JPH0363424B2 - - Google Patents

Info

Publication number
JPH0363424B2
JPH0363424B2 JP58228368A JP22836883A JPH0363424B2 JP H0363424 B2 JPH0363424 B2 JP H0363424B2 JP 58228368 A JP58228368 A JP 58228368A JP 22836883 A JP22836883 A JP 22836883A JP H0363424 B2 JPH0363424 B2 JP H0363424B2
Authority
JP
Japan
Prior art keywords
catalyst
heat exchange
reactor
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58228368A
Other languages
Japanese (ja)
Other versions
JPS60122036A (en
Inventor
Hiroshi Makihara
Kazuto Kobayashi
Kensuke Niwa
Kazuhiro Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22836883A priority Critical patent/JPS60122036A/en
Publication of JPS60122036A publication Critical patent/JPS60122036A/en
Publication of JPH0363424B2 publication Critical patent/JPH0363424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes

Description

【発明の詳細な説明】 本発明は、触媒の存在下に流体を反応させる反
応器の改良に関する。さらに詳しくは、発熱また
は吸熱を伴なう触媒反応を、所定の圧力、温度の
もとで所望の反応率まで達成させる際に、発生す
る反応熱の回収または必要とする反応熱の供給を
行ないながら触媒層の温度分布をプロセス上要求
される最適分布に近づけることが可能な反応器構
造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in reactors for reacting fluids in the presence of catalysts. More specifically, when a catalytic reaction involving exotherm or endotherm is achieved to a desired reaction rate under a predetermined pressure and temperature, the reaction heat generated is recovered or the necessary reaction heat is supplied. However, the present invention relates to an improvement in the reactor structure that can bring the temperature distribution of the catalyst layer closer to the optimum distribution required for the process.

従来の反応器の構造上の欠点を、合成ガスから
のメタノール合成を例にとつて以下に説明する。
The structural disadvantages of conventional reactors will be explained below using methanol synthesis from synthesis gas as an example.

一酸化炭素と水素を主成分とする合成ガスを原
料とするメタノール合成は、銅系の触媒を用い
て、圧力50〜300Kg/cm2G、温度200〜300℃の範
囲を使用することが、一般的であるが、この際に
発生する反応熱を反応過程に沿つて除去しなけれ
ば、反応ガスと触媒層の温度の過大上昇を招き、
ひいては触媒の劣化と不純物生成の増大、及び化
学反応平衡面からは所望生成物濃度の低下を招く
こととなる。このため、従来から反応熱を除去し
て反応温度の過大上昇を防止するための種々の方
法と構造が工夫されている。
Methanol synthesis using synthesis gas whose main components are carbon monoxide and hydrogen uses a copper-based catalyst at a pressure of 50 to 300 kg/cm 2 G and a temperature of 200 to 300°C. Generally speaking, if the reaction heat generated at this time is not removed along the reaction process, the temperature of the reaction gas and catalyst layer will rise excessively.
This results in deterioration of the catalyst, increased production of impurities, and a decrease in the concentration of desired products from the standpoint of chemical reaction equilibrium. For this reason, various methods and structures have been devised to remove the reaction heat and prevent the reaction temperature from rising excessively.

近年、進んだ反応熱の処理方法として、反応熱
を間接的に熱媒体に移動させることにより、触媒
層中の反応ガスと触媒を冷却する方法がある。こ
の際の熱媒体としては、適当な沸点と蒸発潜熱、
比熱等を有する蒸発性の水や有機性液体等が用い
られ、反応熱はこれら液体の顕熱又は蒸発潜熱の
形で回収される。実用上最も望ましいのは、水を
熱媒体として用い、反応温度よりも低い温度を沸
騰温度とし、これに対応した飽和圧力のもとで水
を沸騰させて高圧蒸気を得、反応熱を蒸発潜熱の
形で回収するものであり、この目的に用いられる
反応器として従来の代表的な三例につき、その欠
点を以下に述べる。
In recent years, as a method for processing the reaction heat, there is a method of cooling the reaction gas and catalyst in the catalyst layer by indirectly transferring the reaction heat to a heat medium. In this case, the heat medium has an appropriate boiling point, latent heat of vaporization,
Evaporative water, organic liquid, etc. having specific heat etc. are used, and the reaction heat is recovered in the form of sensible heat or latent heat of vaporization of these liquids. Practically speaking, the most desirable method is to use water as a heat medium, set the boiling temperature to a temperature lower than the reaction temperature, boil the water under the corresponding saturation pressure to obtain high-pressure steam, and convert the heat of reaction into latent heat of vaporization. The disadvantages of three typical conventional reactors used for this purpose are described below.

第1の例は特公昭58−36572号公報に提案され
るもので、第1図に反応器のほぼ中央部の水平断
面を示す。この方法は、第1図における反応器内
の触媒層19の上下にリング状の冷媒用ヘツダを
配置し、触媒層を垂直方向に貫通している熱交換
管2の両端を前記のヘツダに連結することによつ
て管板を排除すると共に、円筒状外殻1の外周部
と中心部に触媒不在の空間5と6を設け、当該両
空間のどちらか一方から他方に反応ガスを半径方
向に流すことによつて、ガスの流通断面積を増大
し圧損の低減を計つているものである。このと
き、触媒層19は、内周側と外周側をそれぞれ、
多孔板触媒受3と網4を重ね合せて構成した隔壁
間に収納されている。また、耐圧外殻1と多数の
熱交換管から成る管群の熱膨張差を吸収するた
め、耐圧外殻と管群とは力学的に絶縁した構成と
なつており、触媒粒子および偏流防止用の不活性
粒子を含めて粒子充てん層は、下部を耐圧外殻の
底部で支えられ、該充填層内に熱交換管が埋没す
る構成となつている。
The first example is proposed in Japanese Patent Publication No. 58-36572, and FIG. 1 shows a horizontal cross section of approximately the center of the reactor. In this method, ring-shaped refrigerant headers are arranged above and below the catalyst layer 19 in the reactor in FIG. By doing so, the tube sheet is eliminated, and spaces 5 and 6 where no catalyst is present are provided at the outer periphery and center of the cylindrical shell 1, and the reaction gas is radially directed from one of the two spaces to the other. By allowing the gas to flow, the cross-sectional area of gas flow is increased and pressure loss is reduced. At this time, the catalyst layer 19 has an inner circumferential side and an outer circumferential side, respectively.
It is housed between partition walls formed by overlapping a porous plate catalyst receiver 3 and a mesh 4. In addition, in order to absorb the difference in thermal expansion between the pressure-resistant outer shell 1 and the tube group consisting of a large number of heat exchange tubes, the pressure-resistant outer shell 1 and the tube group are configured to be mechanically insulated, and are designed to prevent catalyst particles and uneven flow. The particle-filled layer including the inert particles is supported at its lower part by the bottom of the pressure-resistant shell, and the heat exchange tube is embedded in the packed layer.

次に、第2の例は特開昭58−112044号公報に提
案されるもので、第1の例とほぼ同様の構成で、
多数の熱交換管が1本1本、触媒層を垂直方向に
貫通すると共に、反応ガスは熱交換管内冷媒流れ
と直交する半径方向に流れている。第1例と第2
例の異なる主な点の1つは、熱交換管群をそのヘ
ツダも含めて円筒状耐圧外殻1の上蓋部に固定し
た点であり、触媒等粒子充填層は、第1例と同様
に下部を耐圧外殻の底部で支持してある。
Next, the second example is proposed in Japanese Patent Application Laid-Open No. 58-112044, and has almost the same configuration as the first example,
A large number of heat exchange tubes vertically penetrate the catalyst layer one by one, and the reaction gas flows in a radial direction perpendicular to the flow of refrigerant in the heat exchange tubes. 1st example and 2nd example
One of the main differences in this example is that the heat exchange tube group, including its header, is fixed to the upper lid part of the cylindrical pressure-resistant outer shell 1, and the packed bed of particles such as catalyst is the same as in the first example. The lower part is supported by the bottom of the pressure shell.

第3の例は、特開昭58−112046号公報に提案さ
れるもので、この反応器のほぼ中央部の水平断面
を第2図に示す。第2図において、第3の例が、
前の二例と根本的に異なる点は、耐圧外殻1の中
の反応ガス供給空間5に反応ガスを導入し、触媒
層19内を弦方向に流して反応ガス集合空間6に
反応後のガスを集め、さらに外部に取り出すよう
になつている点であり、つまり反応ガスを弦方向
に流すことが特徴的である。このほか、第2図に
おいて、2は熱交換管、4は網、7は冷媒下降管
である。
The third example is proposed in Japanese Patent Application Laid-Open No. 58-112046, and FIG. 2 shows a horizontal cross section of the approximately central portion of this reactor. In FIG. 2, the third example is
The fundamental difference from the previous two examples is that the reactant gas is introduced into the reactant gas supply space 5 in the pressure-resistant shell 1, flows chordally through the catalyst layer 19, and then enters the reactant gas gathering space 6 after the reaction. The feature is that the gas is collected and then taken out to the outside, that is, the reactant gas flows in the string direction. In addition, in FIG. 2, 2 is a heat exchange tube, 4 is a net, and 7 is a refrigerant downcomer pipe.

以上述べた従来の3例に共通することは、次の
二点である。すなわち、各々の熱交換管が触媒
層を貫通していること、換言すれば熱交換管群の
管外間隙に触媒粒子が充填されていること、及び
耐圧外殻の底部に直接支持されている触媒等粒
子層の中に熱交換管群が埋没する構成となつてい
ること、つまり触媒等粒子層の下部が外殻に支持
されていることである。
The following two points are common to the three conventional examples described above. That is, each heat exchange tube penetrates the catalyst layer, in other words, the extra tube gap of the heat exchange tube group is filled with catalyst particles, and is supported directly on the bottom of the pressure-resistant shell. The heat exchange tube group is buried in the catalyst particle layer, that is, the lower part of the catalyst particle layer is supported by the outer shell.

将に、上記二点が従来の反応器の欠点をもたら
すものであることを以下に説明する。
In the following, it will be explained that the above two points cause shortcomings of the conventional reactor.

第1の欠点は、触媒を熱劣化させることなく反
応器を可能な限り高レベルのスチームの形で回収
するに十分な伝熱面積を実現しようとすると、熱
交換管群内の管の間隙が小さくなるため、当間隙
への触媒の充填や当間隙からの触媒の排出が困難
となることである。管配列ピツチを増大させるか
管径を小さくして間隙を増大させること、又は触
媒粒子径を小さくすることによつて、触媒の充
填、排出は容易化するが、触媒単位容積当りの伝
熱面積が不足するので、特に反応速度の大きい触
媒層入口近傍で反応温度が高くなり、触媒劣化の
促進や不純物生成の増大などの不具合が生じる。
反応温度を単に低下させるためならば、沸とう水
などの冷媒温度を低下させても良いが、高レベル
のスチームは回収できなくなる。そこで必要伝熱
面積を確保するため、管径や配列ピツチの縮小、
伝熱フインの設置を行なうと、ますます触媒充
填、排出が困難となるので、触媒粒子径の減少が
必要となるわけである。ところが、触媒は、メタ
ノール合成用を例にとると、触媒有効係数、圧
損、製造性等考慮して、通常相当径が5〜6mmφ
の球状、円筒状または円柱状の粒子が用いられて
おり、これより径を小さくすると、次のような問
題が生じる。すなわち、製造コストの増大、圧損
の増加による循還ガス圧縮動力費の増大が起るほ
か、触媒層が閉塞し易くなること、特に触媒層下
部では圧密が生じ易く、その結果として反応ガス
の偏流が起る可能性も高い。
The first drawback is that the tube gaps in the heat exchanger tube bank become too large in order to achieve sufficient heat transfer area to recover the highest possible level of steam from the reactor without thermally degrading the catalyst. Because of the small size, it becomes difficult to fill the gap with the catalyst and discharge the catalyst from the gap. The filling and discharging of the catalyst can be facilitated by increasing the tube arrangement pitch or decreasing the tube diameter to increase the gap, or by decreasing the catalyst particle diameter, but the heat transfer area per unit volume of the catalyst As a result, the reaction temperature becomes high especially near the inlet of the catalyst layer where the reaction rate is high, resulting in problems such as acceleration of catalyst deterioration and increased production of impurities.
To simply lower the reaction temperature, the temperature of a refrigerant such as boiling water may be lowered, but high levels of steam cannot be recovered. Therefore, in order to secure the necessary heat transfer area, we reduced the pipe diameter and arrangement pitch.
If heat transfer fins are installed, it becomes increasingly difficult to charge and discharge the catalyst, so it is necessary to reduce the catalyst particle size. However, taking catalysts for methanol synthesis as an example, the equivalent diameter is usually 5 to 6 mmφ in consideration of catalyst effectiveness coefficient, pressure loss, manufacturability, etc.
Spherical, cylindrical, or cylindrical particles are used, and if the diameter is made smaller than this, the following problems will occur. In other words, in addition to increased manufacturing costs and increased power costs for compressing the circulating gas due to increased pressure loss, the catalyst layer becomes more likely to become clogged, especially in the lower part of the catalyst layer, and as a result, the reaction gas becomes unevenly flowed. is also likely to occur.

さらに、メタノール合成の場合を例にとり、第
3図、第4図を用いて、従来の反応器では、単位
触媒容積当りの必要伝熱面積が確保し難いことを
説明する。
Furthermore, using the case of methanol synthesis as an example, it will be explained using FIGS. 3 and 4 that it is difficult to secure the necessary heat transfer area per unit catalyst volume in a conventional reactor.

第3図は、従来型反応器に反応ガスを100Kg/
cm2、240℃で導入し、熱交換管内に250℃の沸騰水
(40Kg/cm2のスチーム回収)を流して、触媒層を
冷却しながら、H2およびCO、CO2を主成分とす
る合成ガスからのメタノール合成を行なう場合
の、従来型反応器における触媒層内の平均反応ガ
ス温度とメタノール濃度の分布の関係を示す。図
中のUAは総括伝熱係数U(Kcal/m2h・℃)と、
触媒単位容積当りの伝熱面積A(m2/m3 of
Cata.)との積であり、第3図ではUA=80000
(Kcal/h・℃・m3 of Cata.)とした。第3図
から判る通り、触媒層内反応ガス最高温度(これ
は、ほぼ触媒の温度と考えて良い)は略280℃で
あり、この値は通常の銅系触媒の耐熱温度260〜
320℃、平均的には280℃以下を満たしている。逆
に言えば、触媒層最高温度を280℃以下とするに
は、少なくともUAは80000(Kcal/h・℃・m3
of Cata.)必要であることになる。
Figure 3 shows how 100 kg/kg of reactant gas is fed into a conventional reactor.
cm 2 , 240℃, and flowing boiling water at 250℃ (40Kg/cm 2 steam recovery) into the heat exchange tube to cool the catalyst layer, which mainly consists of H 2 and CO, CO 2. The relationship between the average reaction gas temperature in the catalyst layer and the methanol concentration distribution in a conventional reactor is shown when methanol synthesis is performed from synthesis gas. UA in the figure is the overall heat transfer coefficient U (Kcal/m 2 h・℃),
Heat transfer area A per unit volume of catalyst (m 2 /m 3 of
Cata.), and in Figure 3, UA=80000
(Kcal/h・℃・m 3 of Cata.). As can be seen from Figure 3, the maximum temperature of the reactant gas in the catalyst layer (which can be considered almost the temperature of the catalyst) is approximately 280°C, and this value is higher than the heat resistance temperature of normal copper catalysts, which is 260°C.
320℃, average below 280℃. Conversely, in order to keep the maximum temperature of the catalyst layer below 280℃, the UA must be at least 80000 (Kcal/h・℃・m 3
of Cata.) is necessary.

第4図は、メタノール合成において、従来型反
応器の触媒層に貫通した熱交換器に沸騰水を流
し、該沸騰水の流れる方向と直角方向に反応ガス
を流して、触媒層内で発生する反応熱を沸騰水に
伝える場合の、ガス空塔速度に対する総括伝熱係
数の関係の一例を示す。一般に、前述の従来装置
にみられるような反応ガス流を半径方向又は弦方
向に流す方式では、ガスの通過面積が大となるた
め空塔速度が下がり圧損が低下する点はメリツト
であるが、反面第4図に示すように伝熱係数も小
さくなるデメリツトがある。総括伝熱係数をやや
大きめに800(Kcal/m2h・℃)とすると、必要
伝熱面積A≡80000/800=100(m2/m3 of Cata)と なる。ところで、熱交換管を外径25.4mmφとし、
管配列を55mmの正方ピツチとすると隣接する管壁
の最小間隙は29.6mmとなる。この間隙は直径が6
mmφの触媒粒子がブリツジを組まずに充填できる
最小の距離(粒子径の数倍)30mmとほぼ同値であ
るから、6mmφの触媒粒子を充填、排出可能とし
ても、触媒単位容積当りの伝熱面積は約30m3であ
るから、上述のような、40Kg/cm2スチームを回収
し、触媒層温度を触媒熱劣化と不純物増大の防止
に必要な280℃以下とするために不可欠な伝熱面
積100m2は確保できないことになる。それ故、従
来の装置では、低圧のスチーム回収で済ますか、
触媒層温度は上げたままで多少の触媒劣化と不純
物生成の増大を許容するか、これらが許されない
ならば伝熱面積を確保する代りに小粒子径にから
む前述の多少の不具合を許容するか、もしくは反
応器の上流側にやや低活性の触媒を充填した小型
の前置反応器を新たに設けて温度ピーク対策を行
うかなどの処置が必要と思われる。
Figure 4 shows that in methanol synthesis, boiling water is passed through a heat exchanger penetrating the catalyst layer of a conventional reactor, and a reaction gas is flowed in a direction perpendicular to the flow direction of the boiling water, so that the reaction gas generated within the catalyst layer is An example of the relationship between the overall heat transfer coefficient and the gas superficial velocity when the heat of reaction is transferred to boiling water is shown. In general, the method of flowing the reactant gas in a radial or chordal direction, as seen in the conventional apparatus described above, has the advantage that the gas passage area is large, resulting in a lower superficial velocity and lower pressure drop. On the other hand, as shown in FIG. 4, there is a disadvantage that the heat transfer coefficient is also small. If the overall heat transfer coefficient is set to be slightly larger at 800 (Kcal/m 2 h・℃), the required heat transfer area A≡80000/800=100 (m 2 /m 3 of Cata). By the way, the heat exchange tube has an outer diameter of 25.4 mmφ,
If the tube arrangement is 55 mm square pitch, the minimum gap between adjacent tube walls will be 29.6 mm. This gap has a diameter of 6
The minimum distance (several times the particle diameter) that mmφ catalyst particles can be filled without forming a bridge is approximately 30 mm, so even if 6 mmφ catalyst particles can be filled and discharged, the heat transfer area per unit volume of the catalyst is is approximately 30 m 3 , so the heat transfer area of 100 m is essential for recovering 40 Kg/cm 2 steam and keeping the catalyst layer temperature below 280°C, which is necessary to prevent catalyst thermal deterioration and impurity increase. 2 cannot be secured. Therefore, with conventional equipment, is it possible to recover steam at low pressure?
Should we accept some degree of catalyst deterioration and increase in impurity generation while keeping the catalyst bed temperature elevated, or if these are not acceptable, should we accept some of the aforementioned problems associated with small particle diameter in exchange for securing a heat transfer area? Alternatively, it may be necessary to take measures such as installing a new small pre-reactor filled with a slightly less active catalyst on the upstream side of the reactor to counteract temperature peaks.

第2の欠点は、触媒等粒子層が下部を耐圧外殻
の底部で支持され、該粒子層の内部に熱交換管群
が埋没しているために、同管群の熱膨張時に管群
と粒子層の力学的挙動の違いが生じ、外殻底部近
くでは圧迫による粒子の破壊、圧密、また管群に
は過大な応力が作用して座屈等の問題が生じる可
能性がある。この現象は、耐圧外殻と、熱交換管
の材質を同一材料とすれば伸び差が少なくなり問
題解決の方向に向かうが、不純物生成に対してよ
り不活性な材料を熱交換管に使用し、耐圧外殻の
材質とは熱膨張係数を異にする場合には、上述の
問題はより顕在化する。
The second drawback is that the lower part of the catalyst particle layer is supported at the bottom of the pressure-resistant shell, and the heat exchange tube group is buried inside the particle layer, so that when the tube group thermally expands, the tube group Differences in the mechanical behavior of the particle layer occur, and near the bottom of the outer shell, particles may break due to compression and consolidation, and excessive stress may act on the tube group, causing problems such as buckling. This phenomenon can be solved by using the same material for the pressure-resistant outer shell and the heat exchange tube as the difference in elongation will be reduced, but if a material that is more inert against impurity generation is used for the heat exchange tube. If the material has a different coefficient of thermal expansion from the material of the pressure-resistant outer shell, the above-mentioned problem becomes more obvious.

本発明は、上述のような従来の装置の欠点を解
消するためになされたもので、その目的とすると
ころは、触媒粒子径を通常の市販品よりも小さく
する必要はなく、触媒の充填、排出が容易で、伝
熱面積を所望に応じて確保することにより触媒層
の温度を熱劣化と不純物生成が問題とならない温
度領域に設定し易くかつ反応熱を高レベルの熱エ
ネルギ(高圧スチームなど)として回収でき、さ
らに熱交換管群の熱膨張に伴なう管群と触媒等粒
子層との力学的相互作用に起因する諸問題を軽減
しうる触媒充填反応器を提供することである。
The present invention was made in order to eliminate the drawbacks of the conventional devices as described above, and its purpose is to eliminate the need to make the catalyst particle diameter smaller than that of ordinary commercially available products, and to It is easy to discharge, and by securing the heat transfer area as desired, it is easy to set the temperature of the catalyst layer in a temperature range where thermal deterioration and impurity generation are not a problem, and the reaction heat can be converted into high-level thermal energy (such as high-pressure steam). ), and furthermore, to provide a catalyst-filled reactor which can reduce various problems caused by mechanical interaction between the tube group and the catalyst particle layer due to thermal expansion of the heat exchange tube group.

本発明の要旨は、 (1) ほぼ垂直に設置された熱交換管によつて、触
媒層を冷却又は加熱しながら、反応ガスを反応
器のほぼ径方向又はほぼ弦方向に流すようにし
た反応器において、触媒層と熱交換管群の層を
隣接して交互に配置したことを特徴とする触媒
充填反応器。
The gist of the present invention is as follows: (1) A reaction in which the reaction gas is caused to flow approximately in the radial direction or approximately in the chordal direction of the reactor while cooling or heating the catalyst layer using heat exchange tubes installed approximately vertically. A catalyst-filled reactor characterized in that catalyst layers and layers of heat exchange tube groups are alternately arranged adjacent to each other.

(2) ほぼ垂直に設置された熱交換管によつて、触
媒層を冷却又は加熱しながら、反応ガスを反応
器のほぼ径方向又はほぼ弦方向に流すようにし
た反応器において、触媒層と熱交換管群の層を
隣接して交互に配置し、上記熱交換管群を含む
構造体を該外殻上部に固定し、該熱交換管群及
び上記触媒層は、該外殻上部に懸垂して該外殻
内に収納されている触媒受けバスケツト内に収
納されていることを特徴とする触媒充填反応
器。
(2) In a reactor in which the reaction gas is caused to flow approximately in the radial direction or approximately in the chordal direction of the reactor while cooling or heating the catalyst layer using heat exchange tubes installed approximately vertically, the catalyst layer and layers of heat exchange tube groups are arranged adjacently and alternately, a structure including the heat exchange tube groups is fixed to the upper part of the outer shell, and the heat exchange tube groups and the catalyst layer are suspended in the upper part of the outer shell. A catalyst-filled reactor characterized in that the catalyst is housed in a catalyst receiving basket which is housed in the outer shell.

を提供するところにある。It is in a place where we provide.

以下に、本発明による触媒充填反応器の一実施
例に基づき、合成ガスからのメタノール合成へ適
用した場合を例として、本発明の詳細を図面によ
り具体的に説明する。
Hereinafter, the details of the present invention will be specifically explained with reference to the drawings, based on one embodiment of the catalyst-filled reactor according to the present invention, and taking as an example the case where it is applied to methanol synthesis from synthesis gas.

第5図、及び第6図は本発明による触媒充填反
応器の一実施態様例の説明図であり、第7図、及
び第8図は本発明による触媒充填反応器の別の実
施態様例を説明する図である。
5 and 6 are explanatory diagrams of one embodiment of the catalyst-filled reactor according to the present invention, and FIGS. 7 and 8 are explanatory diagrams of another embodiment of the catalyst-filled reactor according to the present invention. FIG.

本発明の反応器の特徴は、下記の二点に集約さ
れる。すなわち、第1の特徴は、触媒層と熱交換
管群の層とを相隣り合わせに交互に複数層配置
し、冷媒の流れと直角方向に反応ガスを流すこと
である。このため熱交換管群層内の間隙には触媒
を充填する必要がなく、触媒層は比較的広い間隙
に通常の市販サイズの触媒粒子を難なく充填して
構成すれば良く、該触媒層内で断熱的に反応して
昇温したガスを熱交換管群の層に導いて冷却すれ
ば良い。このとき、管群層内には、触媒を充填し
ないので、管配列ピツチは十分小さくとれるた
め、ガス流速が大きくなり伝熱係数も大きな値が
とれる。
The features of the reactor of the present invention can be summarized in the following two points. That is, the first feature is that a plurality of catalyst layers and layers of heat exchange tube groups are alternately arranged next to each other, and the reaction gas is caused to flow in a direction perpendicular to the flow of the refrigerant. For this reason, there is no need to fill the gaps in the heat exchange tube group layer with catalyst, and the catalyst layer can be constructed by easily filling a relatively wide gap with catalyst particles of normal commercial size. The gas that has heated up due to the adiabatic reaction may be guided to the layer of the heat exchange tube group and cooled. At this time, since no catalyst is filled in the tube group layer, the tube arrangement pitch can be kept sufficiently small, so that the gas flow rate can be increased and the heat transfer coefficient can also take a large value.

本発明の反応器の第2の特徴は、冷却管群の構
造体を耐圧外殻の上部に固定し、懸垂形で支える
と共に、触媒等粒子層を耐圧外殻の上部で支持さ
れたバスケツト内に収納することにより、該管群
構造体とバスケツトとを同質の材料(例えばオー
ステナイト系ステンレス鋼など)で構成し、耐圧
外殻は異質の材料(低合金鋼など)で構成して
も、管群構造体の熱膨張に伴なう管群構造体と触
媒等粒子層との力学的相互作用問題を軽減できる
点である。
The second feature of the reactor of the present invention is that the structure of the cooling tube group is fixed to the upper part of the pressure-resistant outer shell and supported in a suspended form, and the catalyst particle layer is placed in a basket supported on the upper part of the pressure-resistant outer shell. Even if the tube group structure and the basket are made of the same material (such as austenitic stainless steel) and the pressure-resistant outer shell is made of a different material (such as low-alloy steel), the tube This is because it is possible to reduce the problem of mechanical interaction between the tube group structure and the catalyst particle layer due to thermal expansion of the group structure.

第1の実施態様例を、第5図に基づいて説明す
る。第5図において、1は堅置きした円筒状の耐
圧外殻であり、その内部には耐圧外殻の上部にて
支持されたバスケツト(これは、図中の上方から
隔壁21、多孔板触媒受3、触媒受底板22を一
体化して構成されている)があり、該バスケツト
の内部には多数の熱交換管2から成る管群層と触
媒層19とを隣り合わせに交互に配列すると共
に、該熱交換管群の各層は、耐圧外殻1の上部に
固定されている。
A first embodiment example will be described based on FIG. 5. In FIG. 5, reference numeral 1 denotes a cylindrical pressure-resistant outer shell that is placed firmly, and inside it is a basket supported at the upper part of the pressure-resistant outer shell (this includes a partition wall 21 and a perforated plate catalyst receiver from above in the figure). 3, a catalyst receiving bottom plate 22 is integrated into the basket, and inside the basket, tube group layers consisting of a large number of heat exchange tubes 2 and catalyst layers 19 are alternately arranged next to each other, and Each layer of the heat exchange tube group is fixed to the upper part of the pressure-resistant shell 1.

上述の構成において、まず冷媒の挙動を説明す
る。メタノール合成では、冷媒としては加圧下沸
騰水が最適であるが、この種の冷媒を冷媒供給口
12から導入し、冷媒下降管7と複数個の冷媒導
管8を経て、冷媒分配ヘツダ9に送入し、ここで
各々の熱交換管2に分配して熱回収させながら上
部の冷媒集合ヘツダ10に到達させたあと、さら
に冷媒導管8を経由して冷媒気液ドラム11に至
らせ、排出口13から取り出す。
In the above configuration, the behavior of the refrigerant will be explained first. In methanol synthesis, boiling water under pressure is most suitable as a refrigerant, and this type of refrigerant is introduced from the refrigerant supply port 12 and sent to the refrigerant distribution header 9 via the refrigerant downcomer pipe 7 and a plurality of refrigerant conduits 8. After the refrigerant reaches the upper refrigerant collecting header 10 while being distributed to each heat exchange pipe 2 and recovered, the refrigerant is further passed through the refrigerant conduit 8 to the refrigerant gas-liquid drum 11, and then the refrigerant is discharged to the discharge port. Take it out from 13.

つぎに触媒は、耐圧外殻1の上部にある触媒充
填口16から、投入し、前述の隣り合う熱交換管
群の層と層のあいだの空間に供給すれば、容易に
同空間に充填することができる。但し、触媒層1
9の下部と上部には、それぞれ反応ガスの偏流を
防止する意味で、不活性固体粒子を充填すること
もある。
Next, the catalyst is introduced from the catalyst filling port 16 in the upper part of the pressure-resistant outer shell 1, and is easily filled into the space between the layers of the adjacent heat exchange tube group by supplying the catalyst to the space between the layers of the adjacent heat exchange tube group. be able to. However, catalyst layer 1
The lower and upper portions of the reactor 9 may be filled with inert solid particles in order to prevent uneven flow of the reaction gas.

長期間使用後に、劣化した触媒を反応器から取
り出す場合には、耐圧外殻1および触媒受け用バ
スケツトの各々の下部にある二つの触媒取出口1
7を順次開放すればよい。
When removing a deteriorated catalyst from the reactor after long-term use, two catalyst removal ports 1 are provided at the bottom of each of the pressure-resistant shell 1 and the catalyst receiving basket.
7 should be opened sequentially.

さらに、反応ガスは、反応ガス供給口14をを
経由して耐圧外殻1の図中左の反応ガス供給空間
5に導入したあと、水平方向すなわちほぼ円筒状
外殻内のほぼ弦方向に流しながら、触媒層内での
反応続いて熱交換群の層における冷却の操作を交
互に繰り返して、耐圧外殻1の図中右の反応ガス
集合空間6に至らせ、反応完了後のガスを反応ガ
ス排出口15から取り出す。第6図は、第5図に
おけるA−A断面を示したもので、前述の如く触
媒層19と多数の熱交換管2の層とを交互に配置
し、熱交換管内の冷媒流れ方向と反応ガス流れ方
向(図中の矢印)とはほぼ直交するような構成と
している。
Further, the reaction gas is introduced into the reaction gas supply space 5 on the left side in the figure of the pressure-resistant outer shell 1 via the reaction gas supply port 14, and then flows in a horizontal direction, that is, in an approximately chord direction inside the approximately cylindrical outer shell. Meanwhile, the reaction in the catalyst layer and the cooling operation in the heat exchange group layer are repeated alternately to reach the reaction gas collection space 6 on the right side of the figure of the pressure-resistant outer shell 1, and the gas after the reaction is reacted. Take it out from the gas outlet 15. FIG. 6 shows a cross section taken along the line A-A in FIG. 5. As mentioned above, the catalyst layer 19 and the layers of a large number of heat exchange tubes 2 are arranged alternately, and react with the flow direction of the refrigerant in the heat exchange tubes. The configuration is such that it is almost perpendicular to the gas flow direction (arrow in the figure).

第7図は、本発明による触媒充填反応器の別の
実施態様を示す説明図であり、第8図は第7図に
おけるA−A断面を示す図である。
FIG. 7 is an explanatory diagram showing another embodiment of the catalyst-filled reactor according to the present invention, and FIG. 8 is a diagram showing a cross section taken along line AA in FIG. 7.

図中の符号は第5及び6図の場合と同様を意味
する。
The symbols in the figure have the same meanings as in FIGS. 5 and 6.

第7,8図に示す第2の例では、触媒層19と
多数の熱交換管2からなる管群の層をそれぞれ同
心円状にかつ交互に配置すると共に、耐圧外殻1
の最外周部に反応ガス供給空間5、中心部に反応
ガス集合空間6を設けて、反応ガス供給口14よ
り導入した反応ガスは、まず前記の反応ガス供給
空間5を満たし、さらに触媒層と熱交換管群の層
を交互に半径方向の放射状に流通して反応、冷却
操作を繰り返しながら、反応ガス集合空間6に集
められたのち、反応ガス排出口15から取り出さ
れる。第2の例が、第5図、第6図に示した第1
の例と異なる点は、反応ガスの流れ方向を半径方
向にした点であり、このため触媒層と熱交換管群
の層とが各々同心円状に配置してある。第7図、
及び第8図では、反応ガスを外側から内側に向け
て放射状に流すことになつているが、所望に応じ
て内側から外側に流すことも可能である。
In the second example shown in FIGS. 7 and 8, the catalyst layer 19 and the layers of the tube group consisting of a large number of heat exchange tubes 2 are arranged concentrically and alternately, and the pressure-resistant outer shell 1
A reactive gas supply space 5 is provided at the outermost periphery and a reactive gas gathering space 6 is provided at the center.The reactive gas introduced from the reactive gas supply port 14 first fills the aforementioned reactive gas supply space 5, and then forms a catalyst layer and a reactive gas gathering space 6. The reaction gas is collected in the reaction gas collection space 6 while being repeatedly circulated radially through the layers of the heat exchange tube group to undergo reaction and cooling operations, and then taken out from the reaction gas outlet 15. The second example is the first example shown in Figures 5 and 6.
The difference from the above example is that the flow direction of the reaction gas is radial, and therefore the catalyst layer and the layers of the heat exchange tube group are arranged concentrically. Figure 7,
8, the reaction gas is supposed to flow radially from the outside to the inside, but it is also possible to flow from the inside to the outside if desired.

なお、前述の2つの実施例においても、熱交換
管群の層に、触媒粒子が入り込まないようにする
ためには、該管群層の両面を網又は多孔板でおお
つても良いし、管と管の間隙を粒子が架橋して通
過しにくい距離(粒子径の数倍以下、好ましくは
2〜3倍以下)としてもよい。
In the above two embodiments as well, in order to prevent catalyst particles from entering the layer of the heat exchange tube group, both sides of the layer of the tube group may be covered with a net or a perforated plate, or the layers of the tube group may be covered with nets or perforated plates. The gap between the pipe and the pipe may be set to a distance (not more than several times the particle diameter, preferably not more than 2 to 3 times) that makes it difficult for the particles to cross-link and pass through.

以上の本発明の反応器の作用から言えること
は、第1の特徴として前述したように、触媒の充
填、排出が容易であること、触媒の充填、排出と
は関係なく所望の熱交換管の伝熱面積を確保でき
ること、その結果として反応熱を高レベルの熱エ
ネルギ(高圧スチーム等)の形で回収でき、かつ
適当な触媒層厚みと熱交換管群の層厚みの組合せ
により触媒層温度を触媒耐熱温度以下に維持する
ことが可能となるため、温度上昇に伴なう触媒劣
化と不純物生成の増大を防止できることである。
What can be said from the above-mentioned operation of the reactor of the present invention is that, as mentioned above, the first feature is that the catalyst can be easily filled and discharged, and that the desired heat exchange tube can be formed regardless of the catalyst filling and discharge. The heat transfer area can be secured, and as a result, the reaction heat can be recovered in the form of high-level thermal energy (high-pressure steam, etc.), and the catalyst layer temperature can be controlled by combining the appropriate catalyst layer thickness and the layer thickness of the heat exchange tube group. Since it is possible to maintain the temperature at or below the catalyst allowable temperature, it is possible to prevent catalyst deterioration and increase in impurity production due to temperature rise.

また、第2の特徴として前述したように、触媒
受け用バスケツトと熱交換管群の構造体は共に外
殻上部にて固定し、両者の材料を同質とすること
により、該管群の熱膨張に伴なう触媒等粒子層の
破損、圧密、管座屈等の可能性を回避すると共
に、耐圧外殻の材料として管群のそれとは異質の
安価なものの使用を可能ならしめる。
In addition, as mentioned above, the second feature is that the structure of the catalyst receiving basket and the heat exchange tube group are both fixed at the upper part of the outer shell, and by making the materials of both the same, the thermal expansion of the tube group is prevented. This avoids the possibility of breakage of the catalyst particle layer, compaction, tube buckling, etc., which is caused by this, and also enables the use of an inexpensive material different from that of the tube group as the pressure-resistant outer shell material.

以上の通り、本発明の反応器は、従来装置の欠
点を解消したものであり、特に発熱を伴なう合成
ガスからのメタノール合成において、反応熱を高
質の熱エネルギ(高圧スチームなど)として回収
しつつ触媒層を冷却できるため、過熱に伴なう触
媒の熱的劣化と不純物生成の増大を防止しうるに
加え、触媒充填の容易な触媒充填反応器である。
As described above, the reactor of the present invention eliminates the drawbacks of conventional devices, and converts the reaction heat into high-quality thermal energy (such as high-pressure steam), especially in methanol synthesis from synthesis gas that generates heat. Since the catalyst layer can be cooled while being recovered, thermal deterioration of the catalyst and increase in impurity production due to overheating can be prevented, and the catalyst can be easily filled in the catalyst-filled reactor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、及び第2図は従来の竪型反応器の水平
断面図であり、それぞれ従来装置にみられる熱交
換管の配列を示す図である。第3図は、合成ガス
からメタノールを合成する場合の従来型反応器に
おける触媒層内の平均反応ガス温度分布とメタノ
ール濃度分布の一例である。第4図は、メタノー
ル合成において従来型反応器の触媒層内で発生す
る反応熱を熱交換管内の沸騰水に伝える場合の、
総括伝熱係数値の一例を、ガス空塔速度の関数と
して示したものである。第5図、及び第6図は、
本発明による反応器の具体的実施態様の一例を示
す図であり、第7図、及び第8図は本発明の別の
実施態様を示す図である。 第5〜8図において、1……耐圧外殻、2……
熱交換管、3……多孔板触媒受、4……網、5…
…反応ガス供給空間、6……反応ガス集合空間、
7……冷媒下降管、8……冷媒導管、9……冷媒
分配ヘツダ、10……冷媒集合ヘツダ、11……
冷媒気液ドラム、12……冷媒供給口、13……
冷媒排出口、14……反応ガス供給口、15……
反応ガス排出口、16……触媒充填口、17……
触媒取出口、18……マンホール、19……触媒
層、20……粒子層、21……隔壁、22……触
媒受底板。
FIGS. 1 and 2 are horizontal sectional views of a conventional vertical reactor, each showing the arrangement of heat exchange tubes found in the conventional apparatus. FIG. 3 is an example of the average reaction gas temperature distribution and methanol concentration distribution in the catalyst layer in a conventional reactor when methanol is synthesized from synthesis gas. Figure 4 shows the case in which the reaction heat generated in the catalyst layer of a conventional reactor is transferred to boiling water in the heat exchange tube in methanol synthesis.
An example of an overall heat transfer coefficient value is shown as a function of gas superficial velocity. Figures 5 and 6 are
FIG. 7 is a diagram showing an example of a specific embodiment of the reactor according to the present invention, and FIGS. 7 and 8 are diagrams showing other embodiments of the present invention. In Figures 5 to 8, 1... pressure-resistant outer shell, 2...
Heat exchange tube, 3... Perforated plate catalyst receiver, 4... Net, 5...
...Reaction gas supply space, 6...Reaction gas collection space,
7... Refrigerant descending pipe, 8... Refrigerant conduit, 9... Refrigerant distribution header, 10... Refrigerant collecting header, 11...
Refrigerant gas-liquid drum, 12... Refrigerant supply port, 13...
Refrigerant discharge port, 14... Reaction gas supply port, 15...
Reaction gas discharge port, 16...Catalyst filling port, 17...
Catalyst outlet, 18... Manhole, 19... Catalyst layer, 20... Particle layer, 21... Partition wall, 22... Catalyst receiving bottom plate.

Claims (1)

【特許請求の範囲】 1 ほぼ垂直に設置された熱交換管によつて、触
媒層を冷却又は加熱しながら、反応ガスを反応器
のほぼ径方向又はほぼ弦方向に流すようにした反
応器において、触媒層と熱交換管群の層を隣接し
て交互に配置したことを特徴とする触媒充填反応
器。 2 ほぼ垂直に設置された熱交換管によつて、触
媒層を冷却又は加熱しながら、反応ガスを反応器
のほぼ径方向又はほぼ弦方向に流すようにした反
応器において、触媒層と熱交換管群の層を隣接し
て交互に配置し、上記熱交換管群を含む構造体を
該外殻上部に固定し、該熱交換管群及び上記触媒
層は、該外殻上部に懸垂して該外殻内に収納され
ている触媒受けバスケツト内に収納されているこ
とを特徴とする触媒充填反応器。
[Claims] 1. A reactor in which a reaction gas is caused to flow approximately in the radial direction or approximately in the chordal direction of the reactor while cooling or heating the catalyst layer using heat exchange tubes installed approximately vertically. , A catalyst-filled reactor characterized in that catalyst layers and layers of heat exchange tube groups are arranged adjacently and alternately. 2. Heat exchange with the catalyst layer in a reactor in which the reactor gas is caused to flow approximately in the radial direction or approximately in the chord direction of the reactor while cooling or heating the catalyst layer using heat exchange tubes installed approximately vertically. layers of tube banks are arranged adjacently and alternately, a structure including the heat exchange tube group is fixed to the upper part of the outer shell, and the heat exchange tube group and the catalyst layer are suspended from the upper part of the outer shell. A catalyst-filled reactor characterized in that the catalyst is housed in a catalyst receiving basket housed in the outer shell.
JP22836883A 1983-12-05 1983-12-05 Reactor packed with catalyst Granted JPS60122036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22836883A JPS60122036A (en) 1983-12-05 1983-12-05 Reactor packed with catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22836883A JPS60122036A (en) 1983-12-05 1983-12-05 Reactor packed with catalyst

Publications (2)

Publication Number Publication Date
JPS60122036A JPS60122036A (en) 1985-06-29
JPH0363424B2 true JPH0363424B2 (en) 1991-10-01

Family

ID=16875363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22836883A Granted JPS60122036A (en) 1983-12-05 1983-12-05 Reactor packed with catalyst

Country Status (1)

Country Link
JP (1) JPS60122036A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110133126A1 (en) * 2008-08-11 2011-06-09 Uhde Gmbh Vertical cylindrical reactor with thin catalyst bed
CN111609742A (en) * 2019-02-26 2020-09-01 中石化广州工程有限公司 Heat pipe with fins and heat pipe type external heat collector with fins
JP2023022850A (en) * 2021-08-04 2023-02-16 東洋エンジニアリング株式会社 Reactor, and production method of ammonia decomposition mixture using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149640A (en) * 1979-04-03 1980-11-21 Toyo Eng Corp Reactor and its application
JPS57242A (en) * 1980-05-30 1982-01-05 Komatsu Ltd Controller for oil pressure of construction equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234585Y2 (en) * 1981-05-23 1987-09-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149640A (en) * 1979-04-03 1980-11-21 Toyo Eng Corp Reactor and its application
JPS57242A (en) * 1980-05-30 1982-01-05 Komatsu Ltd Controller for oil pressure of construction equipment

Also Published As

Publication number Publication date
JPS60122036A (en) 1985-06-29

Similar Documents

Publication Publication Date Title
US4594227A (en) Reaction method and reactor therefor
US4321234A (en) Chemical process and apparatus therefor
US4714592A (en) Radial flow catalytic reactor including heat exchange apparatus within the bed
US5869011A (en) Fixed-bed catalytic reactor
CN105032305B (en) A kind of new radial direction plate-type reactor
JPH0376976B2 (en)
EP1839735A1 (en) A transverse tubular heat exchange reactor and a process for catalytic synthesis therein
WO1999005064A1 (en) Processes for the synthesis of hydrogen cyanide
EP1419813B1 (en) Apparatus for ammonia production
US4205044A (en) Reactor for catalyzed exothermic reactions
US6214296B1 (en) Method of catalytic reaction carried out near the optimal temperature and an apparatus for the method
CN101249406A (en) Heat insulation-cold stimulated-shell of pipe exterior cold combined gas solid phase fixed bed catalyst chamber
JP2013503732A (en) Shell and tube vertical isothermal reactor
JPH0363425B2 (en)
EP0142170A2 (en) Ammonia synthesis converter
IL28758A (en) Reactor for the continuous performance of exothermic catalyzed reactions in the gas phase under high pressure
JPH0363424B2 (en)
JP2004315413A (en) Reactor for methanol synthesis and method for producing methanol
CA2714470A1 (en) Isothermal chemical reactor with plate heat exchanger
EP0081948A1 (en) Reactor
JPS6234585Y2 (en)
JPH06218270A (en) Vertical type fluidized bed catalyst reactor
JP2001527549A (en) Method and reactor for producing ethylene oxide
IL263628A (en) Axial/radial flow converter
JPH0366935B2 (en)