundish or ladle are determined according to the amount of copper dissolved, and a tundish or ladle size corresponding to the size of the tundish or ladle is installed in each furnace to measure the temperature of the hot water. Although the combustion valve of the holding furnace was opened and closed, the current situation is that temperature differences of up to 60°C still occur, and this can cause various problems such as roughening of the casting surface and embrittlement of the casting. A problem remained.

本発明はこのよりな従来の欠点を解決するためになされ
たものである。
The present invention has been made in order to solve this further drawback of the conventional art.

即ち本発明金弟3図を参照しつ\説明すれば以下のとお
りである。
That is, the explanation will be as follows with reference to Figure 3 of the present invention.

シャフト炉で溶解された銅は第1の樋2を通シ保持炉3
に入シ、−たんここで湯を溜めて鋳造湯量と湯温を概略
調整し、第1の湯溜り7、第2の湯溜シロ及び樋4を経
てタンディシュ又はし−ドル5に至るようになっている
。ここで、第1の樋2又は第2の樋4の矢印部分には温
度検出計をつけて湯温を測定する。この場合温度検出計
としては応答速度を上げるためにシース熱電対のような
ものが好ましく、温度変動が大きい場合は第1の樋2及
び第2の樋4の両方に温度計を付けた万が好ましいもの
と言える。
The copper melted in the shaft furnace passes through the first gutter 2 and is transferred to the holding furnace 3.
At the beginning of the process, hot water is stored in the tank, the amount and temperature of the casting hot water are approximately adjusted, and the water is passed through the first hot water pool 7, the second hot water pool, and the gutter 4 to the tundish or water tank 5. It has become. Here, a temperature detector is attached to the arrow part of the first gutter 2 or the second gutter 4 to measure the temperature of the water. In this case, it is preferable to use a sheathed thermocouple as the temperature detector in order to increase the response speed.If the temperature fluctuation is large, it is recommended to attach thermometers to both the first gutter 2 and the second gutter 4. It can be said that it is preferable.

次にこの温度計の設置によシ△H時間に△t℃だけ温度
の上昇線を読みとり、第2の湯溜6に齢に見合うようあ
らかじめ計算された銅線を供給するように、モーター(
直流)8で駆動されているピンチロール9の速度変化に
よって制御し、絶えず必要量の銅線が連続的に供給され
るようにして温度を調節する。
Next, by installing this thermometer, read the line of temperature increase by △t℃ in △H time, and set the motor (
The temperature is controlled by changing the speed of the pinch rolls 9 driven by direct current (DC) 8 so that the required amount of copper wire is continuously supplied.

勿論本発明の応用動作とし、て、□の上昇値が△H 著るしく大きい場合は供給線を多本掛けにしたシ、供給
する銅線を太いものとし冷却効果を高めるようにするこ
とができる。
Of course, as an applied operation of the present invention, if the increase value of △H is significantly large, it is possible to increase the cooling effect by using multiple supply lines or by making the supplied copper wire thicker. can.

又、温度の低下が著るしい場合には保持炉3に付されて
いるノ々−ナー10のロータリノ々ルプ11を直流モー
ター12に与えられた信号によりその開度を自動調節し
てバーナー10のガス量τthHの勾配に応するように
制御することを併せて行なえばよい。
In addition, when the temperature decreases significantly, the opening degree of the rotary nozzle 11 of the nozzle 10 attached to the holding furnace 3 is automatically adjusted by a signal given to the DC motor 12, and the burner 10 is What is necessary is to perform control in accordance with the gradient of the gas amount τthH.

温度調節に伴なう好ましい手段はマイクロコンピュタ−
を利用することである。第4図はそのフローチャート全
庁すものである。
The preferred means for controlling temperature is a microcomputer.
It is to take advantage of. Figure 4 is a complete flowchart.

こjLによれば例えば湯温k1120℃にセットし、そ
の上限値i+5℃、下限値を一3℃にコントロールする
ようにfBIJ Hする場合、作業時間、△H待時間前
温度1ro、現在の温fTtよシ現在よ9611時間後
の予測温度°r2が演算される。
According to this jL, for example, when setting the hot water temperature k1120℃ and controlling the upper limit value i + 5℃ and the lower limit value to -3℃, the working time, △H waiting time temperature 1ro, and current temperature. The predicted temperature °r2 9611 hours after the current time is calculated from fTt.

−万マイクロコンビュターには一定の銅線を補正材料と
してxg (線径が定まっていればxm)投入したとき
の降下温度が実験的に確認され、入力されているので、
△H待時間後予測温度T2が管理限界の+5℃を上回る
おそれのあるときは、前記の温度の補正材料である銅線
のピンチロール9を駆動するそ一ター8に所定の高速信
号を与え、所定の温度範囲になるようにする。又、温度
が降下し下限に達することが予測される場合は前記の温
度の補正材料である銅線のピンチロール9を駆aするモ
ーター8に銅線の供給を少なくするか停止するように信
号を与えて規正範囲内に温度管理をする。このようにす
ることによシ、入間は温度制御のため直接保持炉の近傍
に配置する必要はなくなシ、コツピュターに接続された
ブラウン管に映し出される一画像を看視するだけで済む
こととなる。
- The temperature drop when a certain amount of copper wire is inputted as a correction material xg (xm if the wire diameter is fixed) has been experimentally confirmed and input into the microcomputer, so
When there is a possibility that the predicted temperature T2 after the ΔH waiting time exceeds the control limit of +5°C, a predetermined high-speed signal is applied to the motor 8 that drives the pinch roll 9 made of copper wire that is the temperature correction material. , to maintain a predetermined temperature range. If the temperature is predicted to drop and reach the lower limit, a signal is sent to the motor 8 that drives the pinch roll 9 of copper wire, which is the temperature correction material, to reduce or stop the supply of copper wire. to control the temperature within the specified range. By doing this, there is no need for Iruma to be placed directly near the holding furnace for temperature control, and it is only necessary to watch a single image projected on a cathode ray tube connected to the computer. .

なお温度が異常に降下した場合コンピュタ−の信号を利
用して保持炉3に付されているノ々−ナー10のロータ
リノ々ルゾ11を開にし昇温するようにモーター12に
信号を与えノ々−ナーのガス量を島トの一勾配に応する
ように制御することを併用することは一層好ましい動作
である。
If the temperature drops abnormally, a computer signal is used to send a signal to the motor 12 to open the rotary nozzle 11 of the nozzle 10 attached to the holding furnace 3 and raise the temperature. A more preferred operation is to also control the amount of gas in the toner to correspond to the slope of the island.

次に本発明による方法と従来の方法との鋳造温度の変動
例をグラフによシ示せば第5図のとおシである。
Next, an example of variation in casting temperature between the method according to the present invention and the conventional method is shown in a graph as shown in FIG.

即ち本発明の方法によれば温度差の最高幅は20℃に押
えられているのに対し、従来の方法では50℃以上の温
度を生じているので、鋳造銅の品質は本発明の方法によ
るものが優れておシ、従来法によるものは鋳塊表面に欠
陥を生ずることが理解されよう。
That is, according to the method of the present invention, the maximum width of the temperature difference is suppressed to 20°C, whereas the conventional method generates a temperature of 50°C or more. It will be understood that the conventional method produces defects on the surface of the ingot.

次に鋳造温度と鋳塊の表面欠陥数の関係を調ベグラフ化
したものを示せば第6図のとおシである。
Next, a graph showing the relationship between casting temperature and the number of surface defects in an ingot is shown in FIG. 6.

ここに鋳塊表面の欠陥数とは渦流探傷器で検査し、10
〜20震の信号をキャッチしたとき′5c1点とし、2
0〜30叫の信号をキャッチしたときを3点とし、30
w以上の信号をキャッチしたときを5点として評価し、
鋳塊10!n当シ何点の欠陥であるかということを表示
することによシ胸造温度との相関を調べたもので、鋳造
温度が1120℃〜1140℃の場合には鋳塊の表面欠
陥数は最低であることを明示しておシ1、従って第5図
の本発明による方法が如伺に優れた方法であるかを立証
しているものと言える。
Here, the number of defects on the surface of the ingot is 10 when inspected with an eddy current flaw detector.
~When you catch a signal of 20 earthquakes, score 1 point at '5c, and 2 points.
3 points are given when a signal of 0 to 30 is caught, and 30
When a signal of W or more is caught, it is evaluated as 5 points,
Ingot 10! The correlation with the forging temperature was investigated by displaying the number of defects on the ingot.When the casting temperature is between 1120℃ and 1140℃, the number of surface defects on the ingot is It can be said that this proves that the method according to the present invention shown in FIG. 5 is an extremely superior method.

以上の如く本発明によるときは、保持炉の前後の温度管
理を一定の制御された温度の範囲になるように、比較的
簡単な手段で自動的に行ない得るようにしたものであシ
、これによって従来に比し格段に優れた鋳造品を提供す
ることができる。
As described above, according to the present invention, the temperature control before and after the holding furnace can be automatically performed using relatively simple means so that the temperature is within a certain controlled temperature range. This makes it possible to provide a cast product that is significantly superior to conventional ones.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の銅の鋳造工程の概略説明図、第2図は鋳
型に注湯された銅の断面図、第3図は本発明の一例を示
す銅の鋳造工程の概略説明図、 第4図は本発明のフローチャート図、 第5図は本発明の方法と従来法との鋳造温度一作業時間
グラフ 第6図は鋳造温度−鋳塊の表面欠陥数グラフ1・・・シ
ャフト炉、2・・・第1の樋、3・・・保持炉、4・・
・第2の樋、5・・・タンディシュ又はし−ドル、6・
・・第2の湯溜ジ、7・・・第1の湯溜シ、8・・・直
流モータ、9・・・ビンチロール、10・・・ノ々−ナ
ー、11・・・ロータリノ々ルプ、12・・・直流モー
タ代理人 弁理士 竹 内 守 第2図
Fig. 1 is a schematic explanatory diagram of a conventional copper casting process, Fig. 2 is a cross-sectional view of copper poured into a mold, and Fig. 3 is a schematic explanatory diagram of a copper casting process showing an example of the present invention. Figure 4 is a flowchart of the present invention. Figure 5 is a graph of casting temperature versus working time between the method of the present invention and the conventional method. Figure 6 is a graph of casting temperature versus number of surface defects in ingots. 1...Shaft furnace, 2 ...First gutter, 3...Holding furnace, 4...
・Second gutter, 5... tundish or shidol, 6.
...Second water reservoir, 7...First water reservoir, 8...DC motor, 9...Vinch roll, 10...Nono-ner, 11...Rotary nozzle , 12... DC motor agent Patent attorney Mamoru Takeuchi Figure 2

Claims (1)

【特許請求の範囲】[Claims] シャフト炉で溶解された銅を保持炉に導き、タンディシ
ュ又はし−ドルから鋳型に注湯するに当シ、保持炉の前
後にある樋のいづれか一方又は両方に温度検出計をとシ
つけてΔH待時間おける温度上昇Δt℃を読みとり、保
持炉の先方にある樋の直前の湯溜シで女葦に見会ってあ
らかじめ計算された量の銅線をモータで駆動されている
ピンチロールの速度変化に対応して供給するようにし、
これによシ鋳造機に供給される溶鋼の温度を制御するよ
うにしたことを特徴とする鋳造温度の調節方法。
When the copper melted in the shaft furnace is led to the holding furnace and poured into the mold from the tundish or caster, a temperature detector is installed in one or both of the gutter located before and after the holding furnace to keep the temperature at ΔH. The temperature rise Δt°C during the waiting time is read, and the speed change of the pinch roll, which is driven by a motor, moves a pre-calculated amount of copper wire at the hot water tank just before the gutter at the end of the holding furnace. and supply accordingly.
A method for regulating a casting temperature, characterized in that the temperature of molten steel supplied to a casting machine is thereby controlled.
JP12019083A 1983-07-04 1983-07-04 CHUZOONDONOCHOSETSUHOHO Expired - Lifetime JPH0245544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12019083A JPH0245544B2 (en) 1983-07-04 1983-07-04 CHUZOONDONOCHOSETSUHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12019083A JPH0245544B2 (en) 1983-07-04 1983-07-04 CHUZOONDONOCHOSETSUHOHO

Publications (2)

Publication Number Publication Date
JPS6012270A true JPS6012270A (en) 1985-01-22
JPH0245544B2 JPH0245544B2 (en) 1990-10-09

Family

ID=14780136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12019083A Expired - Lifetime JPH0245544B2 (en) 1983-07-04 1983-07-04 CHUZOONDONOCHOSETSUHOHO

Country Status (1)

Country Link
JP (1) JPH0245544B2 (en)

Also Published As

Publication number Publication date
JPH0245544B2 (en) 1990-10-09

Similar Documents

Publication Publication Date Title
JP5037612B2 (en) Mold flux and continuous casting method using the same
JPS61219457A (en) Automatic starting method and device for continuous casting device
JP2003501265A (en) Operating method and system for high-speed continuous casting equipment
JPS6012270A (en) Adjusting method of casting temperature
JPH08510962A (en) Method and device for manufacturing semi-finished products
JPH07132349A (en) Twin roll type continuous casting method
JPS5942161A (en) Production of amorphous alloy light-gauge strip
JPS59218259A (en) Controlling method of casting temperature
JPS60191640A (en) Casting method of casting ingot in heated mold type continuous casting method
JPS6250217B2 (en)
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
RU2253541C2 (en) Aggregate for making thin strips
JPS5829550A (en) Continuous casting method
JPS6153143B2 (en)
JPH02207949A (en) Device for controlling temperature of molten metal in tundish
JPS60191641A (en) Horizontal and continuous casting method of metal
JPS60115351A (en) Continuous casting method
JPS6087956A (en) Continuous casting method of metal
JPS6015054A (en) Device for controlling temperature of molten metal at ladle outlet
JPH079093A (en) Method for adjusting temperature of cooling water for casting
JPH02258152A (en) Continuous casting method
JPH06170511A (en) Continuous casting method and tundish
JPS62227551A (en) Method and apparatus for continuous casting
JPS6313784B2 (en)
JPH02151348A (en) Continuous casting apparatus