JPS60122328A - Investigating method of rotating speed-dependent oscillation of rotary machine - Google Patents

Investigating method of rotating speed-dependent oscillation of rotary machine

Info

Publication number
JPS60122328A
JPS60122328A JP58230028A JP23002883A JPS60122328A JP S60122328 A JPS60122328 A JP S60122328A JP 58230028 A JP58230028 A JP 58230028A JP 23002883 A JP23002883 A JP 23002883A JP S60122328 A JPS60122328 A JP S60122328A
Authority
JP
Japan
Prior art keywords
rotating speed
rotary machine
excitation
vibration
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58230028A
Other languages
Japanese (ja)
Other versions
JPH0365858B2 (en
Inventor
Hiroshi Kamiyoshi
博 神吉
Hiroshi Matsubayashi
松林 博
Takanobu Oda
隆信 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58230028A priority Critical patent/JPS60122328A/en
Publication of JPS60122328A publication Critical patent/JPS60122328A/en
Publication of JPH0365858B2 publication Critical patent/JPH0365858B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a more accurate test result by varying the rotating speed of a rotary machine stepwise while holding the load condition of the rotary machine constant, and calculating the attenuation ratio or permissible oscillation coefficient of the rotary machine from oscillation response data of every rotating speed. CONSTITUTION:While the load condition of the rotary machine is held constant, the rotating speed is increased to 1,000, 2,000, 3,000, and 4,000r.p.m. to perform stationary operation for a specific time at every rotating speed, and the oscillation frequency is varied gradually within a target range to measure oscillation response. Data on it are collected and analyzed to calculate the attenuation ratio xsi or permissible oscillation coefficient. Consequently, when the load condition is constant and the rotating speed is varied, the natural oscillation frequency, attenuation ratio, stability tolerance, and dangerous speed of the rotary machine are calculated and a more accurate test result is obtained.

Description

【発明の詳細な説明】 本発明は蒸気タービン、ガスタービン、発電機、コンブ
V、す、ブロア、ポンプ等の回転機械の回転数依存振動
調査方法に関する・蒸気タービンやコンプレッサなどの
高速回転機械で、高速域で発生する不安定振動は、高速
回転機械を 成する上で解決すべき重要な問題である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for investigating rotational frequency dependent vibrations of rotating machines such as steam turbines, gas turbines, generators, combustion engines, blowers, pumps, etc. The unstable vibration that occurs in the high-speed range is an important problem that must be solved when building high-speed rotating machinery.

この様な振動の典型的な例としてすべり軸受を使った回
転機械に発生するオイルウィッゾと呼ばれる振動がある
。第1図に示すように回転数を上げていくと突然大きな
振動が発生することが多く、運転に支障があるので対策
を施して完治しなければならない。ところが、この種の
振動は発生直前までわからないので、振動を発生したも
ののみ、このような現象が問題となり、データが蓄積さ
れるが、ぎりぎりの状態で運転されている機械でも、全
く情報が得られていないので、突然このような振動が発
生し、運転者を困らせることがあり得る。
A typical example of such vibration is a vibration called oilwidth that occurs in rotating machines using sliding bearings. As shown in Figure 1, when the rotation speed is increased, large vibrations often occur suddenly, which impairs operation, so countermeasures must be taken to completely resolve the problem. However, since this type of vibration is not known until just before it occurs, this phenomenon becomes a problem only for the machine that generates the vibration, and data is accumulated, but even when the machine is operating at the very limit, no information can be obtained. If not, such vibrations may suddenly occur and cause trouble for the driver.

従って、実際に運転されている機械でどの程度安定性に
余裕があるかを知ることができれば、このようなトラブ
ルを防止でき、かつその余裕の少ない場合にはあらかじ
め対策を打っておくことが出来るわけである。しかしな
がらこれまでこのような情報を安全に得ることのできる
調査方法がなかった。計算による予測は可能ではあるが
実測値が少ないため、計算精度の実証が不十分であり、
この精度向上のためにも回転機械の運転中にデータを得
る方法が必要でおる。
Therefore, if you can know how much stability margin there is in the machine that is actually being operated, you can prevent such troubles, and if there is little margin, you can take countermeasures in advance. That's why. However, until now there has been no research method that can safely obtain such information. Although it is possible to predict by calculation, there are few actual measurements, so the verification of calculation accuracy is insufficient.
In order to improve this accuracy, a method of obtaining data while the rotating machine is in operation is required.

一方、ジャイロモーメントが良く効く回転機械では危険
速度が回転数の関数となる。このような場合も実験によ
り計数精度を確認するニーズがある。
On the other hand, in rotating machines where the gyro moment is effective, the critical speed is a function of the rotation speed. In such cases, there is also a need to confirm counting accuracy through experiments.

本発明は回転機械の回転数依存低周波振動の特性を解明
でき、運転中のこの種の振動に対する安定余裕および危
険速度をめることができる回転機械の回転数依存振動調
査方法を提供することを目的とする。
The present invention provides a method for investigating rotational speed-dependent vibrations of rotating machines, which can elucidate the characteristics of rotational speed-dependent low-frequency vibrations of rotating machines, and can provide a stability margin and critical speed for this type of vibration during operation. With the goal.

以上本発明について図面を参照して説明するが、はじめ
に本発明方法を実施するのに使用する装置について説明
する。
The present invention will be described above with reference to the drawings, but first the apparatus used to carry out the method of the present invention will be described.

この装置は、概略回転機械の軸受部分より回転軸の中心
に向って加振力を与えることが可能な加振器と、との加
振器の出力を制御する制御器と、上記回転軸に設けられ
上記加振器がらの振動応答信号を検出する振動検出器と
、上記回転機械の負荷条件を一定として回転数を段階的
に制御可能な回転数制御器と、上記制御器からの基準信
号および加振力信号、上記振動検出器から振動応答信号
を入力し、加振力に応答する成分を取出す機能と、これ
らのデータから減衰比又は許容励振係数をめる振動解析
装置とがらなっている。
This device generally includes a vibrator capable of applying an excitation force toward the center of a rotating shaft from a bearing portion of a rotating machine, a controller that controls the output of the vibrator, and a controller that controls the output of the vibrator, and a vibration detector for detecting a vibration response signal from the vibrator; a rotation speed controller capable of controlling the rotation speed of the rotating machine stepwise with a constant load condition; and a reference signal from the controller. A vibration analysis device that inputs the excitation force signal and the vibration response signal from the vibration detector and extracts the component that responds to the excitation force, and calculates the damping ratio or allowable excitation coefficient from these data. .

第2図はこの具体例を示すもので、図中1は図示しない
負荷に直結された試験の対象となる供試ロータ、2は供
試ロータを支える軸受、3は例えば慣性型加振器4を軸
受2に固定する治具、4は反力支持装置不用の直付型の
加振器で任意の振動数の加振力を軸受台に与える慣性型
加振器である。5は加振器4によっていくらの大きさや
振動数の加振力が軸受2に加えられたかを測定する加振
力検出器、6は供試ロータ1の振動を測定するための振
動検出器であり、非接触変位計、接触式振動速度計、加
速度計など種々の形式のものが使われる。7は試験に必
要な振動の波を発生させる発振器で、通常は任意の振動
数の正弦波を発生するものである。8は加振エネルギを
供給するエネルギ源で、加振器4が油圧式の場合は油圧
源、加振器が電磁式の場合は、電力増幅器である。9は
加振器から発生する力の大きさなどを制御する装置、1
θは加振している振動数を正確に与えるための信号で正
弦波、矩形波、ノ9ルス波などである。11は加振力を
示す信号で加振力検出器5の出力そのまま又は成度調整
された信号である。12は供試ロータ1や軸受2等の振
動を示す振動検出器6からの信号である。13は基準信
号10、加振力信号11、振動応答信号12を入力し、
加振力に対応する成分を取出す機能と、これらのデータ
から伝達関数、モーダル特性(固有振動数、減衰比など
)解析する振動解析装置例えば機械インピーダンス測定
装置である。
Figure 2 shows a specific example of this, where 1 is a test rotor that is directly connected to a load (not shown) and is the subject of the test, 2 is a bearing that supports the test rotor, and 3 is an inertial vibrator 4, for example. The jig 4 for fixing the bearing 2 to the bearing 2 is a direct-mounted type vibrator that does not require a reaction force support device, and is an inertial type vibrator that applies an excitation force of an arbitrary frequency to the bearing stand. 5 is an excitation force detector for measuring the magnitude and frequency of excitation force applied to the bearing 2 by the vibrator 4; 6 is a vibration detector for measuring the vibration of the test rotor 1; Various types are used, including non-contact displacement meters, contact vibration velocity meters, and accelerometers. Reference numeral 7 denotes an oscillator that generates vibration waves necessary for testing, and usually generates a sine wave of an arbitrary frequency. Reference numeral 8 denotes an energy source for supplying excitation energy, which is a hydraulic source when the exciter 4 is hydraulic, and a power amplifier when the exciter is electromagnetic. 9 is a device that controls the magnitude of the force generated from the vibrator, 1
θ is a signal for accurately giving the frequency of vibration, such as a sine wave, a rectangular wave, or a Norse wave. Reference numeral 11 denotes a signal indicating the excitation force, which is either the output of the excitation force detector 5 as it is or a signal whose amplitude has been adjusted. 12 is a signal from the vibration detector 6 indicating vibrations of the test rotor 1, bearing 2, etc. 13 inputs the reference signal 10, the excitation force signal 11, and the vibration response signal 12;
This is a vibration analysis device, such as a mechanical impedance measuring device, which has the function of extracting components corresponding to the excitation force, and analyzes transfer functions and modal characteristics (natural frequency, damping ratio, etc.) from these data.

なお、上記加振器4は回転機械の軸受部分より回転軸の
中心に向って加振力を与えることが可能であって、正弦
波、パルス波で加振できるものであればなんでもよい。
The vibrator 4 may be of any type as long as it is capable of applying an excitation force toward the center of the rotating shaft from the bearing portion of the rotating machine and can be vibrated with a sine wave or a pulse wave.

上記加振器4の加振条件は、■着目周波数範囲で掃引加
振する■共振周波数で加振後中断する■・臂ルス的に間
欠加振する■ランダム加振す5− るのいずれでもよい。
The excitation conditions of the above vibrator 4 are: ■ Sweep excitation in the frequency range of interest; ■ Interruption after excitation at the resonant frequency; ■ Intermittent excitation in an arm-pulse manner; ■ Random excitation. good.

次に上記機械インピーダンス測定装置について、第3図
を参照して説明する。第3図において、21は被検体(
第1図の供試ロータ1に相当)、22は加振器(第2図
の4に相当)、23は電力増幅器、24は発振器、25
は被検体21に付設され加振力Fを計測するカゲージ、
26は被検体1の各部の応答加速度を計測する複数の加
速度計、27は多チヤンネルアンプ、28は力信号と加
速度信号から加振周波数成分を抽出する多チヤンネルベ
クトルフィルタ、29はアナログ/デジタル変換器、3
oは加振周波数を計数するためのパルスカウンタ、31
は集録されたデータから機械インピーダンスを計算する
デジタル計算機で、データ集録プログラム32、較正計
算プログラム33、インピーダンス計算プログラム34
から構成されている。
Next, the mechanical impedance measuring device described above will be explained with reference to FIG. In FIG. 3, 21 is the subject (
22 is an exciter (corresponds to 4 in FIG. 2), 23 is a power amplifier, 24 is an oscillator, 25
is a cage attached to the object 21 to measure the excitation force F;
26 is a plurality of accelerometers that measure the response acceleration of each part of the subject 1, 27 is a multi-channel amplifier, 28 is a multi-channel vector filter that extracts excitation frequency components from the force signal and acceleration signal, and 29 is an analog/digital conversion vessel, 3
o is a pulse counter for counting the excitation frequency, 31
is a digital computer that calculates mechanical impedance from acquired data, and includes a data acquisition program 32, a calibration calculation program 33, and an impedance calculation program 34.
It consists of

35は計算された機械インピーダンスをグラフ出力する
プロッタ、36はプリンタ、37はデータ保存用の外部
記憶装置、38はレンジ信号−ら− である。
35 is a plotter that outputs the calculated mechanical impedance as a graph, 36 is a printer, 37 is an external storage device for data storage, and 38 is a range signal.

このような装置において、発振器34からの正弦波電圧
は電力増幅器33を経て加振器22に入り、加振器22
は被検体21を励振するが、発振器24は時間とともに
周波数が変化する自動掃引正弦波発振器であるので、任
意の周波数範囲で掃引加振される。
In such a device, a sinusoidal voltage from an oscillator 34 enters the exciter 22 via a power amplifier 33;
excites the subject 21, but since the oscillator 24 is an automatic sweeping sine wave oscillator whose frequency changes over time, it is swept and excited in an arbitrary frequency range.

カゲージ25は加振器22により被検体21に加えられ
る力を計測し、加速度計26は被検体21の各部の応答
加速度を計測し、カダーノ25と加速度計26はそれぞ
れ計測された力と加速度に比例した電圧を発生し、この
電圧信号は多チヤンネルアンプ7により増幅される。
The card gauge 25 measures the force applied to the subject 21 by the vibrator 22, the accelerometer 26 measures the response acceleration of each part of the subject 21, and the cardano 25 and accelerometer 26 measure the measured force and acceleration, respectively. A proportional voltage is generated, and this voltage signal is amplified by a multichannel amplifier 7.

カゲージ25と加速度計26により計測された信号には
、被検体21の非線型特性や雑音のため、加振周波数以
外の成分も含まれているので、本装置では、多チャンネ
ルイクトルフィルタ28により計測した電圧信号から加
振周波数成分を抽出するようになされている。
The signals measured by the vehicle gauge 25 and the accelerometer 26 contain components other than the excitation frequency due to the nonlinear characteristics of the object 21 and noise, so in this device, the multi-channel vector filter 28 is used. The excitation frequency component is extracted from the measured voltage signal.

多チャンネル々クトルフィルタ28から出力された力信
号と加速度信号の加振周波数成分はアナログ/デジタル
変換器29によりデジタル化され、デジタル計算機3ノ
に入力する。
The excitation frequency components of the force signal and acceleration signal output from the multi-channel vector filter 28 are digitized by an analog/digital converter 29 and input to the digital computer 3.

その際、発振器4の出力はノfルスカウンタ30に入力
して加振周波数が計測され、この加振周波数の計測値が
デジタル計算機31に入力する。
At this time, the output of the oscillator 4 is input to a nof counter 30 to measure the excitation frequency, and the measured value of this excitation frequency is input to the digital computer 31.

デジタル計算機3ノでは、まず、データ集録プログラム
32によりアナログ/デジタル変換器29からの力およ
び加速度デジタル信号とパルスカウンタ30からの加振
周波数の計測値を集録し、次に、較正計算プログラム3
3により電圧値を物理量に変換し、さらに、インピーダ
ンス計算プログラム34により加速度Aを積分して速度
Vに変換し、力Fを速度Vで割算することにより機械イ
ンピーダンス2をめるようになされている。すなわち、 A (積分) jω Z=F/V (割@) ただし、A:加速度 (複素数) V:速度 (複素数) ω:加振周波数 (実数) z:機械インピーダンス (複素数) なる計算を行なって機械インピーダンスをめるものであ
る。
In the digital computer 3, first, the data acquisition program 32 acquires the force and acceleration digital signals from the analog/digital converter 29 and the measurement value of the excitation frequency from the pulse counter 30, and then the calibration calculation program 3
3 converts the voltage value into a physical quantity, and further, the impedance calculation program 34 integrates the acceleration A and converts it into velocity V, and divides the force F by the velocity V to calculate the mechanical impedance 2. There is. In other words, A (integral) jω Z=F/V (divide@) However, A: Acceleration (complex number) V: Velocity (complex number) ω: Excitation frequency (real number) z: Mechanical impedance (complex number) It measures mechanical impedance.

次に本発明方法について説明するが、本発明方法は、回
転機械の軸受部分より回転軸の中心に向って加振力を与
えることが可能なものにおいて、上記回転機械の負荷条
件を一定として回転数を段階的に変化させ、この各回転
数毎の振動応答データから上記回転機械の減衰比又は許
容励振係数をめることに特徴を有する。
Next, the method of the present invention will be explained. The method of the present invention is applicable to a rotating machine that is capable of applying an excitation force from the bearing part of the rotating machine toward the center of the rotating shaft. The present invention is characterized in that the damping ratio or permissible excitation coefficient of the rotary machine is determined from the vibration response data for each rotation speed by changing the number in steps.

以下、本発明方法の実施例について説明する。Examples of the method of the present invention will be described below.

回転機械を第4図のように定常回転数(負荷条件−5定
)にて運転し、低速回転状態を所定時間保持し、この状
態で低速回転時加振テストを行う。この加振テストは振
動数を着目範囲で除徐に変化させ、振動応答を計測する
。このデータを集録するとともにデータを解析し、後述
するように減衰比ξ又は許容励振係数Kを算出す9− る。
The rotating machine is operated at a steady rotation speed (load condition -5 constant) as shown in FIG. 4, and the low speed rotation state is maintained for a predetermined period of time, and in this state, a low speed rotation vibration test is performed. In this vibration test, the vibration frequency is gradually changed in the range of interest and the vibration response is measured. This data is collected and analyzed to calculate the damping ratio ξ or the allowable excitation coefficient K as described later.

次に回転機械の負荷条件を一定とし、回転数を1000
.2000,3000.400Or、p、mに上昇させ
て、各回転数毎に所定時間定常運転をしておき、振動数
を着目範囲で徐々に変化させ、撮動応答を計測する。こ
のデータを集録するとともに、このデータを解析し、後
述するように減衰比ξ又は許容励振係数Kを算出する。
Next, the load condition of the rotating machine is kept constant, and the rotation speed is set to 1000.
.. 2000, 3000, 400 Or, p, m, steady operation is performed for a predetermined time at each rotation speed, the frequency is gradually changed in the range of interest, and the imaging response is measured. This data is acquired and analyzed to calculate the damping ratio ξ or the allowable excitation coefficient K as described later.

上記減衰比のめ方として例えば周波数応答曲線(デート
線図やナイキスト線図)からめる方法(ハーフパワー法
)又は後述する自由減衰法がある。前者の方法は振動応
答曲線の共振部分に着目し、そのモード成分の最大振幅
を示す固有振動数ωと最大振幅の約70%を示す回転数
ω1.ω2を読取る。これを第5図のデート線図、第6
図のナイキスト線図からめる。そして次の式から減衰比
ξをめる ω2+ω1 この減衰比ξと許容励振係数にの間には次のような関係
がある。
As a method for determining the above-mentioned damping ratio, there are, for example, a method (half power method) from a frequency response curve (Date diagram or Nyquist diagram) or a free damping method which will be described later. The former method focuses on the resonance part of the vibration response curve, and calculates the natural frequency ω that shows the maximum amplitude of the mode component and the rotational speed ω1 that shows about 70% of the maximum amplitude. Read ω2. This is the date diagram in Figure 5,
Combine it with the Nyquist diagram in the figure. Then, calculate the damping ratio ξ from the following equation: ω2+ω1 The following relationship exists between the damping ratio ξ and the allowable excitation coefficient.

K=2mωξ ここでm:モーダルマスで6る。K=2mωξ Here m: 6 in modal mass.

以上の式から各負荷状態毎に許容励振係数Kをめ、これ
を作図したのが第7図である。第7図から例えば次のよ
うなことがいえる。
The allowable excitation coefficient K was determined for each load state from the above formula and is plotted in FIG. 7. For example, the following can be said from FIG.

減衰比 ξ〈〇−完全に不安定 0〈ξ(0,01−不安定に近い 0.01(ξ(0,02−安定であるが余裕が小さい0
.02<:ξ(0,04−普通程度安定002 ξ) 
0.04−十分安定 このようにして外部より制御可能な加振力により必要最
小限のレベルの振動を起こさせ、これによって実機の安
定性に関する貴重なデータが得られる。なお、上記加振
力は実運転に何ら害を与えるものではない。
Damping ratio ξ〈〇 - Completely unstable 0〈ξ(0,01 - Almost unstable 0.01(ξ(0,02 - Stable but with small margin 0
.. 02<:ξ(0,04-normal stability 002 ξ)
0.04 - Sufficiently Stable In this way, externally controllable excitation forces cause vibrations at the minimum necessary level, thereby providing valuable data on the stability of the actual machine. Note that the above excitation force does not cause any harm to actual operation.

以上述べた実施例によれば回転数依存低周波振動の特性
を解明でき、運転中のこの種の振動に対する安定余裕お
よび安定限界回転数を知ることができる@ 次に本発明方法の第2の実施例について説明するが、第
4図と同様に回転機械を負荷条件を一定とし回転数を任
意に運転段階的に変化させ、各回転数状態で加振テスト
を行う。このテストを行う装置としては第2図と同一の
ものを使うが振動調査方法は異なる。すなわち、加振振
動数を着目する点に合わせて第9図のように一定加振振
動数で共振させた状態にしておき、加振力を急に切る。
According to the embodiments described above, it is possible to elucidate the characteristics of rotation speed-dependent low-frequency vibrations, and to know the stability margin and stability limit rotation speed for this type of vibration during operation. An example will be described. Similar to FIG. 4, the load condition of a rotating machine is kept constant, the rotational speed is arbitrarily changed in stages, and an excitation test is conducted under each rotational speed state. The same equipment as shown in Figure 2 is used for this test, but the vibration investigation method is different. That is, the excitation frequency is set to resonate at a constant excitation frequency as shown in FIG. 9 in accordance with the point of interest, and the excitation force is abruptly cut off.

この状態の振動応答データを記録しておき、このデータ
に着目振動数のフィルターをかけて自由減衰を測定し、
第10図の応答波形より振幅AI l A2 ) A3
 r・・・Anを順次読取り、次式から対数減衰率δを
める。
Record the vibration response data in this state, apply a filter to the frequency of interest to this data, measure the free damping,
From the response waveform in Figure 10, the amplitude AI l A2 ) A3
Read r...An sequentially and calculate the logarithmic attenuation rate δ from the following equation.

δ=lnム I 又はδ=工tn4ユ n Aま ただしtnは自然対数、nは山数である。δ=lnmu I or δ = engineering tn4 u n Ama However, tn is a natural logarithm, and n is the number of peaks.

このようにしてめた対数減衰率δと山数の関係を示した
のが第10図である。第11図は減衰比と回転数の関係
を示したものであり、第12図は実測加振応答データつ
1り振動数と加振応答振幅の関係を示したものであり、
減衰比ξと対数減衰率δとの間に次の式が成立する。
FIG. 10 shows the relationship between the logarithmic attenuation rate δ determined in this manner and the number of peaks. Fig. 11 shows the relationship between the damping ratio and the rotation speed, and Fig. 12 shows the relationship between the vibration frequency and the excitation response amplitude according to the actually measured excitation response data.
The following equation holds between the damping ratio ξ and the logarithmic damping rate δ.

δ ξ=− 2π この実施例の場合も前述の実施例と同様な効果が得られ
る。
δ ξ=−2π This embodiment also provides the same effect as the previous embodiment.

なお、上記実施例では加振器として慣性型のものを使用
したが、これに限らず回転機械の軸受部分より回転軸の
中心方向に向って加振力を与えることが可能で、正弦波
、・平ルス波等で加振できるものであれば、反力型(供
試体に直接加振器を取付け、との加振器の反対側圧力計
を介して反力支持装置に支持したもの)、第13図(a
) s <b)に示す非接触電磁加振器のいずれでもよ
い。この電磁加振器は電磁石40により回転軸41を直
接加振できるようになっている。従って、供試体例えば
ロータにより有効に加振力を伝えることができ、との加
振力を電磁石40の付根に取付けられた加振力検出器4
2によりて測定できる。また第13図(b)に示すよう
に213− 個の電磁石40を直角に取付け、両型磁石に働く加振力
の位相角を±90°に調整することにより、この種の振
動が出やすい前まわり方向(回転方向と同じ方向にふれ
まわさせる)とかその逆方向に加振することができ、よ
り的確な試験結果を得ることができる。
Although an inertial type vibrator was used as the vibrator in the above embodiment, it is not limited to this, and it is possible to apply a vibrating force from the bearing part of the rotating machine toward the center of the rotating shaft, such as a sine wave,・If it can be excited by a flat pulse wave, etc., it is a reaction force type (a vibrator is attached directly to the specimen, and it is supported by a reaction force support device via a pressure gauge on the opposite side of the vibrator). , Figure 13 (a
) Any of the non-contact electromagnetic exciters shown in s < b) may be used. This electromagnetic vibrator is capable of directly vibrating a rotating shaft 41 using an electromagnet 40. Therefore, the excitation force can be effectively transmitted to the test object, for example, the rotor, and the excitation force can be transmitted to the excitation force detector 4 attached to the base of the electromagnet 40.
It can be measured by 2. In addition, as shown in Figure 13(b), by installing 213 electromagnets 40 at right angles and adjusting the phase angle of the excitation force acting on both types of magnets to ±90°, this type of vibration is likely to occur. Vibrations can be made in the forward rotation direction (swinging in the same direction as the rotation direction) or in the opposite direction, making it possible to obtain more accurate test results.

以上述べた本発明によれば負荷条件を一定とし、回転数
を変えた場合回転機械の固有振動数、減衰比、安定性余
裕および危険速度をめることができる回転機械の回転数
依存振動調査方法を提供できる。
According to the present invention described above, when the load condition is constant and the rotation speed is changed, the natural frequency, damping ratio, stability margin, and critical speed of the rotating machine can be determined.Rotation speed dependent vibration investigation of the rotating machine I can provide a method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回転機械のオイルウィップ振動における回転数
と振幅の関係を示す特性図、第2図(a) # (b)
は本発明方法を実施するだめの装置の一例を示す部分正
面図および概略構成図、第3図は第1図の振動解析装置
の一例を示す概略構成図、第4図は本発明方法の一実施
例を説明するためのフローチャート、第5図および第6
図は同実施例の方法を説明するためのが−ド線図お1A
− よびナイキスト線図、第7図は同実施例を説明するため
の負荷と減衰比、許容励振係数の関係を示す図、第8図
は本発明方法の池の実施例を説明するだめのフローチャ
ート、第9図〜第12図はそれぞれ同実施例の方法を説
明するための時間と振動波形の関係を示す図、山数と対
数減衰率との関係を示す図、負荷と減衰比との関係を示
す図および実測加振応答データを示す図、第13図(a
)s (b)は非接触電磁加振器の一例を示す断面図お
よび概略構成図である。 1・・・供試ロータ、2・・・軸受、4・・・加振器、
5・・・加振力検出器、6・・・振動検出器、7・・・
発振a9・・・制御装置、13・・・振動解析装置。 出願人復代理人 弁理士 鈴 江 武 彦15− く1−
Figure 1 is a characteristic diagram showing the relationship between rotation speed and amplitude in oil whip vibration of rotating machinery, Figure 2 (a) # (b)
3 is a partial front view and a schematic configuration diagram showing an example of the apparatus for carrying out the method of the present invention, FIG. 3 is a schematic configuration diagram showing an example of the vibration analysis apparatus of FIG. 1, and FIG. Flowcharts for explaining the embodiment, FIGS. 5 and 6
The figure is a diagram 1A for explaining the method of the same example.
- and Nyquist diagram; FIG. 7 is a diagram showing the relationship between load, damping ratio, and allowable excitation coefficient for explaining the same embodiment; FIG. 8 is a flowchart for explaining the embodiment of the method of the present invention. , FIGS. 9 to 12 are diagrams showing the relationship between time and vibration waveform, diagrams showing the relationship between the number of peaks and logarithmic damping ratio, and diagrams showing the relationship between load and damping ratio, respectively, for explaining the method of the same embodiment. Figure 13 (a
)s (b) is a sectional view and a schematic configuration diagram showing an example of a non-contact electromagnetic vibrator. 1... Test rotor, 2... Bearing, 4... Vibrator,
5... Excitation force detector, 6... Vibration detector, 7...
Oscillation a9...control device, 13...vibration analysis device. Applicant Sub-Agent Patent Attorney Takehiko Suzue 15-ku1-

Claims (1)

【特許請求の範囲】[Claims] 回転機械の軸受部分より回転軸の中心に向って加振力を
与えることが可能なものにおいて、上記回転機械の負荷
条件を一定として回転数を段階的に変化させ、この各回
転数毎の振動応答データから上記回転機械の減衰比又は
許容励振係数をめる回転機械の回転数依存振動調査方法
In a rotating machine that is capable of applying an excitation force toward the center of the rotating shaft from the bearing part, the load condition of the rotating machine is kept constant and the number of revolutions is changed in stages, and the vibration at each number of revolutions is A rotation speed-dependent vibration investigation method of a rotating machine in which the damping ratio or allowable excitation coefficient of the rotating machine is determined from response data.
JP58230028A 1983-12-06 1983-12-06 Investigating method of rotating speed-dependent oscillation of rotary machine Granted JPS60122328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58230028A JPS60122328A (en) 1983-12-06 1983-12-06 Investigating method of rotating speed-dependent oscillation of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230028A JPS60122328A (en) 1983-12-06 1983-12-06 Investigating method of rotating speed-dependent oscillation of rotary machine

Publications (2)

Publication Number Publication Date
JPS60122328A true JPS60122328A (en) 1985-06-29
JPH0365858B2 JPH0365858B2 (en) 1991-10-15

Family

ID=16901434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230028A Granted JPS60122328A (en) 1983-12-06 1983-12-06 Investigating method of rotating speed-dependent oscillation of rotary machine

Country Status (1)

Country Link
JP (1) JPS60122328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147521A (en) * 1984-08-13 1986-03-08 Toyota Motor Corp Apparatus for measuring attenuation ratio
JP2004163398A (en) * 2002-06-04 2004-06-10 Kla Tencor Technologies Corp System and method for monitoring and compensating non-translational motion in resonance measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147521A (en) * 1984-08-13 1986-03-08 Toyota Motor Corp Apparatus for measuring attenuation ratio
JPH0357416B2 (en) * 1984-08-13 1991-09-02 Toyota Motor Co Ltd
JP2004163398A (en) * 2002-06-04 2004-06-10 Kla Tencor Technologies Corp System and method for monitoring and compensating non-translational motion in resonance measurement device

Also Published As

Publication number Publication date
JPH0365858B2 (en) 1991-10-15

Similar Documents

Publication Publication Date Title
US10823632B2 (en) Method for measuring the unbalance of flexible rotors by means of position-measuring sensors
US6606569B1 (en) Methods and systems for dynamic force measurement
JPS60214228A (en) Vibration analyzing method
WO2003060453A1 (en) Method and system for balancing a rotating machinery operating at resonance
JPH10508354A (en) Method and apparatus for automatically balancing a rotating machine
JP4591176B2 (en) Engine inertia moment measurement device
US4078434A (en) Method and apparatus for determining the parameters of natural vibration of a system
JPH11118591A (en) Vibration analysis method and device of enclosure of disk device
US20030230142A1 (en) Apparatus and method for testing rotational balance of crankshaft
JPS60122328A (en) Investigating method of rotating speed-dependent oscillation of rotary machine
JP4098429B2 (en) Balance test machine and balance test method
JPH0365857B2 (en)
Tao A Practical One Shot Method to Balance Single-Plane Rotor
JP2004117088A (en) Method for measuring bearing characteristic and bearing
Badri et al. A method to calibrate the measured responses by MEMS accelerometers
KR100324942B1 (en) Balancing machine for rotor and method therefor
JP2023517360A (en) Methods for adjusting piezoelectric torque sensors
US20030101812A1 (en) Fixed-bandwidth correlation window method and system for a self-balancing rotatable apparatus
Ahmed et al. The possibility of using a smartphone in a single plane rotor balancing
JPH11311582A (en) Excitation power measuring device of vibrator
RU2782741C1 (en) Apparatus and method for monitoring torsional oscillations of a rotating shaft (variants)
Smith Changing the effective mass to control resonance problems
Ibraheem et al. Experimental Investigation for Single Plan Balancing Impellers between Bearings Using Frequency Response Function
SU619863A1 (en) Device for determining sensitivity of piezoaccelerometer to deformation of object being measured
RU1775630C (en) Method and device for dynamically graduating dynamometer