JPH0357416B2 - - Google Patents

Info

Publication number
JPH0357416B2
JPH0357416B2 JP59168999A JP16899984A JPH0357416B2 JP H0357416 B2 JPH0357416 B2 JP H0357416B2 JP 59168999 A JP59168999 A JP 59168999A JP 16899984 A JP16899984 A JP 16899984A JP H0357416 B2 JPH0357416 B2 JP H0357416B2
Authority
JP
Japan
Prior art keywords
frequency
data
damping ratio
transfer characteristic
real part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59168999A
Other languages
Japanese (ja)
Other versions
JPS6147521A (en
Inventor
Risaburo Nagashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16899984A priority Critical patent/JPS6147521A/en
Publication of JPS6147521A publication Critical patent/JPS6147521A/en
Publication of JPH0357416B2 publication Critical patent/JPH0357416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は減衰比計測装置に係り、特にコヒーレ
ンス特性が悪い振動系、例えば丸棒等の周期デー
タからも精度良く減衰比を計測することができる
減衰比計測装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a damping ratio measuring device, and particularly to a damping ratio measuring device that can accurately measure the damping ratio even from periodic data of a vibration system with poor coherence characteristics, such as a round bar. This article relates to a damping ratio measuring device that can be used.

〔従来の技術〕[Conventional technology]

従来では、振動系を加振して加速度等の時間変
化に関する周期データを検出し、出力Aと入力F
との比で表わされる伝達特性A/F、すなわちモビ
リテイ(レベル)の周波数freqに対する変化を求
め、第2図に示すように着目した周波数(例え
ば、共振点)fiのモビリテイより3dB低いモビリ
テイの周波数fu、fL求め、以下の式に基づいて減
衰比ζを求めていた。
Conventionally, a vibration system is vibrated to detect periodic data regarding time changes such as acceleration, and output A and input F are detected.
The transfer characteristic A/F expressed as the ratio of , that is, the change in mobility (level) with respect to frequency freq is determined, and as shown in Figure 2, the mobility frequency is 3 dB lower than the mobility of the focused frequency (e.g., resonance point) fi. fu, f L was determined, and the damping ratio ζ was determined based on the following formula.

ζ=2C/Cc=fu−fL/fi ……(1) 〔発明が解決しようとする問題点〕 しかしながら、かかる従来の減衰比計測方法で
は、着目した周波数においてコヒーレンス特性が
悪いと着目した周波数fiにおけるモビリテイを精
度よく求められないため、3dB低い周波数fu、fL
の値も精度が悪く、結果として減衰比の精度が悪
くなる、という問題があつた。すなわち、第2図
には、共振点において破線で表すコヒーレンス関
数が0に近い値になり、コヒーレンス特性が悪い
状態を示すが、周波数fiにおいてコヒーレンス特
性が非常に悪くなつているため、周波数fiにおけ
るモビリテイの精度が悪く、従つて減衰比の精度
も悪くなつている。
ζ=2C/Cc=fu−f L /fi...(1) [Problem to be solved by the invention] However, in such conventional attenuation ratio measurement methods, it is found that the coherence characteristic is poor at the focused frequency. Since the mobility at fi cannot be determined accurately, the frequency fu, f L is 3 dB lower.
There was also a problem in that the accuracy of the value of was also poor, resulting in poor accuracy of the damping ratio. In other words, in Fig. 2, the coherence function represented by the broken line at the resonance point has a value close to 0, indicating a state in which the coherence characteristics are poor, but the coherence characteristics become extremely poor at the frequency fi, so The accuracy of the mobility is poor, and therefore the accuracy of the damping ratio is also poor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するために、モビリ
テイに関係しない周波数に着目して成されたもの
で、時間変化に関する振動系の周期データを検出
する検出手段と、前記周期データをフーリエ変換
して伝達特性を演算する変換手段と、前記伝達特
性からその実数部データを取出す手段と、前記伝
達特性の実数部データのうち着目した周波数を中
心周波数とする所定周波数帯域のデータのみ通過
させる帯域通過手段と、前記帯域通過手段を通過
したデータの最大値を示す周波数および最小値を
示す周波数を求め前記最大値を示す周波数および
前記最小値を示す周波数に基いて減衰比を演算す
る演算手段と、を含む減衰比計測装置を提案す
る。
In order to solve the above problems, the present invention was made by focusing on frequencies unrelated to mobility, and includes a detection means for detecting periodic data of a vibration system related to time changes, and a Fourier transform of the periodic data. A conversion means for calculating a transfer characteristic, a means for extracting real part data from the transfer characteristic, and a band pass means for passing only data in a predetermined frequency band whose center frequency is a focused frequency among the real part data of the transfer characteristic. and a calculating means for calculating a frequency representing a maximum value and a frequency representing a minimum value of the data passed through the band pass means and calculating an attenuation ratio based on the frequency representing the maximum value and the frequency representing the minimum value. We propose a damping ratio measuring device that includes

〔作用〕[Effect]

次に本発明の原理を説明する。第3図に示すよ
うに、1自由度のばね質量ダツシユポツト系の運
動方程式は次のように表わされる。
Next, the principle of the present invention will be explained. As shown in FIG. 3, the equation of motion of the spring-mass-dashpot system with one degree of freedom is expressed as follows.

Mx¨+cx〓+Kx=f ……(2) ただし、Mは質量、cは減衰係数、Kはばね定
数、fは外力、xは変位、x〓、x¨は各々xの時間
tに関する1階微分、2階微分である。
Mx¨+cx〓+Kx=f...(2) where M is the mass, c is the damping coefficient, K is the spring constant, f is the external force, x is the displacement, x〓 and x¨ are each the first order of x with respect to time t. Differential, second-order differential.

ここで、x=Xejwt(ただし、j=√−1、wは
周波数である)として(2)式を変形すると、次の(3)
式になる。
Here, if we transform equation (2) by setting x=Xe jwt (where j=√−1 and w is the frequency), we get the following (3)
It becomes a ceremony.

(−Mw2+K)×ejwt+jcw×ejwt=F ……(3) 次にA=x¨としてA/Fを求めると次のようにな
る。
(−Mw 2 +K)×e jwt +jcw×e jwt =F (3) Next, when A=x¨, A/F is calculated as follows.

A/F=−w2×ejwt/(−Mw2+K)×ejwt+jcw×
ejwt =Mw4−Kw2+jcw3/(−Mw2+K)2+C2w2……(4
) 上記(4)式は、周波数wを変数とする関数で表わ
されており、またAは出力に対応し、Fは入力に
対応するから、上記(4)式は出力のフーリエ変換形
と入力のフーリエ変換形との比で示される伝達関
数Gを表わすことになる。
A/F= -w2 ×e jwt /(- Mw2 +K)×e jwt +jcw×
e jwt =Mw 4 −Kw 2 +jcw 3 /(−Mw 2 +K) 2 +C 2 w 2 ……(4
) The above equation (4) is expressed as a function with the frequency w as a variable, and since A corresponds to the output and F corresponds to the input, the above equation (4) is the Fourier transform form of the output. It represents a transfer function G expressed as a ratio to the Fourier transform form of the input.

上記(4)式の実数部をpとし、この実数部pを周
波数wに関して微分すると次のようになる。
Let p be the real part of the above equation (4), and differentiate this real part p with respect to the frequency w, as follows.

dp/dw=−2w{M(KM−C24−2MK2w2+K3}/{(
−Mw2+K)2+C2w22 …(5) ここで、dp/dw=0となるwを求める。振動
系は振動していることよりw≠0であるから、
dp/dw=0となるためには、次の式を満足する
必要がある。
dp/dw=−2w{M(KM−C 2 ) 4 −2MK 2 w 2 +K 3 }/{(
−Mw 2 +K) 2 +C 2 w 2 } 2 (5) Here, find w such that dp/dw=0. Since the vibration system is vibrating, w≠0,
In order for dp/dw to be 0, the following equation must be satisfied.

M(KM−C2)w4−2M2w2+K3=0 ……(6) w2=rとしたときの2次方程式の根r1,r2を求
めると、 r1=MK2+√MK3C2/M(KM−C2) ……(7) r2=MK2−√MK3C2/M(KM−C2) ……(8) 上記(7)、(8)式より、 r1−r2/r1+r2=C/√MK ……(9) ところで、臨界減衰係数Ccは、 Cc=2√ ……(10) と表わされるから、上記(9)式は次のようになり、
減衰比を表わすことになる。
M(KM−C 2 )w 4 −2M 2 w 2 +K 3 = 0 ...(6) When w 2 = r, finding the roots r 1 and r 2 of the quadratic equation, r 1 = MK 2 +√MK 3 C 2 /M (KM−C 2 ) …(7) r 2 =MK 2 −√MK 3 C 2 /M (KM−C 2 ) …(8) Above (7), (8) ) From the formula, r 1 − r 2 / r 1 + r 2 = C/√MK ...(9) By the way, the critical damping coefficient Cc is expressed as Cc=2√ ...(10), so the above (9) The formula becomes:
It represents the damping ratio.

r1−r2/r1+r2=C/√MK=2C/Cc ……(11) 上記(11)式において、r1=w1 2、r2=w2 2であ
るから、減衰比ζは次のように表わされる。
r 1 − r 2 / r 1 + r 2 = C/√MK = 2C/Cc...(11) In the above equation (11), r 1 = w 1 2 and r 2 = w 2 2 , so the damping ratio ζ is expressed as follows.

ζ=w1 2−w2 2/w1 2+w2 2 ……(12) 上記では、1自由度の振動系について考えた
が、一般の多自由度の振動系の振動特性は、1自
由度振動系の振動特性の重ね合せと考えられ、逆
に多自由度振動系の特定周波数帯域の伝達特性に
着目すれば、1自由度の振動系と考えられるか
ら、多自由度振動系についも上記の原理を適用す
れば減衰比を求めることができる。
ζ=w 1 2 −w 2 2 /w 1 2 +w 2 2 ...(12) In the above, we considered a vibration system with one degree of freedom, but the vibration characteristics of a general vibration system with multiple degrees of freedom are It can be considered as a superposition of the vibration characteristics of a multi-degree-of-freedom vibration system, and conversely, if we focus on the transmission characteristics of a specific frequency band of a multi-degree-of-freedom vibration system, it can be considered as a vibration system with one degree of freedom. The damping ratio can be determined by applying the above principle.

本発明は上記原理に基づいて減衰比を計測する
ものであり、検出手段によつて時間変化に関する
振動系の周期データを検出し、変換手段によつて
周期データをフーリエ変換して上記(4)式に示す伝
達特性を演算し、帯域通過手段によつて伝達特性
の実数部データのうち着目した周波数を中心周波
数とする所定周波数帯域のデータのみ通過させ、
演算手段によつて帯域通過手段を通過したデータ
の最大値を示す周波数および最小値を示す周波数
を求め上記(12)式により減衰比を演算するよう
にしたものである。ここで、伝達特性を演算する
ために、入力として加速度のデータを用いる必要
があるが、検出手段が変位の周期データを検出す
る場合には2階微分することにより、また検出手
段が速度の周期データを検出する場合には1階微
分することにより、加速度のデータに変換するこ
とができる。
The present invention measures the damping ratio based on the above-mentioned principle, in which periodic data of a vibration system related to time changes is detected by a detection means, and the periodic data is Fourier-transformed by a conversion means, as described in (4) above. Calculate the transfer characteristic shown in the formula, and pass only data in a predetermined frequency band whose center frequency is the focused frequency among the real part data of the transfer characteristic by a band pass means,
The frequency indicating the maximum value and the frequency indicating the minimum value of the data passed through the band pass means are determined by the calculating means, and the attenuation ratio is calculated using the above equation (12). Here, in order to calculate the transfer characteristic, it is necessary to use acceleration data as input, but when the detection means detects periodic data of displacement, by second-order differentiation, When detecting data, it can be converted into acceleration data by first-order differentiation.

〔実施例〕〔Example〕

以下第1図を参照して本発明の一実施例を詳細
に説明する。本実施例は、自動車の車体等の減衰
比を計測するのに好適である。
An embodiment of the present invention will be described in detail below with reference to FIG. This embodiment is suitable for measuring the damping ratio of an automobile body, etc.

加速度計2は、振動系に取付けられて、時間変
化に関する周期データとして加速度を検出する。
この加速度計2から出力される信号は第1図のA
に示すように時間軸のデータになる。この加速度
計2は、マイクロプロセツサで構成されたフーリ
エ変換器4に接続されている。このフーリエ変換
器4は、従来と同様の構成で、入力された時間軸
のデータを高速フーリエ変換し、周波数軸のデー
タとして伝達特性を演算するものであり、この伝
達特性の実数部データは第1図Bに示すようにな
る。フーリエ変換器4の実数部データ出力端に
は、中心周波数fiを可変に設定できるバンドバス
フイルタ6が接続されている。バンドバスフイル
タの中心周波数を着目した周波数に設定すると、
バンドバスフイルタ6から、第1図C示すよう
に、着目した周波数を中心周波数とする所定帯域
信号が出力される。バンドバスフイルタ6の出力
端には、中央処理装置(CPU)8が接続されて
おり、CPU8はバンドバスフイルタ6から入力
された周波数軸のデータを周波数に関して微分
し、その微分係数が0となる周波数w1,w2を求
め、上記(12)式に基づいて減衰比ζを演算す
る。そして、CPU8で演算された減衰比ζは、
デイスプレイ装置12またはプリンタ10に表示
される。
The accelerometer 2 is attached to the vibration system and detects acceleration as periodic data regarding time changes.
The signal output from this accelerometer 2 is A in Fig. 1.
The data is on a time axis as shown in . This accelerometer 2 is connected to a Fourier transformer 4 made up of a microprocessor. This Fourier transformer 4 has the same configuration as the conventional one, and performs a fast Fourier transform on input time axis data and calculates a transfer characteristic as frequency axis data, and the real part data of this transfer characteristic is The result is as shown in Figure 1B. A bandpass filter 6 whose center frequency fi can be variably set is connected to the real part data output terminal of the Fourier transformer 4. By setting the center frequency of the bandpass filter to the frequency of interest,
As shown in FIG. 1C, the bandpass filter 6 outputs a predetermined band signal whose center frequency is the frequency of interest. A central processing unit (CPU) 8 is connected to the output end of the bandpass filter 6, and the CPU 8 differentiates the frequency axis data input from the bandpass filter 6 with respect to frequency, and the differential coefficient becomes 0. The frequencies w 1 and w 2 are determined, and the damping ratio ζ is calculated based on the above equation (12). Then, the damping ratio ζ calculated by CPU8 is
Displayed on display device 12 or printer 10.

すなわち、減衰比を求めるための周波数(着目
した周波数)をバンドバスフイルタに設定し、時
間軸のデータを入力すれば減衰比が表示される。
That is, by setting the frequency for determining the damping ratio (the frequency of interest) in the bandpass filter and inputting time axis data, the damping ratio will be displayed.

なお、上記では加速度計を用いた例について説
明したが、変位計や速度計を用いることもでき、
この場合にはフーリエ変換器で加速度のデータに
変換されて処理される。また、フーリエ変換器、
バンドバスフイルタおよびCPUを1つのコンピ
ユータで構成するようにしてもよい。
Although the above example uses an accelerometer, it is also possible to use a displacement meter or speedometer.
In this case, the data is converted into acceleration data using a Fourier transformer and processed. Also, a Fourier transformer,
The band bus filter and the CPU may be configured in one computer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、モビリテイに関
係しない周波数を用いて減衰比を計測しているた
め、コヒーレンス特性が悪い振動系において精度
よくかつ簡単に減衰比を求めることができる、と
いう効果が得られる。
As explained above, since the present invention measures the damping ratio using a frequency that is not related to mobility, the present invention has the advantage that the damping ratio can be easily and accurately determined in a vibration system with poor coherence characteristics. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク図、
第2図は従来の減衰比を求める方法を説明するた
めの説明図、第3図はばね質量ダツシユポツト系
を示す線図である。 2…加速度計、4…フーリエ変換器、6…バン
ドバスフイルタ、8…CPU。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is an explanatory diagram for explaining a conventional method of determining a damping ratio, and FIG. 3 is a diagram showing a spring-mass dumppot system. 2...accelerometer, 4...Fourier transformer, 6...bandpass filter, 8...CPU.

Claims (1)

【特許請求の範囲】 1 時間変化に関する振動系の周期データを検出
する検出手段と、前記周期データをフーリエ変換
して伝達特性を演算する変換手段と、前記伝達特
性から、その実数部データを取出す手段と、前記
実数部データのうち着目した周波数を中心とする
所定周波数帯域のデータのみを通過させる帯域通
過手段と、該帯域通過手段を通過したデータの最
大値を示す周波数および最小値を示す周波数に基
いて減衰比を演算する演算手段と、 を含む減衰比計測装置。
[Scope of Claims] 1: a detection means for detecting periodic data of a vibration system related to time changes; a conversion means for Fourier transforming the periodic data to calculate a transfer characteristic; and extracting real part data from the transfer characteristic. means, a band pass means for passing only data in a predetermined frequency band centered on a frequency of interest among the real part data, and a frequency indicating a maximum value and a frequency indicating a minimum value of the data passed through the band pass means. A damping ratio measuring device comprising: a calculation means for calculating a damping ratio based on;
JP16899984A 1984-08-13 1984-08-13 Apparatus for measuring attenuation ratio Granted JPS6147521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16899984A JPS6147521A (en) 1984-08-13 1984-08-13 Apparatus for measuring attenuation ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16899984A JPS6147521A (en) 1984-08-13 1984-08-13 Apparatus for measuring attenuation ratio

Publications (2)

Publication Number Publication Date
JPS6147521A JPS6147521A (en) 1986-03-08
JPH0357416B2 true JPH0357416B2 (en) 1991-09-02

Family

ID=15878471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16899984A Granted JPS6147521A (en) 1984-08-13 1984-08-13 Apparatus for measuring attenuation ratio

Country Status (1)

Country Link
JP (1) JPS6147521A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663218A (en) * 1979-10-29 1981-05-29 Mitsubishi Heavy Ind Ltd Transient response analysis method for natural vibration mode
JPS60122328A (en) * 1983-12-06 1985-06-29 Mitsubishi Heavy Ind Ltd Investigating method of rotating speed-dependent oscillation of rotary machine
JPS60122327A (en) * 1983-12-06 1985-06-29 Mitsubishi Heavy Ind Ltd Investigating method of load-dependent oscillation of rotary machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663218A (en) * 1979-10-29 1981-05-29 Mitsubishi Heavy Ind Ltd Transient response analysis method for natural vibration mode
JPS60122328A (en) * 1983-12-06 1985-06-29 Mitsubishi Heavy Ind Ltd Investigating method of rotating speed-dependent oscillation of rotary machine
JPS60122327A (en) * 1983-12-06 1985-06-29 Mitsubishi Heavy Ind Ltd Investigating method of load-dependent oscillation of rotary machine

Also Published As

Publication number Publication date
JPS6147521A (en) 1986-03-08

Similar Documents

Publication Publication Date Title
Smith Vibration measurement and analysis
US4601206A (en) Accelerometer system
JP3313028B2 (en) Measurement method of bending stiffness and tension of cable under tension
JPH0443985A (en) Data processor of receiver
D'Emilia et al. Amplitude–phase calibration of tri-axial accelerometers in the low-frequency range by a LDV
CN112964242B (en) System and method for testing mechanical coupling error of quartz tuning fork gyroscope gauge head
JPH0357416B2 (en)
US7523005B2 (en) Clamp-on coriolis mass flow meter using in-situ calibration
US5396801A (en) Vibrometer
RU168085U1 (en) DEVICE FOR MEASURING ANGULAR ACCELERATION
JPH076956B2 (en) Method for measuring dynamic response characteristics of AE sensor
JPH10185661A (en) Device and method for estimating parameter of one-freedom dynamic system
Troncossi et al. Response measurement by laser Doppler vibrometry in vibration qualification tests with non-Gaussian random excitation
CN116592987B (en) In-plane omnidirectional wave field vector detection method and device
JP2727167B2 (en) Doppler frequency measuring instrument
SU792148A1 (en) Pendulum-type compensation accelerometer
RU2154810C2 (en) Gimballess attitude control system
Montalvão Introduction to Sensors and Signal Processing
JP2001050739A (en) Shape measuring method and apparatus by 3-point method
Montalvão Sensors & Signal Processing
SU1030733A1 (en) Angular acceleration meter
JP3969558B2 (en) Method and apparatus for measuring wave propagation velocity of overhead wire
SU1249362A1 (en) Device for dynamic testing of elements under strain
JPH02302687A (en) Seismometer and apparatus using the same
Chang et al. Fiber Bragg Grating Accelerometer Based on Asymmetric Shaped Flexible Hinge Structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees