JPS60122036A - Reactor packed with catalyst - Google Patents

Reactor packed with catalyst

Info

Publication number
JPS60122036A
JPS60122036A JP22836883A JP22836883A JPS60122036A JP S60122036 A JPS60122036 A JP S60122036A JP 22836883 A JP22836883 A JP 22836883A JP 22836883 A JP22836883 A JP 22836883A JP S60122036 A JPS60122036 A JP S60122036A
Authority
JP
Japan
Prior art keywords
catalyst
coolant
heat exchange
reactor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22836883A
Other languages
Japanese (ja)
Other versions
JPH0363424B2 (en
Inventor
Hiroshi Makihara
牧原 洋
Kazuto Kobayashi
一登 小林
Kensuke Niwa
丹羽 健祐
Kazuhiro Morita
守田 和裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22836883A priority Critical patent/JPS60122036A/en
Publication of JPS60122036A publication Critical patent/JPS60122036A/en
Publication of JPH0363424B2 publication Critical patent/JPH0363424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes

Abstract

PURPOSE:To increase flow velocity of gas and heat transfer coefft. and to prevent thermal deterioration of catalyst and increase of impurities by arranging a catalyst layers and layers of heat exchanging pipe nest adjacent and alternately to each other. CONSTITUTION:Coolant is introduced from a coolant feeding port 12, and sent to a coolant distributing header 9 through a coolant falling pipe 7 and plural coolant conduit 8, where the coolant is distributed to a heat exchanger pipe 2 until it reaches an upper coolant collecting header 10 while performing heat recovery. Further, the coolant is transported to a vapor-liquid drum 11 of the coolant through a coolant conduit 8 and taken out of an exhaust port 13. The catalyst is charged from a catalyst charging port 16 at the top of a pressure resistant external shell 1 to feed to spaces between layers of heat exchanging pipe nest adjacent to each other. Packing of the catalyst is thus possible. Reactant gas is introduced from a reactant gas feeding port 14 to a space 5 in the pressure resistant external shell 1, and the gas after completion of reaction is discharged from an exhaust port 15 of the reactant gas.

Description

【発明の詳細な説明】 本発明は、触媒の存在下に流体を反応させる反応器の改
良に関する。さらに詳しくは、発熱または吸熱を伴なう
触媒反応を、所定の圧力、温度のもとて所望の反応率ま
で達成させる際に、発生する反応熱の回収または必要と
する反応熱の供給を行ないながら触媒層の温度分布をプ
ロセス上要求される最適分布に近づけることが可能な反
応器構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in reactors for reacting fluids in the presence of catalysts. More specifically, when a catalytic reaction involving exotherm or endotherm is achieved to a desired reaction rate under a predetermined pressure and temperature, the reaction heat generated is recovered or the necessary reaction heat is supplied. However, the present invention relates to an improvement in the reactor structure that can bring the temperature distribution of the catalyst layer closer to the optimum distribution required for the process.

従来の反応器の構造上の欠点を、合成ガスからのメタノ
ール合成を例にとって以下に説明する。
The structural shortcomings of conventional reactors will be explained below using methanol synthesis from synthesis gas as an example.

一酸化炭素と水素を主成分とする合成ガスを原料とする
メタノール合成は、銅系の触媒を用いて、圧力50〜3
00 kg/ m’ G 、温度200〜600℃の範
囲を使用することが、一般的であるが、この際に発生す
る反応熱を反応過程に沿って除去しなければ、反応ガス
と触媒層の温度の過大上昇を招き、ひいては触媒の劣化
と不純物生成の増大、及び化学反応平衡面からは所望生
成物濃度の低下を招くこととなる。このだめ、従来から
反応熱を除去して反応温度の過大」三外を防止するだめ
の種々の方法と構造が工夫されている。
Methanol synthesis using synthesis gas whose main components are carbon monoxide and hydrogen uses a copper-based catalyst to produce methanol at a pressure of 50 to 3
00 kg/m'G and a temperature in the range of 200 to 600°C are generally used, but if the reaction heat generated at this time is not removed during the reaction process, the reaction gas and catalyst layer will be separated. This causes an excessive rise in temperature, which in turn leads to deterioration of the catalyst, an increase in the production of impurities, and a decrease in the concentration of the desired product from the viewpoint of chemical reaction equilibrium. To prevent this, various methods and structures have been devised to remove the reaction heat and prevent the reaction temperature from becoming too high.

近年、進んだ反応熱の処理方法として、反応熱を間接的
に熱媒体に移動させることにより、触媒層中の反応ガス
と触媒を冷却する方法がある。この際の熱媒体として(
・才、適当な沸点と蒸発潜熱、比熱等を有する蒸発性の
水や廂fρ性it+体等が用いられ、反応熱はこれら液
体の顕熱又ケ」、蒸発潜熱の形で回収される。実用上級
も望−まし7いのは、水を熱媒体として用い、反応温度
よりも低い温度を沸1埼温度とし、これに対応した飽和
圧力のもとて水を沸が貧させて高圧蒸気を得、反応熱を
蒸発情熱の形で回収するものであり、この目的に用いら
れる反応器として従来の代表的な三個につき、その欠点
を以下に述べる。
In recent years, as a method for processing the reaction heat, there is a method of cooling the reaction gas and catalyst in the catalyst layer by indirectly transferring the reaction heat to a heat medium. As a heat medium in this case (
・Evaporable water, evaporative water, etc. having an appropriate boiling point, latent heat of vaporization, specific heat, etc. are used, and the heat of reaction is recovered in the form of sensible heat or latent heat of vaporization of these liquids. What is desirable for practical use is to use water as a heat medium, set the temperature lower than the reaction temperature to the boiling point, and boil the water at a corresponding saturation pressure to generate high-pressure steam. The reaction heat is recovered in the form of vaporized heat, and the disadvantages of three typical conventional reactors used for this purpose are described below.

第1の例は特公昭58−39572号公報に提案される
もので、第1図に反応器のtrは中央部の水平断面を示
す。この方法は、第1図における反応器内の触媒層19
の上下にリング状の冷媒用ヘッダを配置し、触媒層を垂
直方向に貫jjTi Lでいる熱交換管2の両端を前記
のヘッダに連結することKよって管板を排除すると共に
、円筒状外殻1の外周部と中心部に触媒不在の空間5と
6を設け、当該両空間のどちらか一方から他方に反応ガ
スを半径方向に流すことによって、ガスの流通断面積を
増大し圧損の低減を計っているものである。このとき、
触媒層19は、内周側ど外周側をそれぞれ、多孔板触媒
受6と網4を重ね合せて構成した隔壁間に収納されてい
る。まだ、耐圧外殻1と多−数の熱交換管から成る管!
11′の熱膨張差を吸収するため、耐圧外殻と管群とは
力学的に絶縁した構成となっており、触媒粒子および偏
流防止用の不活性粒子を含めて粒子層てん層は、下部を
耐圧外殻の底部で支、えられ、該充填層内に熱交換管が
埋没する構成となっている。
The first example is proposed in Japanese Patent Publication No. 58-39572, and in FIG. 1, tr of the reactor shows a horizontal cross section of the central part. This method consists of a catalyst layer 19 in the reactor in FIG.
By arranging ring-shaped refrigerant headers above and below the catalyst layer, and connecting both ends of the heat exchange tube 2 that vertically penetrates the catalyst layer to the header, the tube plate is eliminated and the cylindrical outer By providing catalyst-free spaces 5 and 6 at the outer periphery and center of the shell 1 and allowing the reaction gas to flow radially from one of these spaces to the other, the gas flow cross-sectional area is increased and pressure drop is reduced. This is what is being measured. At this time,
The catalyst layer 19 is housed between partition walls formed by overlapping the porous plate catalyst receiver 6 and the mesh 4 on the inner and outer circumferential sides, respectively. It is still a tube consisting of a pressure-resistant outer shell 1 and a large number of heat exchange tubes!
In order to absorb the difference in thermal expansion of is supported at the bottom of the pressure-resistant outer shell, and the heat exchange tubes are buried within the packed bed.

次に、第2の例&i特開昭58−112044号公報に
提案さiするもので、第1の例とほぼ同様の構成で、多
数の熱交換管が1本1本、触媒層を垂直方向に貫通する
と共に、反応ガスは熱交換管内冷媒流れと直交する半径
方向に流れている。第1例と第2例の異なる主な点の1
つは、熱交換管群をそのヘッダも含めて円筒状耐圧外殻
1の上蓋部に固定し/こ点であり、触媒等粒子層1位層
は、第1例と同様に下部を血]圧外殻の底部で支持しで
ある。
Next, the second example is proposed in Japanese Patent Application Laid-Open No. 58-112044, which has almost the same configuration as the first example, and has a large number of heat exchange tubes, one by one, vertically extending the catalyst layer. The reactant gas is flowing in a radial direction perpendicular to the refrigerant flow in the heat exchange tubes. 1. Main difference between the first and second examples
First, the heat exchange tube group including its header is fixed to the upper lid part of the cylindrical pressure-resistant outer shell 1, and the first layer of the catalyst particles etc. layer has the lower part covered with blood as in the first example. It is supported at the bottom of the pressure shell.

第5の例は、特開昭58−112046号公報に提案さ
れろもので、この反応器のほぼ中央部の水平断1r11
を第21¥1に示す。第2図において、象75の例が、
前の二側と根本的に異なる点は、(C′1川外用1の中
の反応ガス供給空間5に反応ガスを導入し、触媒+<5
H19内を弦方向に流して反応ガス集合空間乙に反応後
のガスを集め、べらに外部に取り出すようになっている
点であり、つ〜まり反応ガスな弦方向に流すことが特徴
的である。このほか、第2図において、2は熱交]〔す
管、4は網、7は冷奴下降管である。
The fifth example is the one proposed in Japanese Patent Application Laid-Open No. 58-112046, and is a horizontal section 1r11 at approximately the center of the reactor.
is shown in No. 21 ¥1. In FIG. 2, the example of elephant 75 is
The fundamental difference from the previous two sides is that (C'1) the reaction gas is introduced into the reaction gas supply space 5 in the external use 1, and the catalyst + < 5
It is designed to flow in the string direction inside H19, collect the gas after reaction in the reaction gas gathering space B, and take it out to the outside with a latch.In other words, it is characteristic that the reaction gas flows in the string direction. be. In addition, in Fig. 2, 2 is a heat exchanger pipe, 4 is a mesh, and 7 is a cold-boiled downcomer pipe.

以上述べた従来の6例に共通することは、次の二点であ
る。すなわち、■各々の熱交換管が触媒層を貫通してい
ること、換言すれば熱交換管群の管外間隙に触媒粒子が
充填されていること、及び■耐圧外殻の底部に直接支持
されている触媒等粒子層の中に熱交換管群が埋没する構
成となっていること、つまり融媒等粒子層の下部が外殻
に支持されていることである。
The following two points are common to the six conventional examples described above. That is, (1) each heat exchange tube penetrates through the catalyst layer, in other words, the space outside the heat exchange tubes is filled with catalyst particles, and (2) each heat exchange tube is directly supported at the bottom of the pressure-resistant shell. The heat exchange tube group is configured to be buried in the catalyst particle layer, that is, the lower part of the melting medium particle layer is supported by the outer shell.

将に、上記二点が従来の反応器の欠点をもたらすもので
あることを以下に説明する。
In the following, it will be explained that the above two points cause shortcomings of the conventional reactor.

第1の欠点は、触媒を熱劣化させることなく反応器を可
能な限り高レベルのスチームの形で回収するに十分な伝
熱面積を実現しようとすると、熱交換管群内の管の間隙
が小さくなるため、当間隙への触媒の充填や当間隙から
の触媒の排出が困難となることである。管配列ピッチを
増大させるか管径を小さくして間隙を増大させること、
又は触媒粒子径を小さくすることによって、触媒の充填
、排出は容易化するが、触媒単位容積当りの伝熱面積が
不足するので、特に反応速度の大きい触媒層入口近傍で
反応温度が高くなり、触媒劣化の促進や不純物生成の増
大などの不具合が生じる。反応温度を単に低下させるた
めならば、沸とう水などの冷媒温度を低下させても良い
が、高レベルのスチームは回収できなくなる。そこで必
要伝熱面積を確保するため、管径や配列ピッチの縮小、
伝熱ファインの設置4を行なうと、址すj−f削)媒充
ノ低、排出が困、111fとなるので、触媒粒子径の減
少が必要となるわけである。ところが、触ハ1−は、メ
タノール合成用を例にとると、触媒有効係数、圧損、製
造性等考pi?、 j7て、通常相当径が5〜6 mm
φの球状、円筒状捷たけ円柱状の粒子が用いられており
、これより径を小さくすると、次のJ:う々間yqが生
じる1、−1なわち、1jα造コストの増大、圧損の増
加による循還ガス圧縮動力費の憎犬が起るほか、触ハI
−jθが閉動し易くなること、特に触礎層下部でケオ汁
密が生じ易く、その結果と12で反応ガスの偏f/if
が起る可能性も旨い。
The first drawback is that the tube gaps in the heat exchanger tube bank become too large in order to achieve sufficient heat transfer area to recover the highest possible level of steam from the reactor without thermally degrading the catalyst. Because of the small size, it becomes difficult to fill the gap with the catalyst and discharge the catalyst from the gap. Increasing the gap by increasing the tube arrangement pitch or decreasing the tube diameter;
Alternatively, by reducing the catalyst particle size, filling and discharging the catalyst becomes easier, but since the heat transfer area per unit volume of the catalyst is insufficient, the reaction temperature becomes high especially near the inlet of the catalyst bed where the reaction rate is high. Problems such as accelerated catalyst deterioration and increased impurity generation occur. To simply lower the reaction temperature, the temperature of a refrigerant such as boiling water may be lowered, but high levels of steam cannot be recovered. Therefore, in order to secure the necessary heat transfer area, the pipe diameter and arrangement pitch were reduced.
If heat transfer fines are installed in step 4, the medium filling rate will be low and the discharge will be difficult, resulting in 111f, so it is necessary to reduce the catalyst particle diameter. However, in case 1-, taking methanol synthesis as an example, the catalyst effectiveness coefficient, pressure drop, manufacturability, etc. should be considered. , j7, the equivalent diameter is usually 5 to 6 mm
Spherical, cylindrical and columnar particles of φ are used, and if the diameter is made smaller than this, the following J:Uma yq will occur 1, -1, that is, 1jα Increase in manufacturing cost and increase in pressure loss In addition to the increase in circulating gas compression power costs,
-jθ tends to close, especially in the lower part of the contact layer, and Keo fluid density tends to occur, and as a result, the reaction gas bias f/if in 12
There is also a good chance that this will happen.

さらに、メタノール合成の場合を例にとり、第6図、第
4図を用いて、従来の反応器では、単位触媒容積当りの
必要伝熱面積が確保し難いことを説明する。
Furthermore, using the case of methanol synthesis as an example, it will be explained using FIGS. 6 and 4 that it is difficult to secure the required heat transfer area per unit catalyst volume in a conventional reactor.

第3図は、従来型反応器に反応ガスを1011kg/暦
、240℃で導入し、熱交換管内に250℃の沸騰水(
40kg/Jのスチーム回収)を流して、触媒層を冷却
しながら、H2およびCO。
Figure 3 shows that 1011 kg/calendar of reaction gas is introduced into a conventional reactor at 240°C, and boiling water (250°C) is introduced into the heat exchange tube.
H2 and CO while cooling the catalyst layer by flowing 40 kg/J of steam recovery).

CO,を主成分とする合成ガスからのメタノール合成を
行なう場合の、従来型反応器における触媒層内の平均反
応ガス温度とメタノール濃度の分布の関係を示す。図中
のOA は総括伝熱係数U (Kca7/m2h・℃)
と、触媒単位容積当りの伝熱面fat A (m27 
m” of Cata、 )との積であり、第3図では
UA=80. [] 00 (、KcaA/h’t>m
3ofOata、 )とした。第3図から判る通り、触
媒層内反応ガス最高温間(これは、は値触媒の温度と考
えて良い)は略280Cであり、この値は通常の銅系触
媒の耐熱温度260〜620℃、平均的には280℃以
下を満たしている。逆に言えば、触媒層最高温度を28
0℃以下とするには、少なくともUA は80.000
 (:KaaA/h−℃am” of 0ata、 )
必要であることになる。
2 shows the relationship between the average reaction gas temperature in the catalyst layer and the methanol concentration distribution in a conventional reactor when methanol is synthesized from synthesis gas containing CO as a main component. OA in the figure is the overall heat transfer coefficient U (Kca7/m2h・℃)
and the heat transfer surface per unit volume of catalyst fat A (m27
m” of Cata, ), and in Fig. 3, UA=80. [] 00 (, KcaA/h't>m
3ofOata, ). As can be seen from Figure 3, the maximum temperature of the reaction gas in the catalyst layer (this can be considered the temperature of the catalyst) is approximately 280C, which is the temperature limit of normal copper catalysts, which is 260 to 620C. , the average temperature is 280°C or less. Conversely, if the maximum temperature of the catalyst layer is 28
To keep the temperature below 0℃, UA must be at least 80.000
(:KaaA/h-℃am”of 0ata, )
It turns out to be necessary.

第4図は、メタノール合成において、従来型反応器の触
媒層に貫通した熱交換器に沸11f;水を流し、該沸S
水の流れる方向と直角方向に反応ガスを流して、触媒層
内で発生する反応熱を沸j慮水に伝える場合の、ガス?
F塔速度に対する総括伝熱係数の関係の一例を示す。一
般に、前述の従来装置にみられるような反応ガス流を半
径方向又は弦方向に流す方式では、ガスの;rA 31
=4面積が犬となるため空塔速度が下がり圧損が低下す
る点Cよメリットであるが、反面第4図に示すように伝
熱係数も小さくなるデメリットがある。
Figure 4 shows that in methanol synthesis, boiling water is passed through a heat exchanger penetrating the catalyst layer of a conventional reactor, and the boiling S
What kind of gas is used when the reaction heat generated in the catalyst layer is transferred to the boiling water by flowing the reaction gas in a direction perpendicular to the direction in which the water flows?
An example of the relationship between the overall heat transfer coefficient and the F column speed is shown. In general, in the method of flowing the reactant gas in the radial direction or the chord direction, as seen in the conventional apparatus described above, the ;rA 31 of the gas
=4 Since the area becomes a dog, the superficial velocity decreases and the pressure drop decreases, which is an advantage (C), but on the other hand, as shown in FIG. 4, there is a disadvantage that the heat transfer coefficient becomes small.

総括伝熱係数をやや大きめに800 (KcaA、/m
2h・℃)とすると、必要伝熱面積A−so、ooo−
=: 00 100 (m”/ m3of (!ata ’)となる
。ところで、熱交換管を外径254咽φと1.、肖′配
列を55mmの1E方ピツチとすると1((μmdする
51〒壁の最小間隙は29.6 mmとなる。この間I
FAは17a−径が6n闇φの触媒粒子がブリッジを組
まずに充填できる最小の距離(粒子径の数倍150 g
mとはf−〔同値であるから、6澗φの触媒粒子を充填
、排出可能としても、触媒単位容積当りの伝熱面、債は
約50m3であるから、上述のような、40kg/−ス
チームを回収し、触媒層温度を触媒熱劣化と不ゆt)物
増大の防止に必要な280℃以下とするだめに不可欠な
伝熱面積100 m2tJ:確保でへないことになる。
The overall heat transfer coefficient was slightly increased to 800 (KcaA,/m
2h・℃), the required heat transfer area A-so,ooo-
=: 00 100 (m”/m3of (!ata').By the way, if the heat exchange tube has an outer diameter of 254 mm and a 1E pitch of 55 mm, then 1 ((μmd = 51〒 The minimum gap between the walls is 29.6 mm.
FA is the minimum distance that catalyst particles with a diameter of 17a - 6n and φ can be packed without forming a bridge (150 g, several times the particle diameter)
m is equivalent to f- [Since it is possible to fill and discharge catalyst particles with a diameter of 6 mm, the heat transfer surface per unit volume of the catalyst is approximately 50 m3, so as mentioned above, 40 kg/- In order to recover the steam and keep the catalyst layer temperature below 280°C, which is necessary to prevent catalyst thermal deterioration and increase in waste materials, it will be impossible to secure the heat transfer area of 100 m2tJ, which is essential.

それ故、従来の装置では、低圧のスチーム回収で済ます
か、触奸層温度は上げ/こ贅外で多少の触媒劣化と不純
物生成の増大をπ「容する゛か、これらが許されないな
らば伝熱面積を確保する代りにl」・粒子径にからむ前
述の多少の不具合を許容するか、もしく 9:を反応器
の上流(fllfにやや低活性の触媒を充jfj Lだ
小型の前置反応器を醍「だに設けて温度ピーク対策を行
うかなどの処置が必要と思われる。
Therefore, in conventional equipment, it is either possible to get away with low-pressure steam recovery, raise the catalyst layer temperature/accept some degree of catalyst deterioration and increase in impurity formation outside the layer, or if these are not allowed. Instead of securing the heat transfer area, either accept the above-mentioned problems related to the particle size, or fill the upstream of the reactor (fllf with a catalyst with a slightly lower activity). It seems necessary to take countermeasures against temperature peaks by installing additional reactors.

第2の欠点は、触媒等粒子層が下部を耐圧外殻の底部で
支持され、該粒子J?iの内部に熱交換管群が埋没して
いるために、同管群の熱膨張時に管群と粒子層の力学的
接動の違いが生じ、外殻底部近くで(は圧迫による粒子
の破壊、圧密、また管群には過大な応力が作用して座屈
等の問題が生じる可能性がある。この現象は、耐圧外殻
と、熱交換管の拐質を向−利料とすれば伸び差が少なく
なシ問題解決の方向に向かうが、不純物生成に対してよ
り不活性な材料を熱交換管に使用し、耐圧外殻の祠質−
とは熱膨張係数を異にする場合には、上述の問題はより
顕在化する。
The second drawback is that the lower part of the catalyst particle layer is supported by the bottom of the pressure-resistant shell, and the particles J? Because the heat exchange tube group is buried inside the outer shell, there is a difference in the mechanical contact between the tube group and the particle layer when the tube group thermally expands. Problems such as buckling may occur due to excessive stress acting on the tube group.This phenomenon can be avoided if the pressure-resistant outer shell and the grains of the heat exchange tubes are used as a counterbalance. Although we are moving towards solving the problem of reducing the difference in elongation, we are using materials for the heat exchange tubes that are more inert against impurity formation, and improving the abrasiveness of the pressure-resistant outer shell.
If the coefficient of thermal expansion is different from that of the material, the above-mentioned problem becomes more obvious.

本発明は、上述のような従来の装置の欠点をjI/7消
するためになさハ/こもので、その目的とするところt
」:、触媒粒子径を通常の市販品よりも小さくする必快
はなく、触媒の充填、排出が容よるで、伝熱面積を所望
に応じてイiii保することにより触媒層の温度を熱劣
化と不純物生成が問題とならない6−λ度領域に設定し
易くかつ反応熱を高レベルの熱エネルギ(高圧スチーム
など〕として回収でき、さらに熱交換管1’;’f’の
熱膨張に伴なう青!)f、と触媒等粒子層との力学的相
互作用に起因する諸問題を軽減しうる触媒充填反応器を
提供することである。
The present invention was made to eliminate the drawbacks of the conventional device as described above, and its purpose is to
”: It is not necessary to make the catalyst particle size smaller than that of ordinary commercially available products, but the charging and discharging of the catalyst is at your discretion, and by maintaining the heat transfer area as desired, the temperature of the catalyst layer can be adjusted. It is easy to set the temperature in the 6-λ degree range where deterioration and impurity formation are not a problem, and the reaction heat can be recovered as high-level thermal energy (high-pressure steam, etc.). An object of the present invention is to provide a catalyst-filled reactor that can alleviate various problems caused by mechanical interaction between a layer of particles such as a catalyst and a layer of particles such as a catalyst.

本発明の安旨は、 (1) はぼ垂直に設置された熱交換管によって、触媒
層を冷却又は加熱しながら、反応ガスを反応器のほぼ径
方向又はほぼ弦方向に流すようにした反応器において、
触媒層と熱交換管群の層を隣接して交互に配置したこと
を特徴とする触媒充填反応器。
The advantages of the present invention are as follows: (1) A reaction in which the reaction gas is caused to flow approximately in the radial direction or approximately in the chordal direction of the reactor while cooling or heating the catalyst layer using heat exchange tubes installed approximately vertically. In the vessel,
A catalyst-filled reactor characterized in that catalyst layers and layers of heat exchange tube groups are arranged adjacently and alternately.

(2) はぼ垂直に設置された熱交換管によって、触媒
層を冷却又は加熱しながら、反応ガスを反応器のはI?
径方向又はほぼ弦方向に流すようにした反応器において
、触媒層と熱交換管群の層を隣接して交互に配置し、上
記熱交換管群を含む構造体を該外殻上部に固定し、該熱
交換管群及び上記触媒層は、該外殻上部に懸垂して該外
殻内に収納されている触媒受はバスケット内に収納され
ていることを特徴とする触媒充填反応器。
(2) The reaction gas is transferred to the reactor while cooling or heating the catalyst layer using a heat exchange tube installed almost vertically.
In a reactor configured to flow in a radial or approximately chordal direction, catalyst layers and layers of heat exchange tube groups are arranged adjacently and alternately, and a structure including the heat exchange tube group is fixed to the upper part of the outer shell. . A catalyst-filled reactor, characterized in that the heat exchange tube group and the catalyst layer are suspended above the outer shell, and the catalyst receiver is housed in a basket.

を提供するところにある。It is in a place where we provide.

以下に、本発明による触媒充填反応器の一実施例に基づ
き、合成ガスからのメタノール合成へ適用した場合を例
として、本発明の詳細を図面によシ具体的(で説明する
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the details of the present invention will be specifically explained with reference to the drawings, based on an embodiment of the catalyst-filled reactor according to the present invention, and taking as an example the case where it is applied to methanol synthesis from synthesis gas.

第5図、及び第6図(、・ま本発明による&!媒充ケ反
応器の一実細暢様例の説明図で7ちり、第7図、及び第
8図i+:t:本発明に」:る1独々・イ1充」τ「・
1反応器Q)別V)実11!i態様例を化1明する図で
ある。
Figures 5 and 6 are explanatory diagrams of an example of a &! medium charging reactor according to the present invention, and Figures 7 and 8 i+:t: the present invention. ni”:ru1doku・i1ju”τ”・
1 Reactor Q) Another V) Actual 11! FIG. 1 is a diagram illustrating an example of the i aspect.

本9へ明の反応器の背r改は、下記の一点に騙約さ力、
 2’l 、 −J−/1:わも、第1の特徴U1:、
触媒層と熱交換管4jYの)C′iとを相p°「り合わ
ぜに交互に表1数層配置s”4(、L、、M7媒の流l
Iと直角方向に反応ガスを流すことで3・イ)3.仁の
7こめ熱交換管群j胃内の間隙ir<7 Jrp触幌4
:充」ji−J−る必ノυ、/バl(ぐ、触媒層eよ比
較的広い間隙(′(=・lfi常のnT−ffiシサ・
fズのル((ハ1゜オ立子をゾIL4〈ゾIす11(2
てイノ1ル°4ずJL、 lr良く、該庁1(媒IX′
8内で+iyr熱的V(−反応[て昇温しlrガス′(
[−熱交ル走′)=i群の層i’il ;47(いてt
l)人IIずJ’lI]:艮い、とのと〜、′旨植ミハ
づ内((、’ (t、):、Igli!々省を充J(v
’J J−、ないので、l’J配列ピッチy、i十分d
−六〈と汀/)プこヤ)、ガス4if速が大きくなり低
μ1係識イ)火さ々値がとれ4)−・本発明の反応器の
第20背1゛孜(rj、冷却管71゛Cの構造体を耐圧
外殻の上部に固足し、ガ垂形で支えると共に、触媒等粒
子層を耐圧外殻の上部で支持されたバスケット内に収納
することにより、該管群構造体とバスケットとを同質の
材料(例えばオーステナイト系ステンレス鋼など)で構
成し、耐圧外殻は異質の材料(低合金鋼など)で構成し
ても、管群構造体の熱膨張に伴なう管群構造体と触媒等
粒子層との力学的相互作用問題を軽減できる点である。
To book 9, the back r modification of Ming's reactor is deceived by the following point,
2'l, -J-/1: Wow, first feature U1:,
The catalyst layer and the heat exchange tubes 4jY) C′i are arranged in several layers alternately in Table 1, with the phase p° 4(, L, , M7 medium flow l
By flowing the reaction gas in a direction perpendicular to I, 3.a) 3. Jin's 7 heat exchange tube group j intragastric gap ir < 7 Jrp contact hood 4
:full'ji-J-ru must be no υ, /bar(g, catalyst layer e, relatively wide gap ('(=・lfi usual nT-ffi shisa・
fzuru ((ha1゜o standing child zo IL4
te ino 1 le ° 4zu JL, lr well, said office 1 (medium IX'
8, +iyr thermal V(- reaction [and the temperature is raised to lr gas'(
[-heat exchanger run') = layer i'il of group i; 47(t
l) 人IIzuJ'lI]: 艮い、とのと~、'しゅうみふわすい((、' (t, ):、Igli!
'J J-, since there is no l'J array pitch y, i enough d
-6〈と汀/) pukoya), the gas 4if speed increases, and the low μ1 relationship a) fire value decreases 4)-・20th of the reactor of the present invention The structure of the tube 71゛C is firmly attached to the upper part of the pressure-resistant outer shell, supported in a vertical shape, and the catalyst particle layer is housed in a basket supported at the upper part of the pressure-resistant outer shell. Even if the body and the basket are made of the same material (for example, austenitic stainless steel) and the pressure-resistant outer shell is made of a different material (such as low-alloy steel), the thermal expansion of the tube group structure This is because the problem of mechanical interaction between the tube group structure and the catalyst particle layer can be reduced.

第1の英施態様例を、第5図に塙づいて説、明する。第
5図において、1は堅置廷した円筒状の耐圧外殻であり
、その内部には耐圧外殻の上部にて支持されたバスケッ
ト(これは、図中の上方から隔啼21、多孔板触媒受6
、剤(媒受底板22を一体化して構成されている)があ
シ、該バスケットの内部には多数の熱交換管2から成る
管群層と触媒層19とを隣シ合わせに交互に配列すると
共に、該熱交換管群の各1替は、耐圧外殻1の上部に固
定されている。
The first embodiment will be explained and explained with reference to FIG. In Fig. 5, 1 is a cylindrical pressure-resistant outer shell that is firmly mounted, and inside it is a basket supported at the upper part of the pressure-resistant outer shell (this is separated from the top in the figure by a perforated plate 21). Catalyst receiver 6
, a catalyst layer (constructed by integrating a medium-receiving bottom plate 22), and inside the basket, a tube group layer consisting of a large number of heat exchange tubes 2 and a catalyst layer 19 are alternately arranged next to each other. At the same time, each replacement of the heat exchange tube group is fixed to the upper part of the pressure-resistant outer shell 1.

上述の構成において、まず冷媒の挙動を説明する。メタ
ノール合成では、冷媒としては加圧下沸騰水が最適であ
るが、この種の冷媒を冷媒供給口12から導入し、冷媒
下降管7と複数個の冷媒導管8を経て、冷媒分配ヘッダ
9に送入し、ここで各々の熱交換管2に分配して熱回収
させながら上部の冷媒集合ヘッダ1oに到達させたあと
、さらに冷媒導管8を経由し−で冷媒気液ドラム11に
至らせ、排出口13から取り出す゛。
In the above configuration, the behavior of the refrigerant will be explained first. In methanol synthesis, boiling water under pressure is optimal as a refrigerant, and this type of refrigerant is introduced from the refrigerant supply port 12 and sent to the refrigerant distribution header 9 via the refrigerant downcomer pipe 7 and a plurality of refrigerant conduits 8. Here, the refrigerant is distributed to each heat exchange tube 2 and is recovered while reaching the upper refrigerant collecting header 1o.Then, the refrigerant is further passed through the refrigerant conduit 8 and reaches the refrigerant gas-liquid drum 11 at -, where it is discharged. Take it out from exit 13.

つき゛に触媒は、面]圧外殻1の上部にある触媒充填口
16から、投入し、前νj(のし:、?り合う熱交:腕
管群の層と1音のあいだの空間に供給すれば、容易に同
空間に充填することができる3、但し、触Ql、l、層
19の下部と上部には、それぞれ反応ガスの偏流を防止
する意味で、不活性i、d体粒子粒子填することもある
Therefore, the catalyst is introduced from the catalyst filling port 16 at the top of the surface pressure outer shell 1, and placed in the space between the layer of the arm tube group and the However, inert i and d particles are placed at the bottom and top of the layer 19, respectively, in order to prevent the uneven flow of the reaction gas. It may also be filled with particles.

長期間使用後に、劣化した触媒を反応器から取り出す場
合には、耐圧外殻1および触媒受は用バスケットの各々
の下部にある二つの触媒取出口17を順次開放すればよ
い。
In order to take out the deteriorated catalyst from the reactor after a long period of use, the pressure-resistant outer shell 1 and the two catalyst take-out ports 17 at the bottom of each of the catalyst receiver baskets may be sequentially opened.

さらに、反応ガスは、反応ガス供給口14をを経由して
耐圧外殻1の図中左の反応ガス供給空間5に導入したあ
と、水平方向すなわちほぼ円筒状外殻内のほは弦方向に
流しながら、触媒層内での反応器いて熱交換群の層にお
ける冷却の操作を交互に繰り返して、耐圧外殻1の図中
右の反応ガス集合空間乙に至らせ、反応完了後のガスを
反応ガス排出口15から取り出す。第6図は、第5図に
おけるA−A断面を示したもので、前述の如く触媒層1
9と多数の熱交換管2の層とを交互に配置し、熱交換管
内の冷媒流れ方向と反応ガス流れ方向(図中の矢印)と
はtマホ直交するような構成としている。
Furthermore, after the reaction gas is introduced into the reaction gas supply space 5 on the left side of the figure of the pressure-resistant outer shell 1 via the reaction gas supply port 14, the reaction gas is introduced horizontally, that is, in the approximately cylindrical outer shell, in the chord direction. While flowing, the cooling operation in the heat exchange layer of the reactor in the catalyst layer is repeated alternately to reach the reaction gas gathering space B on the right side of the figure of the pressure-resistant shell 1, and the gas after the reaction is completed. The reaction gas is taken out from the outlet 15. FIG. 6 shows the AA cross section in FIG. 5, and as mentioned above, the catalyst layer 1
9 and a large number of layers of heat exchange tubes 2 are arranged alternately so that the flow direction of the refrigerant in the heat exchange tubes and the flow direction of the reaction gas (arrows in the figure) are perpendicular to each other.

第7図は、本発明による触媒充填反応器の別の実施態様
を示す説明図であり、第8図は第7図におけるA−A断
面を示す図でちる。
FIG. 7 is an explanatory diagram showing another embodiment of the catalyst-filled reactor according to the present invention, and FIG. 8 is a diagram showing a cross section taken along line AA in FIG. 7.

図中の符閃は第5及び6図の場合と同様を意味する。The flashing symbols in the figures have the same meanings as in FIGS. 5 and 6.

第7.8図に示す第2の例では、触媒層19と多数の熱
交換管2からなる管群の層をそれぞれ同心円状にかつ交
互に配置すると共に、耐圧外殻1の最外周部に反応ガス
供給空間5、中心部に反応ガス集合空間6を設けて、反
応ガス供給口14より導入した反応ガスは、まず前記の
反応ガス供給空間5を満たし、さらに触媒層と熱交換管
群の層を交互に半径方向に放射状に流通して反応、冷却
操作を繰り返しながら、反応ガス集合空間乙に集められ
たのち、反応ガス排出口15から取り出される。第2の
例が、第5図、第6図に示しだ第1の例と異なる点は、
反応ガスの流れ方向を半径方向にした点であり、このた
め触媒層と熱交換管群の1−とが各々同心円状に配置し
である。第7図、及び第8図では、反応ガスを外1i1
11から内側に向シアて放射状に流すことになっている
が、所望に応じて内側から外1411に流すことも可能
である。
In the second example shown in FIG. 7.8, the catalyst layer 19 and the layers of the tube group consisting of a large number of heat exchange tubes 2 are arranged concentrically and alternately. A reaction gas supply space 5 and a reaction gas gathering space 6 are provided in the center, and the reaction gas introduced from the reaction gas supply port 14 first fills the reaction gas supply space 5, and then flows through the catalyst layer and the heat exchange tube group. While repeating reaction and cooling operations by alternately circulating the layers in a radial direction, the reaction gas is collected in the reaction gas collection space B, and then taken out from the reaction gas outlet 15. The difference between the second example and the first example shown in FIGS. 5 and 6 is that
The flow direction of the reaction gas is radial, and therefore the catalyst layer and the heat exchange tube group 1- are arranged concentrically. In Figures 7 and 8, the reaction gas is
Although it is supposed to flow radially from the inside toward the shear from 1411, it is also possible to flow from the inside to the outside 1411 if desired.

なお、前述の2つの実施例においても、熱交換管群の1
−に、触媒粒子が入り込寸ないようにするためには、該
管群層の両面を網又は多孔板でおおっても良いし、管と
管の間隙を粒子が架橋して通過しにくい距離(粒子径の
数倍以下、好ましくは2〜3倍以下)としてもよい。
In addition, in the above two embodiments as well, one of the heat exchange tube groups
- In order to prevent catalyst particles from entering, both sides of the tube group layer may be covered with a net or perforated plate, or the gaps between the tubes may be bridged and the particles may be difficult to pass through. (Several times or less the particle diameter, preferably 2 to 3 times or less).

以上の本発明の反応器の作用から言えること(・よ、第
1の特徴として前述したように、触媒の充填、排出が容
易でろること、触媒の充那、排出とは関係なく所望の熱
交換管の伝熱面積を確保できること、その結果として反
応熱を高レベルの熱エネルギ(高圧スチーム等)の形で
回収でき、かつ適当外触媒層厚みと熱交換管群の層厚み
の組合わせにより触媒層温度を触媒銅熱温度以下に維持
することが町TN目となるため、温度上昇に伴々う触媒
劣化と不純物生成の増大を防止できることである。− 1だ、第2の特徴として前述したように、触媒受は用バ
スケットと熱交換管群の構造体は共に外殻上部にて固定
し、両者の材料を同質とすることによシ、該管群の熱膨
張に伴なう触媒等粒子層の破損、圧密、管座hn等の可
能性全回避すると共に、血J圧外殻の材料として管群の
それとは異質の安価なものの使用を可能ならしめる。
What can be said from the above-mentioned operation of the reactor of the present invention is that, as mentioned above, the first feature is that it is easy to charge and discharge the catalyst, and that the desired heat can be obtained regardless of the catalyst filling and discharge. The heat transfer area of the exchange tubes can be secured, and as a result, the reaction heat can be recovered in the form of high-level thermal energy (high-pressure steam, etc.), and the combination of the appropriate catalyst layer thickness and the layer thickness of the heat exchange tube group Since it is important to maintain the catalyst layer temperature below the catalyst copper thermal temperature, it is possible to prevent catalyst deterioration and increase in impurity generation as the temperature rises. As mentioned above, by fixing both the catalyst receiver basket and the structure of the heat exchange tube group at the upper part of the outer shell and making the materials of both the same, it is possible to prevent the catalyst from expanding due to the thermal expansion of the tube group. Possibilities such as damage to the equal particle layer, compaction, tube seat hn, etc. are completely avoided, and it is possible to use an inexpensive material different from that of the tube group as the material for the blood pressure outer shell.

以上の通り、本発明の反応器ff、j二、従来装置Uの
欠点を解消したものであり、特に発熱を伴なう合成ガス
からのメタノール合成において、反応熱を高質の熱エネ
ルギ(高圧スチームなど)と12て回収しつつ触媒層を
冷却できるため、過熱に伴なう触媒の熱的劣化と不純物
生成の増大を1’rjj止しうる1(加え、触媒充填の
容易な触媒充填反応器である。
As described above, the reactors ff and j2 of the present invention solve the drawbacks of the conventional device U, and in particular, in methanol synthesis from synthesis gas that generates heat, the reaction heat can be converted into high-quality thermal energy (high-pressure Since the catalyst layer can be cooled while recovering steam (steam, etc.), thermal deterioration of the catalyst and increase in impurity generation due to overheating can be stopped by 1'rjj (in addition, the catalyst loading reaction, which facilitates catalyst loading, can be It is a vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第11ン(、及び第2図は従来の堅型反応器の水・トi
すi面図で蔓り、それぞれ従来装置に与られる熱交換管
の配列を示す図である。 第6図は、合成ガスからツタノー・ルを合成する1易合
の従来型反応器における触媒層内の平均反応ガス温吸分
布とメタノール濃度分イ11の一一例であるっ 第4図ifj:、メタノール合成において従来型反応2
:÷の九虫媒層内で発生する反応熱を熱交換管内の沸届
水に伝える場合の、総括伝熱係数値の一例を、ガス空塔
速度の関数として示したものである。 第5図、及び第6図は、本発明による反応器の具体的実
施態様の一例を示す図であり、第7図、及び第8図は本
発明の別の実施態様を示す図である。 第5〜8図において、1耐圧外殻、2熱交換管、3多孔
板触媒受、4網、5反応ガス供給空間、6反応ガス集合
空間、7冷媒下降管、8冷媒導管、9冷媒分配ヘッダ、
10冷媒集合ヘッダ、11冷繰気液ドラム、12冷媒供
給口、13冷媒排出口、14反応ガス供給口、15反応
ガス排出口、16触媒充填口、17艶媒取出口、18マ
ンホール、19触媒層、20粒子層、21隔壁、22触
媒受底板 復代理人 内 1) 明 復代理人 萩 原 亮 − 一こ ()\口) 触媒層 (出口) 范4図 がス空壜速度(突ろ) 鬼5図 宅6図 范7図 3 范6図
11 (and Figure 2 shows the water and
FIG. 3 is a cross-sectional view showing the arrangement of heat exchange tubes provided in a conventional device; Figure 6 is an example of the average reaction gas temperature adsorption distribution and methanol concentration in the catalyst layer in a conventional reactor for synthesis of tutanol from synthesis gas. :, conventional reaction 2 in methanol synthesis
An example of the overall heat transfer coefficient value is shown as a function of the gas superficial velocity when the reaction heat generated in the 9-diaphragm medium layer is transferred to the boiling water in the heat exchange tube. FIG. 5 and FIG. 6 are diagrams showing an example of a specific embodiment of the reactor according to the present invention, and FIG. 7 and FIG. 8 are diagrams showing another embodiment of the present invention. In Figures 5 to 8, 1 pressure-resistant outer shell, 2 heat exchange tubes, 3 perforated plate catalyst receiver, 4 mesh, 5 reaction gas supply space, 6 reaction gas gathering space, 7 refrigerant downcomer pipe, 8 refrigerant conduit, 9 refrigerant distribution header,
10 refrigerant collection header, 11 refrigerated gas-liquid drum, 12 refrigerant supply port, 13 refrigerant discharge port, 14 reaction gas supply port, 15 reaction gas discharge port, 16 catalyst filling port, 17 polishing medium outlet, 18 manhole, 19 catalyst layer, 20 particle layer, 21 partition wall, 22 catalyst receiving bottom plate agent 1) Clear agent Ryo Hagiwara - Ichiko ()\口) Catalyst layer (outlet) ) Oni 5 diagram House 6 diagram Fan 7 diagram 3 Fan 6 diagram

Claims (2)

【特許請求の範囲】[Claims] (1) はは垂直に設置された熱交換管によって、触媒
層を冷却又は加熱しながら、反応ガスを反応器のほぼ径
方向又はほぼ弦方向に流すようにした反応器において、
触媒層と熱交換管r+1jの層を隣接して交互に配置し
たことを特徴とする触媒充填反応器。
(1) In a reactor in which the reaction gas is caused to flow approximately in the radial direction or approximately in the chordal direction of the reactor while cooling or heating the catalyst layer using vertically installed heat exchange tubes,
A catalyst-filled reactor characterized in that a catalyst layer and a layer of heat exchange tubes r+1j are alternately arranged adjacent to each other.
(2)はぼ垂1なに設置された熱交換管によって、触媒
層を冷却又は加熱しながら、反応カスを反応器のはイ径
方向又はほぼ弦方向に流すようにした反応器において、
触媒層と熱交換管群の層を隣接して交互に配置し、上記
熱交換19群を含む構造体を該外殻上部に固定し、該熱
交換管群及び上記触媒層は、該外殻上部に懸垂して該外
殻内に収納されている触媒受はバスケット内に収納され
ていることを特徴とする触媒層」i14反応器。
(2) In a reactor in which the reaction residue is caused to flow in the radial direction or approximately in the chordal direction of the reactor while cooling or heating the catalyst layer using a heat exchange tube installed in the vertical direction,
A catalyst layer and a layer of heat exchange tube groups are arranged adjacently and alternately, a structure including the heat exchanger 19 groups is fixed to the upper part of the outer shell, and the heat exchange tube group and the catalyst layer are arranged adjacent to each other alternately. 1. A catalyst layer i14 reactor, characterized in that a catalyst receiver suspended above and housed in the outer shell is housed in a basket.
JP22836883A 1983-12-05 1983-12-05 Reactor packed with catalyst Granted JPS60122036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22836883A JPS60122036A (en) 1983-12-05 1983-12-05 Reactor packed with catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22836883A JPS60122036A (en) 1983-12-05 1983-12-05 Reactor packed with catalyst

Publications (2)

Publication Number Publication Date
JPS60122036A true JPS60122036A (en) 1985-06-29
JPH0363424B2 JPH0363424B2 (en) 1991-10-01

Family

ID=16875363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22836883A Granted JPS60122036A (en) 1983-12-05 1983-12-05 Reactor packed with catalyst

Country Status (1)

Country Link
JP (1) JPS60122036A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110133126A1 (en) * 2008-08-11 2011-06-09 Uhde Gmbh Vertical cylindrical reactor with thin catalyst bed
CN111609742A (en) * 2019-02-26 2020-09-01 中石化广州工程有限公司 Heat pipe with fins and heat pipe type external heat collector with fins
WO2023013419A1 (en) * 2021-08-04 2023-02-09 東洋エンジニアリング株式会社 Reactor and method for producing ammonia decomposition mixture using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149640A (en) * 1979-04-03 1980-11-21 Toyo Eng Corp Reactor and its application
JPS57242A (en) * 1980-05-30 1982-01-05 Komatsu Ltd Controller for oil pressure of construction equipment
JPS57187633U (en) * 1981-05-23 1982-11-29

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149640A (en) * 1979-04-03 1980-11-21 Toyo Eng Corp Reactor and its application
JPS57242A (en) * 1980-05-30 1982-01-05 Komatsu Ltd Controller for oil pressure of construction equipment
JPS57187633U (en) * 1981-05-23 1982-11-29

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110133126A1 (en) * 2008-08-11 2011-06-09 Uhde Gmbh Vertical cylindrical reactor with thin catalyst bed
CN111609742A (en) * 2019-02-26 2020-09-01 中石化广州工程有限公司 Heat pipe with fins and heat pipe type external heat collector with fins
WO2023013419A1 (en) * 2021-08-04 2023-02-09 東洋エンジニアリング株式会社 Reactor and method for producing ammonia decomposition mixture using same

Also Published As

Publication number Publication date
JPH0363424B2 (en) 1991-10-01

Similar Documents

Publication Publication Date Title
US5520891A (en) Cross-flow, fixed-bed catalytic reactor
US5869011A (en) Fixed-bed catalytic reactor
CA1160817A (en) Chemical process and apparatus therefor
JPH0347134B2 (en)
CA2337824C (en) Radial flow reactor
AU2018387802B2 (en) Method and reactor for performing exothermic reactions
US4714592A (en) Radial flow catalytic reactor including heat exchange apparatus within the bed
CN209138593U (en) For carrying out the reactor of exothermic equilibrium reaction
EP1839735A1 (en) A transverse tubular heat exchange reactor and a process for catalytic synthesis therein
JPH0376976B2 (en)
US2434537A (en) Two-stage synthesis of hydrocarbons
JPH0638906B2 (en) Exothermic reaction processes and equipment
EA025397B1 (en) Reactor for exothermic or endothermic catalytic reactions
US6214296B1 (en) Method of catalytic reaction carried out near the optimal temperature and an apparatus for the method
US4767791A (en) Process for synthesizing methanol with an optimal temperature profile using a concentric pipe reactor
KR20170110848A (en) shell-and-multi-double concentric-tube reactor and heat exchanger
JPS60122036A (en) Reactor packed with catalyst
JPS6124372B2 (en)
JP2004315413A (en) Reactor for methanol synthesis and method for producing methanol
CN109294627B (en) Isothermal conversion device and synthesis gas complete conversion reaction system comprising same
EP0081948A1 (en) Reactor
JPS60225632A (en) Reactor
AU2017283045B2 (en) Axial/radial flow converter
JPS6234585Y2 (en)
JP2001527549A (en) Method and reactor for producing ethylene oxide